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1 Software packages and settings
To compare scCAN with current methods, the following packages are used in the analysis: i) CIDR version
0.1.5 from GitHub (https://github.com/VCCRI/CIDR), ii) SEURAT3 version 3.2.3 from Github
(https://github.com/satijalab/seurat/releases/tag/v3.2.3), iii) Monocle3 ver-
sion 3.0 from Github (https://github.com/cole-trapnell-lab/monocle3), iv) SHARP
version 1.1.0 from Github (https://github.com/shibiaowan/SHARP), and SCANPY version
1.4.4 from Anaconda. We carefully follow the instruction and tutorial provided by the authors of each
package. We execute each method using default parameters suggested by the authors.

2 Data availability
We downloaded 28 scRNA-seq datasets from public repositories. The datasets Guo, Kanton, Brann, and
Miller were downloaded from the European Bioinformatics Institute (https://www.ebi.ac.uk/
gxa/sc/experiments/). The datasets Slyper, Zilionis, Orozco, and Kozareva were downloaded from
Broad Institute Single Cell Portal (https://singlecell.broadinstitute.org/single_
cell). The datasets Montoro, Hrvatin, Darrah, and Cao were downloaded from NCBI1. The Brain
1.3M dataset was downloaded from the 10X Genomics website (https://support.10xgenomics.
com/single-cell-gene-expression/datasets/1.3.0/1M_neurons). The remaining
15 datasets were downloaded from Hemberg Group’s website (https://hemberg-lab.github.
io/scRNA.seq.datasets). The Table S1 reports the Accession numbers, and Table S2 shows the
specific link to each of the 28 datasets.
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Table S1. Description of the 28 single-cell datasets used to assess the performance of scCAN. The first
two columns describe the name and tissue while the next five columns show the number of cells, number
of cell types, sequencing protocol, accession ID, and references. The first 27 datasets have true cell labels
and can be used to assess the accuracy of the clustering methods.

Dataset Tissue Size Class Protocol Accession ID Reference

1. Pollen Human Tissues 301 11 SMARTer SRP041736 2

2. Patel Human Tissues 430 5 Smart-Seq GSE57872 3

3. Wang Human Pancreas 457 7 SMARTer GSE83139 4

4. Li Human Tissues 561 9 SMARTer GSE81861 5

5. Usoskin Mouse Brain 622 4 STRT-Seq GSE59739 6

6. Camp Human Liver 777 7 SMARTer GSE81252 7

7. Xin Human Pancreas 1,600 8 SMARTer GSE81608 8

8. Muraro Human Pancreas 2,126 10 CEL-Seq2 GSE85241 9

9. Segerstolpe Human Pancreas 2,209 14 Smart-Seq2 E-MTAB-5061 10

10. Romanov Mouse Brain 2,881 7 SMARTer GSE74672 11

11. Zeisel Mouse Brain 3,005 9 STRT-Seq GSE60361 12

12. Lake Human Brain 3,042 16 Fluidigm C1 phs000833.v3.p1 13

13. Montoro Human Pancreas 7,193 7 Smart-Seq2 GSE103354 14

14. Guo Human Testis 7,416 7 10X Genomics E-GEOD-134144 15

15. Baron Human Pancreas 8,569 14 inDrop GSE84133 16

16. Chen Mouse Brain 12,089 46 Drop-seq GSE87544 17

17. Slyper Human Blood 13,316 8 10X Genomics SCP345
18. Kanton Human Brain 17,542 14 Smart-Seq2 E-HCAD-5 18

19. Brann Mouse Brain 26,766 46 10X Genomics E-GEOD-151346 19

20. Zilionis Human Lung 34,558 9 inDrop GSE127465 20

21. Macosko Mouse Retina 44,808 12 Drop-seq GSE63473 21

22. Hrvatin Mouse Visual Cortex 48,266 8 inDrop GSE102827 22

23. Orozco Human Eye 100,055 11 10X Genomics GSE135133 23

24. Miller Human Lung 142,523 11 10X Genomics E-MTAB-8221 24

25. Darrah Human Blood 162,490 14 Drop-seq GSE139598 25

26. Kozareva Mouse Cerebellum 611,034 18 10X Genomics SCP795 26

27. Cao Mouse Cerebellum 1,092,000 9 10X Genomics GSE156793 27

28. Brain 1.3M Mouse Brain 1,300,774 NA 10X Genomics GSE93421 28
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Table S2. Link to 28 single-cell datasets.

Dataset Link Reference

1. Pollen https://hemberg-lab.github.io/scRNA.seq.datasets/human/tissues/#pollen 2

2. Patel https://hemberg-lab.github.io/scRNA.seq.datasets/human/tissues/#patel 3

3. Wang https://hemberg-lab.github.io/scRNA.seq.datasets/human/pancreas/#wang 4

4. Li https://hemberg-lab.github.io/scRNA.seq.datasets/human/brain/#li 5

5. Usoskin https://hemberg-lab.github.io/scRNA.seq.datasets/mouse/brain/#usoskin 6

6. Camp https://hemberg-lab.github.io/scRNA.seq.datasets/human/liver/ 7

7. Xin https://hemberg-lab.github.io/scRNA.seq.datasets/human/pancreas/#xin 8

8. Muraro https://hemberg-lab.github.io/scRNA.seq.datasets/human/pancreas/#muraro 9

9. Segerstolpe https://hemberg-lab.github.io/scRNA.seq.datasets/human/pancreas/#segerstolpe 10

10. Romanov https://hemberg-lab.github.io/scRNA.seq.datasets/mouse/brain/#romanov 11

11. Zeisel https://hemberg-lab.github.io/scRNA.seq.datasets/mouse/brain/#zeisel 12

12. Lake https://hemberg-lab.github.io/scRNA.seq.datasets/human/brain/#lake 13

13. Montoro https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE103354 14

14. Guo https://www.ebi.ac.uk/gxa/sc/experiments/E-GEOD-134144/ 15

15. Baron https://hemberg-lab.github.io/scRNA.seq.datasets/human/pancreas/ 16

16. Chen https://hemberg-lab.github.io/scRNA.seq.datasets/mouse/brain/#chen 17

17. Slyper https://singlecell.broadinstitute.org/single_cell/study/SCP345/
18. Kanton https://www.ebi.ac.uk/gxa/sc/experiments/E-HCAD-5/ 18

19. Brann https://www.ebi.ac.uk/gxa/sc/experiments/E-GEOD-151346/ 19

20. Zilionis https://singlecell.broadinstitute.org/single_cell/study/SCP739/ 20

21. Macosko https://hemberg-lab.github.io/scRNA.seq.datasets/mouse/retina/ 21

22. Hrvatin https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE102827 22

23. Orozco https://singlecell.broadinstitute.org/single_cell/study/SCP484/ 23

24. Miller https://www.ebi.ac.uk/gxa/sc/experiments/E-MTAB-8221/ 24

25. Darrah https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE139598 25

26. Kozareva https://singlecell.broadinstitute.org/single_cell/study/SCP795/ 26

27. Cao https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE156793 27

28. Brain 1.3M https://support.10xgenomics.com/single-cell-gene-expression/datasets/1.3.0/1M_neurons 28
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3 Evaluation metrics
We use three different metrics for comparing the obtained partitions with the known cell types: adjusted
Rand index (ARI)29, adjusted mutual information (AMI)30, and V-measure31. To evaluate the capability
of each method in predicting the true number of clusters, we use absolute log-modulus32.

3.1 Adjusted Rand index
Rand index (RI) evaluates the similarity between predicted clusters and true cell types. Given P as a set of
clusters and Q is a set of true cell types then RI is calculated as:

RI =
t +u

t +u+ v+ s
=

t +u(N
2

) (1)

where t is the number of pairs belonging to the same cell type in Q and are grouped together in the same
cluster in P, u is the number of pairs of different cell types in Q and are grouped to different clusters in
P, v is the number of pairs of the same cell types in Q and are grouped to different clusters in P, s is the
number of pairs in different cell types in Q and are grouped together in the same cluster in P, N is the total
number of cells, and

(N
2

)
is the number of possible pairs. In brief, RI measures the ratio of pairs that are

clustered in the same way (either together or different) from two partitions (e.g. 0.80 means 80% of pairs
are grouped in the same way). The Adjusted Rand Index (ARI)29 is the corrected-for-chance version of
the Rand Index. The ARI values ranged from -1 to 1 in which 0 indicates a random grouping. The ARI
score is calculated as :

ARI =
RI − exptected RI

max(RI)− expected RI
(2)

3.2 Adjusted mutual information
Adjusted mutual information (AMI) is an adjustment of the mutual information (MI) score to account for
random partitioning. It accounts for the fact that the MI is generally higher for two clusters with a larger
number of clusters, regardless of whether there is actually more information shared. The calculation of
AMI is presented as follows:

Given a dataset of n cells with true partition X = {X1,X2, ...,XR} of R clusters and predicted partition
Y = {Y1,Y2, ...,YC} of C clusters. The mutual information of cluster overlap between X and Y can be
summarized as a contingency table MR×C = [ni j], where i = 1...R, j = 1...C, and ni j represents the number
of common data point falls into cluster Xi is p(i) = |xi|

n . The entropy associated with the clustering X is
calculated as follows:

H(X) =
R

∑
i=1

P(i)logP(i) (3)

H(X) gives outputs as non-negative values where 0 indicates that there is one cluster in the dataset. The
mutual information (MI) between two clusters X and Y is calculated as follows:

MI(X ,Y ) =
R

∑
i=1

C

∑
j=1

P(i, j)log
P(i, j)

P(i)P( j)
ni j

n
(4)

where P(i, j) is the cell that is classified to both clusters Xi in X and Yj in Y . P(i, j) is calculated as follows:

P(i, j) =
|Xi ∩Yj|

n
(5)

6/33



MI gives outputs as non-negative values bounded by the entropies H(X) and H(Y ) and 0 indicates that
there is no cell classified to the same cluster. To correct for the fact that two random clusterings do not
give a constant value, and tends to be larger when the two partitions have a larger number of clusters.
Therefore, AMI is defined as follows:

AMI(X ,Y ) =
MI(X ,Y )−E{MI(X ,Y )}

max{H(X),H(Y )}−E{MI(X ,Y )}
(6)

where E{MI(X ,Y )} is the expected mutual information between two random clusterings. The AMI takes
value between 0 and 1 where 0 stands for random clustering and 1 represents a perfect partition.

3.3 V-Measure
V-Measure is the harmonic mean between two measures: homogeneity and completeness. Homogeneous
clustering is when each cluster has data points belonging to the same class. Complete clustering is
when all dat a points belonging to the same class are clustered into the same cluster. Given a set of
classes C = {C1,C2, ...,Cl}, a set of cluster K = {K1,K2, ...,Km} and the conditional entropy of the class
distribution given the identified clustering is computed as H(C|K). The homogeneity is defined as follows:

h =

{
1 i f H(C|K) = 0
1− H(C|K)

H(C) otherwise
(7)

The completeness is symmetrical to homogeneity. To measure the completeness, the distribution of
cluster assignments within each class is assessed. In a perfect clustering, each of these distributions will
be completely skewed to a single cluster. Given the homogeneity h and completeness c, the V-measure is
computed as the weighted harmonic mean β between homogeneity and completeness:

V −measure =
1+β ∗h∗ c)
(β ∗h)+ c

(8)

if β is greater than 1, completeness is weighted more strongly in the calculation. If β is less than 1,
homogeneity is weighted more strongly. Since the computations of homogeneity, completeness and
V-measure are completely independent of the number of classes, the number of clusters, the size of
the dataset and the clustering algorithm, these measures can be employed for evaluating any clustering
solution.

3.4 Absolute symmetric log-modulus
To evaluate the accuracy of methods in estimating the correct number of clusters, we used absolute
symmetric log-modulus32 transformation defined as follows:

L(x) = |sign(x)∗ log10(|x|+1)| (9)

where x is the difference between the estimated number of clusters and the true number of cell types in a
given dataset. The higher values of absolute log-modulus transformation mean the number of estimated
clusters is more different from the number of true cell types. x equals to zero denotes the perfect estimation.
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4 Correct estimation of the number of cell types

Table S3. Estimation of the number of cell types of CIDR, SEURAT3, Monocle3, SHARP, SCANPY,
and scCAN on 27 single-cell datasets measured by absolute log-modulus values. Cells with NA values
indicate that the method was not able to analyze the dataset (crashed or out-of-memory). The average
absolute log-modulus value of scCAN is 0.59, which are smaller than the rest.

Datasets CIDR Seurat3 Monocle3 SHARP SCANPY scCAN
Pollen 0.60 0.30 0.30 0.70 0.60 0.60
Patel 0.30 0.30 0.60 0.60 0.70 0.00
Wang 0.00 0.00 0.78 0.60 0.60 0.48
Li 0.78 0.48 0.30 1.00 0.00 0.48
Usoskin 0.30 0.48 0.90 0.30 1.04 0.00
Camp 0.60 0.48 1.00 0.00 0.78 0.78
Xin 0.85 0.30 1.08 0.48 0.60 0.60
Muraro 0.70 0.90 1.26 0.48 1.18 0.70
Segerstolpe 0.60 0.95 1.51 0.00 1.41 0.70
Romanov 0.00 0.90 1.32 0.48 1.26 0.30
Zeisel 0.70 0.95 1.40 0.78 1.30 0.30
Lake 0.70 0.00 1.40 0.95 1.04 0.30
Montoro 0.78 0.30 1.41 1.04 0.60 0.90
Guo 0.30 0.78 1.52 0.85 1.23 0.30
Baron 0.70 0.70 1.57 0.85 1.15 0.30
Chen 1.00 0.30 1.58 0.90 1.11 0.78
Slyper 0.60 0.85 1.58 0.48 1.08 0.48
Kanton 0.78 0.30 1.66 1.08 0.85 0.78
Brann 1.64 1.51 1.20 1.64 1.51 1.60
Zilionis 0.70 1.00 1.68 0.60 1.08 0.48
Macosko 0.60 0.90 1.78 0.78 0.78 0.70
Hrvatin NA 0.78 1.83 0.90 1.00 0.48
Orozco NA 1.28 2.07 1.08 1.61 0.85
Miller NA NA 2.03 NA 1.32 0.95
Darrah NA NA 1.93 NA 1.36 0.48
Kozareva NA NA NA NA 0.85 0.95
Cao NA NA NA NA 1.04 0.60

Mean 0.63 0.64 1.35 0.72 1.00 0.59
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5 Clustering results of real datasets

Table S4. Performance of CIDR, SEURAT3, Monocle3, SHARP, SCANPY, and scCAN on 27
single-cell datasets measured by Adjusted Rand Index (ARI). Cells with NA values indicate that the
method was not able to analyze the dataset (crashed or out-of-memory). Cells highlighted in bold have the
highest ARI values. The average ARI of scCAN is 0.81, which is much higher than the rest (SEURAT3 is
the second best with an average ARI of 0.55). In addition, scCAN has the highest ARI values in all but
three datasets (Camp, Montoro and Hrvatin).

Dataset #Cells CIDR SEURAT3 Monocle3 SHARP SCANPY scCAN
Pollen 301 0.90 0.73 0.82 0.09 0.77 0.92
Patel 430 0.45 0.82 0.26 0.09 0.66 0.86
Wang 457 0.63 0.56 0.28 0.41 0.62 0.83
Li 561 0.62 0.84 0.77 0.19 0.81 0.94
Usoskin 622 0.82 0.56 0.35 0.07 0.34 0.93
Camp 777 0.61 0.65 0.55 0.44 0.61 0.61
Xin 1,600 0.57 0.50 0.15 0.56 0.29 0.98
Muraro 2,126 0.22 0.64 0.30 0.31 0.43 0.91
Segerstolpe 2,209 0.37 0.60 0.20 0.33 0.31 0.95
Romanov 2,881 0.32 0.48 0.19 0.59 0.30 0.63
Zeisel 3,005 0.37 0.50 0.24 0.46 0.32 0.86
Lake 3,042 0.47 0.51 0.23 0.21 0.43 0.58
Montoro 7,193 0.30 0.24 0.08 0.80 0.20 0.70
Guo 7,416 0.75 0.62 0.23 0.24 0.46 0.86
Baron 8,569 0.73 0.56 0.21 0.36 0.46 0.94
Chen 12,089 0.36 0.69 0.25 0.59 0.62 0.72
Slyper 13,316 0.63 0.24 0.06 0.39 0.26 0.67
Kanton 17,542 0.47 0.40 0.13 0.31 0.47 0.67
Brann 26,766 0.12 0.32 0.06 0.76 0.32 0.86
Zilionis 34,558 0.53 NA 0.12 0.37 0.38 0.89
Macosko 44,808 0.17 NA 0.04 0.71 0.23 0.85
Hrvatin 48,266 NA NA 0.13 0.92 0.57 0.78
Orozco 100,055 NA NA 0.04 0.20 0.22 0.77
Miller 142,523 NA NA 0.04 NA 0.16 0.90
Darrah 162,490 NA NA 0.02 NA 0.08 0.47
Kozareva 611,034 NA NA NA NA 0.12 1.00
Cao 1,092,000 NA NA NA NA 0.48 0.89
Mean 0.50 0.55 0.23 0.41 0.40 0.81
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Table S5. Performance of CIDR, SEURAT3, Monocle3, SHARP, SCANPY, and scCAN on 27
single-cell datasets measured by Adjusted Mutual Information (AMI). Cells with NA values indicate that
the method was not able to analyze the dataset (crashed or out-of-memory). Cells highlighted in bold have
the highest AMI values. The average AMI of scCAN is 0.77, which is much higher than the rest
(SEURAT3 is the second best with an average AMI of 0.64). In addition, scCAN has the highest AMI
values in all but four datasets (Camp, Montoro, Chen and Hrvatin).

Dataset #Cells CIDR SEURAT3 Monocle3 SHARP SCANPY scCAN
Pollen 301 0.91 0.80 0.84 0.20 0.88 0.93
Patel 430 0.55 0.77 0.29 0.16 0.64 0.84
Wang 457 0.66 0.60 0.42 0.40 0.64 0.75
Li 561 0.69 0.88 0.84 0.27 0.84 0.95
Usoskin 622 0.76 0.61 0.48 0.19 0.48 0.88
Camp 777 0.72 0.77 0.67 0.59 0.72 0.72
Xin 1,600 0.51 0.57 0.35 0.50 0.44 0.91
Muraro 2,126 0.41 0.72 0.53 0.31 0.60 0.87
Segerstolpe 2,209 0.42 0.72 0.47 0.33 0.55 0.88
Romanov 2,881 0.33 0.55 0.37 0.52 0.44 0.61
Zeisel 3,005 0.38 0.58 0.46 0.46 0.50 0.81
Lake 3,042 0.47 0.65 0.53 0.22 0.67 0.74
Montoro 7,193 0.35 0.35 0.25 0.64 0.33 0.58
Guo 7,416 0.76 0.71 0.49 0.51 0.59 0.87
Baron 8,569 0.65 0.69 0.49 0.40 0.64 0.87
Chen 12,089 0.37 0.75 0.59 0.52 0.75 0.55
Slyper 13,316 0.68 0.46 0.31 0.30 0.46 0.73
Kanton 17,542 0.49 0.53 0.39 0.30 0.57 0.64
Brann 26,766 0.13 0.53 0.33 0.52 0.54 0.72
Zilionis 34,558 0.50 NA 0.40 0.41 0.53 0.84
Macosko 44,808 0.27 NA 0.26 0.41 0.42 0.66
Hrvatin 48,266 NA NA 0.41 0.87 0.64 0.76
Orozco 100,055 NA NA 0.29 0.32 0.43 0.65
Miller 142,523 NA NA 0.23 NA 0.33 0.82
Darrah 162,490 NA NA 0.19 NA 0.25 0.53
Kozareva 611,034 NA NA NA NA 0.39 0.94
Cao 1,092,000 NA NA NA NA 0.61 0.84
Mean 0.52 0.64 0.43 0.41 0.55 0.77
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Table S6. Performance of CIDR, SEURAT3, Monocle3, SHARP, SCANPY, and scCAN on 27
single-cell datasets measured by V-measure. Cells with NA values indicate that the method was not able
to analyze the dataset (crashed or out-of-memory). Cells highlighted in bold have the highest V-measure
values. The average V-measure of scCAN is 0.81, which is much higher than the rest (SEURAT3 is the
second best with an average V-measure of 0.72). In addition, scCAN has the highest V-measure values in
all but four datasets (Romanov, Montoro, Chen and Kanton).

Dataset #Cells CIDR SEURAT3 Monocle3 SHARP SCANPY scCAN
Pollen 301 0.94 0.89 0.91 0.33 0.91 0.96
Patel 430 0.57 0.79 0.33 0.26 0.72 0.84
Wang 457 0.71 0.65 0.52 0.53 0.72 0.81
Li 561 0.77 0.89 0.90 0.41 0.87 0.96
Usoskin 622 0.80 0.71 0.62 0.23 0.63 0.93
Camp 777 0.79 0.82 0.79 0.66 0.82 0.82
Xin 1,600 0.55 0.68 0.50 0.50 0.58 0.92
Muraro 2,126 0.43 0.79 0.66 0.46 0.72 0.87
Segerstolpe 2,209 0.45 0.77 0.62 0.42 0.69 0.92
Romanov 2,881 0.34 0.66 0.49 0.56 0.58 0.62
Zeisel 3,005 0.47 0.67 0.60 0.59 0.63 0.82
Lake 3,042 0.54 0.69 0.63 0.35 0.73 0.75
Montoro 7,193 0.46 0.49 0.38 0.70 0.47 0.65
Guo 7,416 0.79 0.81 0.65 0.52 0.73 0.89
Baron 8,569 0.72 0.77 0.65 0.55 0.76 0.89
Chen 12,089 0.42 0.78 0.69 0.65 0.77 0.60
Slyper 13,316 0.70 0.59 0.45 0.42 0.59 0.73
Kanton 17,542 0.49 0.60 0.52 0.41 0.65 0.64
Brann 26,766 0.16 0.64 0.48 0.65 0.65 0.80
Zilionis 34,558 0.58 NA 0.56 0.52 0.65 0.89
Macosko 44,808 0.33 NA 0.41 0.49 0.56 0.70
Hrvatin 48,266 NA NA 0.58 0.92 0.78 0.82
Orozco 100,055 NA NA 0.44 0.41 0.60 0.75
Miller 142,523 NA NA 0.37 NA 0.49 0.88
Darrah 162,490 NA NA 0.32 NA 0.39 0.63
Kozareva 611,034 NA NA NA NA 0.56 0.96
Cao 1,092,000 NA NA NA NA 0.74 0.90
Mean 0.57 0.72 0.56 0.50 0.67 0.81

11/33



Table S7. The running time of CIDR, SEURAT3, Monocle3, SHARP, SCANPY, and scCAN on 28
single-cell datasets measured in minutes. Cells with NA values indicate that the method was not able to
analyze the dataset (crashed or out-of-memory).

Dataset #Cells CIDR SEURAT3 Monocle3 SHARP SCANPY scCAN
Pollen 301 0.0 0.2 0.1 0.1 0.0 1.3
Patel 430 0.0 0.2 0.1 0.6 0.0 1.1
Wang 457 0.1 0.3 0.2 0.1 0.0 1.3
Li 561 0.1 0.2 0.2 0.1 0.2 1.7
Usoskin 622 0.1 0.2 0.1 0.6 0.0 1.4
Camp 777 0.1 0.2 0.1 0.1 0.0 1.6
Xin 1,600 0.5 0.6 0.2 0.7 0.2 2.4
Muraro 2,126 0.5 0.6 0.2 0.3 0.1 3.4
Segerstolpe 2,209 0.7 0.6 0.2 0.3 0.1 3.6
Romanov 2,881 1.1 0.8 0.2 0.4 0.2 5.3
Zeisel 3,005 1.2 0.9 0.2 0.5 0.1 5.8
Lake 3,042 1.6 1.2 0.4 0.5 0.3 6.0
Montoro 7,193 10.4 1.9 0.3 0.3 0.4 17.9
Guo 7,416 68.1 2.0 0.4 0.7 0.3 17.9
Baron 8,569 17.1 2.3 0.4 0.4 0.6 17.9
Chen 12,089 45.9 3.1 0.4 0.4 0.5 17.9
Slyper 13,316 61.9 3.8 0.3 0.5 0.7 17.8
Kanton 17,542 123.5 NA 0.7 1.1 0.3 17.9
Brann 26,766 501.1 NA 1.6 1.7 0.8 17.9
Zilionis 34,558 1037.3 NA 1.0 1.5 3.5 18.5
Macosko 44,808 2353.5 NA 1.1 1.6 4.4 18.5
Hrvatin 48,266 NA NA 1.3 1.7 3.2 18.6
Orozco 100,055 NA NA 4.8 11.9 19.6 37.6
Miller 142,523 NA NA 5.2 NA 19.2 36.0
Darrah 162,490 NA NA 7.6 NA 18.3 37.9
Kozareva 611,034 NA NA NA NA 33.9 45.0
Cao 1,092,000 NA NA NA NA 51.0 39.0
Brain 1.3M 1,300,774 NA NA NA NA 70.0 51.0
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6 Visualization of clustering results
We plotted both the original and new cluster annotations in the original t-SNE/UMAP plots. We also
quantified the correlation between the two annotations (true cell types and clustering) using Rand index (RI).
RI measures the agreement between a cluster annotation and the true cell types. In short, RI = (a+b)/

(N
2

)
where a is the number of pairs that belong to the same true cell type and are clustered together, b is
the number of pairs that belong to different true cell types and are not clustered together, and

(N
2

)
is the

number of possible pairs that can be formed from the N cells. Intuitively, RI is the fraction of pairs that
are grouped in the same way (either together or not) in the two annotations compared (e.g. 0.9 means 90%
of pairs are grouped in the same way).

Figures S1–S5 show the annotations on the original t-SNE plots. For each dataset, we plotted the
two annotations side-by-side: the left panel shows the original annotation whereas the right panel shows
the new cluster annotation. Figures S6–S10 shows the annotations on the original UMAP plots. For
each dataset, we quantified the similarity between the two annotations using Rand index (RI). An RI of 1
indicates the ideal case in which the two annotations are identical. The average RI across all datasets is
0.93. This indicates a strong correlation between the two annotations on the original t-SNE/UMAP plots.

13/33



Figure S1. Visualization of the Pollen, Patel, Wang, Li, Usoskin, Camp, Xin and Muraro raw datasets
(top to bottom) using t-SNE. For each dataset, the left panels shows t-SNE plot with original labels and
the righ panel shows t-SNE plot with cluster annotations identified by scCAN. Different colors codes
indicate different cell types and clusters. For each dataset, the Rand index (RI) quantifies the correlation
between the original annotation and the new cluster annotation. RI of 1 indicates the ideal case in which
the two annotations are identical.
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Figure S2. Visualization of the Romanov, Zeisel, Lake, Montoro, Guo, Slyper, Macosko and Zilionis
raw datasets (top to bottom) using t-SNE. For each dataset, the left panels shows t-SNE plot with original
labels and the righ panel shows t-SNE plot with cluster annotations identified by scCAN. Different colors
codes indicate different cell types and clusters.
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Figure S3. Visualization of the Hrvatin, Orozco, Miller and Darrah raw datasets (top to bottom) using
t-SNE. For each dataset, the left panels shows t-SNE plot with original labels and the righ panel shows
t-SNE plot with cluster annotations identified by scCAN. Different colors codes indicate different cell
types and clusters.
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Figure S4. Visualization of the Segerstolpe, Baron, Chen, and Kanton raw datasets (top to bottom) using
t-SNE. For each dataset, the left panels shows t-SNE plot with original labels and the righ panel shows
t-SNE plot with cluster annotations identified by scCAN. Different colors codes indicate different cell
types and clusters.
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Figure S5. Visualization of the Brann, Kozareva, and Cao raw datasets (top to bottom) using t-SNE. For
each dataset, the left panels shows t-SNE plot with original labels and the righ panel shows t-SNE plot
with cluster annotations identified by scCAN. Different colors codes indicate different cell types and
clusters.
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Figure S6. Visualization of the Pollen, Patel, Wang, Li, Usoskin, Camp, Xin and Muraro raw datasets
(top to bottom) using UMAP. For each dataset, the left panels shows UMAP plot with original labels and
the righ panel shows UMAP plot with cluster annotations identified by scCAN. Different colors codes
indicate different cell types and clusters.
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Figure S7. Visualization of the Romanov, Zeisel, Lake, Montoro, Guo, Slyper, Macosko and Zilionis
raw datasets (top to bottom) using UMAP. For each dataset, the left panels shows UMAP plot with
original labels and the righ panel shows UMAP plot with cluster annotations identified by scCAN.
Different colors codes indicate different cell types and clusters.

20/33



Figure S8. Visualization of the Hrvatin, Orozco, Miller and Darrah raw datasets (top to bottom) using
UMAP. For each dataset, the left panels shows UMAP plot with original labels and the righ panel shows
UMAP plot with cluster annotations identified by scCAN. Different colors codes indicate different cell
types and clusters.
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Figure S9. Visualization of the Segerstolpe, Baron, Chen, and Kanton raw datasets (top to bottom) using
UMAP. For each dataset, the left panels shows UMAP plot with original labels and the righ panel shows
UMAP plot with cluster annotations identified by scCAN. Different colors codes indicate different cell
types and clusters.
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Figure S10. Visualization of the Brann, Kozareva, and Cao raw datasets (top to bottom) using UMAP.
For each dataset, the left panels shows UMAP plot with original labels and the righ panel shows UMAP
plot with cluster annotations identified by scCAN. Different colors codes indicate different cell types and
clusters.
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7 Comparison of the clustering methods used in Modules 2 and 3
The first method (core method) is more accurate but it requires more computational power and memory.
Therefore, we developed the second method that allows users to analyze large datasets faster and using
less memory. If the input dataset is small (by default 5,000 cells or less), both methods will be the same
and thus produce the same results. When the dataset is large (5,000 cells or more), we use the first method
to analyze a subset of the data to determine the cell types and then assign the the remaining cells to the
determined cell types (second method).

Note that the default value of 5,000 allows us to have a sufficiently large sample size to properly
determine the cell types which in turns will lead to a proper classification of the remaining cells. At
the same time, 5,000 is a reasonable small number of samples that allows users to perform the analysis
efficiently using personal computers. Users can also change this parameter to use the first method even for
large datasets, if they have more memory and are willing to wait longer for their results. In the following
text, as requested, we will provide a direct comparison between the two methods in terms of both accuracy
and running time.

Table S8 shows a direct comparison of the two methods in terms of both accuracy and running time
using the same server (with 200 GB of RAM). Consistent with the previous submission, we used adjusted
Rand index (ARI), adjusted mutual information (AMI), and V-measure to assess the performance of each
method. Cells with NA values indicate that a method was not able to analyze the dataset (out-of-memory).
Cells highlighted in bold have the higher accuracy (ARI, AMI, and V-measure) and lower running time.

Overall, the first method can only analyze the first 21 datasets. It returns NA for the last seven datasets
with 44,808 cells or more (out of memory). The second method can analyze all datasets, even for the Cao
dataset with more than a million cells.

Regarding running time, the second method is substantially faster than the first method. For example,
the second method was able to analyze the Zilionis dataset in 18 minutes while it takes the first method
method almost 3 days. For the Cao dataset with a million cells, the second method finished the analysis in
less than 40 minutes whereas the first method ran out of memory and could not analyze the data.

Regarding the accuracy, the first method is slightly more accurate (when they can analyze the data) but
the difference between the two methods is marginal. For example, the first method has a higher ARI in
three dataset (Guo, Chen, and Slyper) but has lower ARI in three other datasets (Montoro, Kanton, and
Zilionis). Similarly, the two methods have comparable AMI and V-measure values.

In summary, the first method is slightly more accurate but the second method is capable of analyzing
large datasets and requires less memory and running time. Therefore, the scCAN software automatically
switches to the second method when analyzing datasets with 5,000 cells or more. Users can adjust this
parameter if they wish to run the first method for larger datasets, given that they have sufficient memory
and are willing to wait longer for the results.
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Table S8. Performance of the two clustering methods used in Module 2 (method 1) and Module 3
(method 2) on single-cell datasets measured by adjusted Rand index (ARI), adjusted mutual information
(AMI), V-measure and running time (minutes). Cells with NA values indicate that the method was not
able to analyze the dataset (out-of-memory). Cells highlighted in bold have the higher accuracy (ARI,
AMI, and V-measure) or lower running time.

Datasets #Cells ARI AMI V-measure Running Time
Method 1 Method 2 Method 1 Method 2 Method 1 Method 2 Method 1 Method 2

Pollen 301 0.92 0.92 0.93 0.93 0.96 0.96 1.3 1.3
Patel 430 0.86 0.86 0.84 0.84 0.84 0.84 1.1 1.1
Wang 457 0.83 0.83 0.75 0.75 0.81 0.81 1.3 1.3
Li 561 0.94 0.94 0.95 0.95 0.96 0.96 1.7 1.7
Usoskin 622 0.93 0.93 0.88 0.88 0.93 0.93 1.4 1.4
Camp 777 0.61 0.61 0.72 0.72 0.82 0.82 1.6 1.6
Xin 1,600 0.98 0.98 0.91 0.91 0.92 0.92 2.4 2.4
Muraro 2,126 0.91 0.91 0.87 0.87 0.87 0.87 3.4 3.4
Segerstolpe 2,209 0.95 0.95 0.88 0.88 0.92 0.92 3.6 3.6
Romanov 2,881 0.63 0.63 0.61 0.61 0.62 0.62 5.5 5.5
Zeisel 3,005 0.86 0.86 0.81 0.81 0.82 0.82 5.9 5.9
Lake 3,042 0.58 0.58 0.74 0.74 0.75 0.75 6.1 6.1
Montoro 7,193 0.68 0.70 0.54 0.58 0.63 0.65 163.9 17.9
Guo 7,416 0.88 0.86 0.88 0.87 0.90 0.89 192.8 17.9
Baron 8,569 0.94 0.94 0.88 0.87 0.90 0.89 280.0 17.9
Chen 12,089 0.85 0.72 0.69 0.55 0.77 0.60 674.9 17.9
Slyper 13,316 0.75 0.67 0.78 0.73 0.76 0.73 777.7 17.9
Kanton 17,542 0.29 0.67 0.31 0.64 0.42 0.64 1,349 17.9
Brann 26,766 0.86 0.86 0.73 0.72 0.80 0.80 1,728 17.9
Zilionis 34,558 0.87 0.89 0.84 0.84 0.85 0.89 3,834 18.5
Macosko 44,808 NA 0.89 NA 0.66 NA 0.70 NA 18.5
Hrvatin 48,266 NA 0.78 NA 0.76 NA 0.82 NA 18.6
Orozco 100,055 NA 0.77 NA 0.65 NA 0.75 NA 37.6
Miller 142,523 NA 0.90 NA 0.82 NA 0.88 NA 36.0
Darrah 162,490 NA 0.47 NA 0.53 NA 0.63 NA 37.9
Kozareva 611,034 NA 1.00 NA 0.94 NA 0.96 NA 45.0
Cao 1,092,000 NA 0.89 NA 0.84 NA 0.90 NA 39.0
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8 Effects of min-max scaling
The min-max scaling is not a scRNA-seq normalization method and it is not intended to do so. We
leave the step of data processinga and normalization completely up to the users. This min-max scaling
added to our method is used on top of the already normalized data provided by users. Such scaling is
frequently used in deep learning models33–36 with the common purpose of reducing standard deviation
and suppressing the effect of outliers. Below, we will demonstrate that the min-max scaling step improves
the clustering performance without altering the transcriptome landscape.

To demonstrate the usefulness of this min-max scaling on clustering, we re-analyzed all single-cell
datasets using scCAN without applying the min-max scaling step. Figure S11 shows the ARI values
obtained from scCAN in two scenarios: scCAN with and without the scaling step. Overall, the min-max
scaling makes the analysis more robust (lower variance) and more accurate (higher ARI). This result
demonstrates the usefulness of the min-max scaling in improving the performance of scCAN.
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Figure S11. Impact of min-max scaling on scCAN. The analysis without scaling has higher variability
and lower ARI values.

To further demonstrate that the min-max scaling does not alter the transcriptome landscape of the
data, we calculated the distance correlation index (dCor)37 between the two dimensional representation of
scaling and non-scaling data generated by t-SNE. Given X and Y as the 2D representation of the scaling
and non-scaling data, dCor is calculated as dCor = dCov(X ,Y )√

dVar(X)dVar(Y )
where dCov(X ,Y ) is the distance

covariance between X and Y while dVar(X) and dVar(Y ) are distance variances of X and Y . Specifically,
dCor first calculates the pair-wise distances for X by computing the distance between each pair of cells,
resulting in a square matrix. Second, it calculates the pair-wise distances for Y . Finally, it compares the
two matrices using the formula described above to obtain the distance correlation. The dCor coefficient
has values ranging from 0 to 1, with the dCor is expected to be 1 for a perfect similarity. In our analysis,
when we rotate the transcriptome landscape, dCor does not change. We re-analyzed the single-cell datasets
and calculate the distance correlation for each dataset. Overall, the dCor values obtained from all datasets
are very high (median dCor of 0.99 and variance of 0.01). This confirms that the min-max scaling does
not alter the transcriptome landscape of the data while improving the clustering results.
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9 Rare cell types detection
The sampling process is necessary to reduce both time and space complexity, but it can alter the capability
of detecting rare cell types. By selecting 5,000 cells from a large dataset, we might end up with insufficient
number of rare cells, and therefore reduce the chance of detecting them.

In addition, we have developed two strategies to enhance the method’s capability of detecting rare cell
types. First, we now allow users to change the parameter samp.size so that they can increase the sample
size, thus boosting the method’s capability in detecting rare cell types. Second, we provide an instruction
to perform multi-state clustering, i.e., further splitting the clustering results. When a cell type has too few
cells, these cells are often mistakenly grouped with other cell types. By further splitting each clusters, we
are able to detect rare cell types that would not be possible by performing one-stage clustering.

To demonstrate the efficiency of both solutions, we have tested them on the Zilionis dataset. The
Zilionis dataset has 34,558 cells and 9 cell types. The transcriptome landscape and the cell types of the
dataset are shown in Figure S12A. Among the 9 cell types, the tRBC cell type has only 108 cells (0.3%).
A sub-sample of 5,000 cells is expected to have approximately 19 tRBC cells, which might be insufficient
for many clustering method to detect them. Indeed, as show in Figure S12B, scCAN mistakenly grouped
tRBC cells with tPlasma cells when we used the default setting of samp.size = 5,000.

To demonstrate the efficiency of the first strategy, we set samp.size = 10,000. The clustering results
using the new parameter is shown in Figure S12C. With a sample size of 10,000, the method can properly
separate tRBC cells and assigned them to cluster 2. To quantify how well the method separates tRBC cells

from other cells, we calculated the F1 score38. Briefly, F1 = 2∗ precison∗ recall
precison+ recall

=
T P

T P+
1
2
(FP+FN)

where: i) TP are tRBC cells that were correctly assigned to cluster 2, ii) FP are cells of other cell types
that were mistakenly assigned to cluster 2, iii) and FN are tRBC cells but were not assigned to cluster 2.
In the ideal case, FP=FN=0 which leads to F1=1. In the analysis shown in Figure S12C, F1 score is 0.9
which indicates that scCAN properly separated tRBC from the rest. The method is expected to perform
even better if we further increase the sample size.

To demonstrate the efficiency of the second strategy, we performed a two-stage clustering using the the
default setting of samp.size = 5,000. In stage one, we partitioned the data using scCAN and obtained the
clustering results as shown in Figure S12B. In stage two, we further partitioned each cluster obtained from
stage one using the same method scCAN. The results of stage two are shown in Figure S12D. Cluster 2
were further split into two sub-clusters: 2 1 and 2 2. The tRBC cells were completely separated from the
rest (cluster 2 2) with an F1 score of 1. This demonstrates that users can efficiently detect rare cell types
using multi-stage clustering even with the default parameter samp.size = 5,000.
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Figure S12. Rare cell type detection using the Zilionis dataset as example. The dataset has a total of
34,558 cells, in which there are 108 tRBC cells (rare cell type with 0.3% prevalence). (A) Transciptome
landscape and true cell types. (B) Clustering results using scCAN with default sample size
(samp.size = 5,000), in which tRBC are mistakenly grouped with tPlasma cells. (C) Clustering results
with sample size of 10,000 (samp.size = 10,000). In this case, scCAN properly separates tRBC cells in
cluster 2 with an F1 score of 0.9. (D) Clustering results using two-stage strategy and default sample size
(samp.size = 5,000). scCAN properly separates tRBC cells in cluster 2 with a perfect F1 score of 1.
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10 Scalability of scCAN
To demonstrate the scalability of scCAN, we downloaded and analyzed the Brain 1.3M dataset (https://
genomebiology.biomedcentral.com/articles/10.1186/s13059-017-1382-0). Only
scCAN and SCANPY were able to analyze this dataset of 1.3 million of cells. The clustering results of
the two methods are shown in Figure S13. scCAN partitioned the data into 19 cluster whereas SCANPY
partitioned the data into 20 clusters. The running time of scCAN and SCANPY were 51 minutes and 70
minutes, respectively. Note that we could not assess the accuracy of the two methods using this particular
dataset because it does not have true cell type information.

Figure S13. Clustering results of the Brain 1.3M dataset using scCAN and SCANPY. The left panel
shows cell annotation of 20 clusters discovered by SCANPY. The right panel shows the cell partitions of
19 clusters identified from scCAN.

Second, we downloaded the Cao dataset27 that contains 1,092,000 cells sequenced from the human
cerebellum with known cell types. Again, only scCAN and SCANPY were able to analyze this dataset.
Figure S14A shows the visualization of 2D t-SNE embedding data generated from raw data with original
cells annotations while Figure S14B–C show the visualizations of Cao dataset using clusters generated
from SCANPY and scCAN. SCANPY can cluster the whole dataset in 51 minutes with the ARI of 0.48
(Figure S14B), while scCAN takes 39 minutes to partition cells with the ARI of 0.89 (Figure S14C).
We have updated the analysis results for the Brain 1.3M and Cao dataset to the main Manuscript and
Supplementary Material.
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Figure S14. Visualizing of the Cao dataset using t-SNE. (A) Transcriptome landscape with true cell type
information. (B) Transcriptome landscape of the clusters identified by SCANPY. (C) Transciptome
landscape of clusters identified by scCAN. scCAN outperforms SCANPY by having a higher ARI value.
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