PINSPlus: a novel tool for molecular subtyping and multi-omics integration

Background

Over-diagnosis:

- After decades of screening, the chance of person being diagnosed with prostate or breast cancer has doubled
- The number of patients with advanced disease has been reduced only marginally

→substantial harm of excess detection and over-diagnosis.

Under-diagnosis:

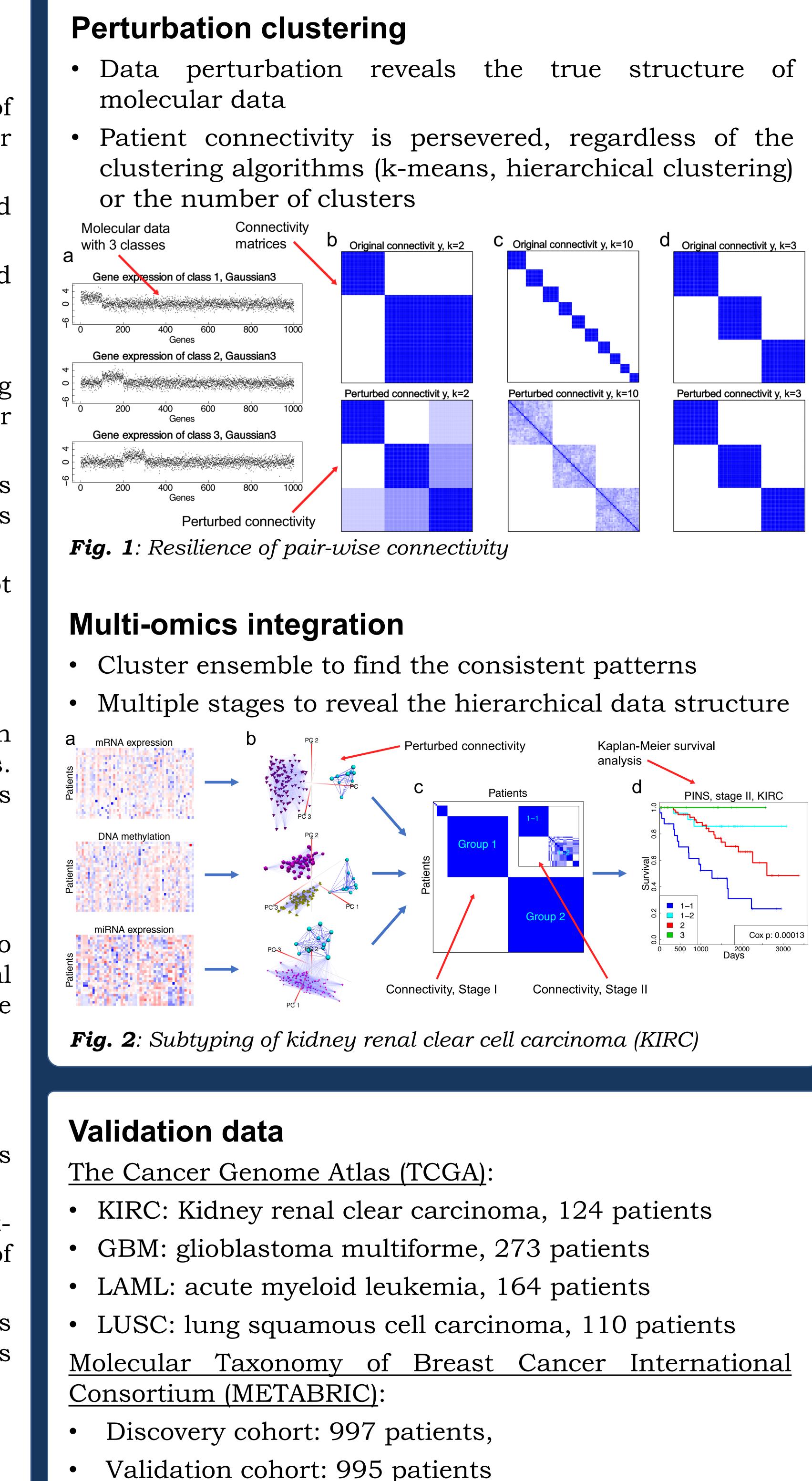
- 30-50% of patients with non-small cell lung cancer develop recurrence and die after curative resection
- Adjuvant therapy (chemo & radiation) is NOT routinely recommended although has shown to significantly improve survival

 \rightarrow many patients die because they did not receive needed treatment

The problem

distinguish inability • Our current to between patient subgroups (respondent vs. non-respondent) and disease subtypes (aggressive vs. non-aggressive)

The challenge


• Mining high-throughput molecular data to discover subtypes characterized by clinical differences, such as survival and disease recurrence.

Our solution: PINSPlus

The goal is to discover subgroups of patients that share a common clinical behavior.

- Perturbation clustering: ensures robustness against the unstable nature of quantitative assays
- Multi-omics integration: discovers subtypes that can be triggered at different levels (mRNA, miRNA, epigenetics, etc.)
- Availability: CRAN R package (https://cran.r-project.org/package=PINSPlus)

Hung Nguyen, Sangam Shrestha, Tin Nguyen* Computer Science and Engineering, University of Nevada, Reno Contact: <u>tinn@unr.edu</u>, Website: <u>https://www.cse.unr.edu/~tinn/</u>

Validation results

- [5], and iClusterPlus [6].
- different survival profiles.

Table 1: Cox p-values of discovered subtypes. Cells highlighted in green have the most significant Cox p-value

Datasets	#Patient	PINS+	$\mathbf{C}\mathbf{C}$	SNF	iCluster+
KIRC	124	6e-5	0.104	0.662	0.011
GBM	273	$1.2e{-4}$	0.039	0.043	0.108
LAML	164	$8.7e{-4}$	0.035	$1.5e{-3}$	$2.1e{-3}$
LUSC	110	8.4e-3	0.794	0.071	0.314
Discovery	997	1.8e-9	$2.5e{-5}$	$2.3e{-5}$	0.167
Validation	995	$3.4e{-5}$	0.012	0.01	1.9e-3

Table 2: Running time (in minutes)

Datasets	#Patient	PINS+	$\mathbf{C}\mathbf{C}$	SNF	iCluster+
KIRC	124	<1m	$< 1 \mathrm{m}$	$< 1 \mathrm{m}$	1675m
GBM	273	$2\mathrm{m}$	$< 1 \mathrm{m}$	$< 1 \mathrm{m}$	3598m
LAML	164	<1m	$< 1 \mathrm{m}$	$< 1 \mathrm{m}$	2011m
LUSC	110	<1m	$< 1 \mathrm{m}$	$< 1 \mathrm{m}$	1602m
Discovery	997	19m	14m	$4\mathrm{m}$	5155m
Validation	995	11m	14m	$2\mathrm{m}$	5153m

References

- Model (Springer, 2000).
- for data integration and disease subtyping. CRAN R package.
- genomic scale. Nature methods, 11(3), 333.
- 4245-4250.

<u>Metric</u>: We use Cox regression [1] to assess statistical significance of survival differences

Methods: PINSPlus [2,3], Similarity Network Fusion (SNF) [4], Consensus Clustering (CC)

<u>Results</u>: PINSPlus substantially outperforms other state-of-the-art subtyping approaches in discovering subtypes with significantly

. Therneau, T. M. and Grambsch, P. M. Modeling Survival Data: Extending the Cox

2. Nguyen, H., Shrestha, S., and Nguyen, T. (2018). PINSPlus: Clustering algorithm

3. Nguyen, T., Tagett, R., Diaz, D., and Draghici, S. (2017). A novel approach for data integration and disease subtyping. Genome research, 27(12), 2025–2039.

4. Wang et al. (2014). Similarity network fusion for aggregating data types on a

5. Monti et al. (2003). Consensus clustering: a resampling-based method for class discovery and visualization of gene expression microarray data. 52(1-2), 91–118. 6. Mo et al. (2013). Pattern discovery and cancer gene identification in integrated cancer genomic data. Proceedings of the National Academy of Sciences, 110(11),