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1 Methods details

The overall workflow of the algorithm is shown in Fig. S1. The input is a dataset (matrix) E € , where N is the number of
patients and M is the number of measurements for each patient. In the example of gene expression, N is the number of samples
and M is the number of genes (or probes) measured in each sample. In short, the rows of the matrix E represent the patients and
the columns represent the components (features). The algorithm parameters are the maximum number of clusters K (default 10)
and the number of iterations H (default 200).

RN><M

2 Simulation studies

In this section, we will demonstrate that the proposed approach: i) does not produce spurious clusters when the data does not
contain any true classes, and ii) is able to find the correct subtypes when the data consists of distinct classes. In the first case,
when the data has no structure, we show that any partitioning is unstable. In the second case, when the data consists of distinct
classes, we show that the connectivity between samples is stable if and only if the partitioning is identical to the true classes.
In order to do this, we constructed 10 datasets: Gaussianl, Dataset2, ..., Dataset10, where the number in each name
represents the number of classes of the dataset. Each dataset has 100 samples and 1,000 genes. The samples are equally divided
among the classes. For example, Dataset2 has two classes of size 50 and Dataset3 has three classes of size 33, 33, and 34. The
dataset Gaussianl has no distinct classes and thus will be used to demonstrate that PINS does not report false clusters. We will
show that the pair-wise connectivity between samples are very unstable when the data is perturbed, regardless of the number of
k. In consequences, the perturbed connectivity matrices are very different from the original connectivity matrices. This results
in low AUC values for all values of k. Each of the other 9 datasets, Dataset2, ..., Dataset10, has distinct classes and thus will
be used to demonstrate PINS’ ability to retrieve the correct number of clusters in a mixture of data. We will show that for each
of these datasets, the pair-wise connectivity is stable only when the number of clusters equals to the true number of classes.
The distribution of gene expression for the dataset Gaussianl is shown in Figure S2A. The expression values of all genes
follow a Gaussian distribution .#"(0, 1) with mean 0 and variance 1. We note that the variance of the normal distribution for
each gene has no impact on the result of PINS because the noise variance is set to be the median variance of the genes. For
each value of k, the algorithm partitions the original data and then builds an original connectivity matrix. It then calculates
the variance of each gene and the median variance o2, Since Giz ~ 1, Vi € [1..1000], we have the median variance ol is

approximately 1. This median variance is used as the noise variance to construct 200 perturbed datasets. From the perturbed

dataset, the algorithm constructs 200 connectivity matrices G,((h) (h € [1..200)) for each value of k. The perturbed connectivity

o ) 200 (M)
matrix is then calculated as the average of these 200 matrices, Ay = Zh:zlook . For each value of k € [2..10], we have one

original and one perturbed connectivity matrix.

Figure S2B shows several of the original connectivity matrices (upper row) with their corresponding perturbed connectivity
matrices just below. Using the original data, when k = 2, the algorithm forms two clusters of approximately equal size.
Perturbation of the data moves each data point around its original location, allowing it to be grouped together with any other
point with the same probability. Visually, the perturbed connectivity matrix A, in panel (B) shows that data points are randomly
connected. This is also true for other values of k € [2..10]. Thus, the perturbed connectivity greatly diverges from the original
connectivity, for any value of k € [2..10], using dataset Gaussian|.

Figure S2C shows the CDF curves obtained from the difference matrices Dy, for all values of k € [2..10]. The horizontal
axis represents the entries of the difference matrix while the vertical axis represents F values. Figure S2D shows the area
under the curve (AUC) of the CDFs. The horizontal axis shows different values of k as the numbers of clusters and the vertical
axis shows the AUC values. These AUC values monotonically increase with &, and they range from 0.5 to 0.85.

To understand the variability of the AUC values, we repeat the whole process 20 times. Each time we regenerate the gene
expression of the dataset Gaussianl and recalculate the AUC values for k € [2..10]. The vertical lines of Figure S2D show the
95% confidence interval of the AUC values at each value of k. We also plot the AUC values for another simulated dataset, in
which the expression values of all genes are uniformly distributed on the interval [0..1]. The figure shows that both uniform
data and Gaussian data have very similar AUC values.

Having demonstrated the behavior of PINS using data without structure, we next show that PINS determines the correct
clusters using simulated datasets with separable classes. Dataset?2 is created to have two classes, each with 50 samples. As shown
in Figure S3A, the first class has the genes 1 — 100 up-regulated while the second class has the genes 101 — 200 up-regulated.
Figure S3B shows several original connectivity matrices (upper row) and their corresponding perturbed connectivity matrices
(lower row). When k = 2, the algorithm correctly separates the two classes using the original data. We see that the perturbed
connectivity matrix is identical to the original connectivity matrix when k = 2, but when k > 2, the algorithm further splits each
group into smaller groups of patients. For example, when k = 3, the upper-left cluster from the k = 2 result is split into two
smaller groups. When the data are perturbed, however, the connectivity between data points of the same class tend to recover.
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Figure S1. Perturbation clustering algorithm for high dimensional data. The data are first partitioned with different values of k (number of clusters). For each value of k, we
construct the pair-wise connectivity matrix. To identify the number of clusters we add noise to the data and then build the pair-wise connectivity for the perturbed data. We
calculate the discrepancy in pair-wise connectivity between before and after data perturbation. We choose k as the optimal number of clusters for which the pair-wise connectivity

is the most stable.
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Simulated dataset Gaussianl (1 class)
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Figure S2. PINS workflow for the simulated dataset Gaussian1. The dataset consists of 100 samples and 1,000 genes. Panel (A) shows the expression profile of the dataset, in
which all patients belong to one class. All gene expression values follow a normal distribution .#(0, 1) with mean 0 and variance 1. Panel (B) shows the original connectivity
matrices (upper row) and perturbed connectivity matrices (lower row), for different numbers of clusters. The two left-most matrices show the original and the perturbed
connectivity matrices for k = 2. For k = 2, the algorithm divides the original data into two clusters. When the data are perturbed, each data point is randomly moved around its
original location and can be grouped together with any other point with the same probability. The perturbed connectivity matrix shows that the connectivity between any two data
points is random, without any structure. Similarly, the perturbed connectivity matrices for k = 4 and k = 10 have no structure either. Panel (C) displays the empirical cumulative
distribution functions (CDF) Fy, of the difference matrix Dy, k € [2..10]. The horizontal axis represents the entries of the difference matrix while the horizontal axis displays the
values of the function (the number of elements in Dy smaller than or equal to each entry). Panel (D) shows the area under the curve (AUC) for each value of k. The horizontal axis
shows the number of clusters and the vertical axis shows the AUC values. To assess the variability of the AUC values, we repeat the whole process 20 times with different
simulated datasets having normally distributed gene expression. The vertical lines show the 95% confidence interval of the AUCs at each value of k. We also plot the AUC for a
simulated dataset with uniformly distributed expression values. The figure shows that when the data are random, regardless of the distribution, the AUC values vary only slightly.
In addition, the AUC values monotonically increase with k, and range from 0.5 to 0.85.
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Simulated dataset Dataset2 (2 classes)
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Figure S3. PINS workflow for the simulated dataset Dataset2. The dataset consists of 100 samples and 1,000 genes. Panel (A) shows the expression of the two classes. Each
class has 50 samples. The first class has the genes 1 — 100 up-regulated while the second class has the genes 101 — 200 up-regulated. The expression of the up-regulated genes
follow the distribution .#(2,1) with mean two while the expression of other genes follow the distribution .4 (0, 1) with mean 0. Panel (B) shows the original connectivity
matrices (upper row) and perturbed connectivity matrices (lower row). For k = 2, the algorithm correctly separates the two classes using the original data. As we perturb the data,
each data point moves around its original position but still stays close to its own cluster. Therefore, samples of the same class are still grouped together, making the perturbed
connectivity matrix identical to the original connectivity matrix. For k > 2, the algorithm further splits each group into smaller groups. However, when the data are perturbed,
samples of the same class tend to connect to each other. Regardless of k value being used, the perturbed connectivity matrices clearly suggest that the data consists two groups of
samples, which is the true structure of Dataset2. Panel (C) displays the empirical cumulative distribution functions (cdf) Fy of the difference matrix Dy, k € [2..10]. The horizontal
axis represents the entries of the difference matrix while the vertical axis displays the values of the function (the number of elements in Dy smaller than or equal to each entry).
Panel (D) shows the AUC values for Dataset2 (red curve), Gaussian] (black curve) and the difference (blue) between the two curves. Since the original and perturbed connectivity
matrices are identical for k = 2, F»(0) = 1 and AUC, = 1. The AUC curve shows that only the partitioning P, is stable against data perturbation, i.e. k=2.PINS correctly and
deterministically discovers the true classes of the dataset Dataset2.
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Simulated dataset Dataset3 (3 classes)
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Figure S4. PINS workflow for the simulated dataset Dataset3. The dataset consists of 100 samples and 1,000 genes. Panel (A) shows the expression of the three classes. Each of
the first and second classes have 33 samples while the third class has 34 samples (totally 100 samples). The first class has the genes 1 — 100 up-regulated; the second class has the
genes 101 — 200 up-regulated; the third class has the genes 201 — 300. The up-regulated genes’ expression follow the distribution ./#(2,1) with mean two while other genes’
expression follow the distribution .#"(0, 1) with mean 0. Panel (B) shows the original connectivity matrices (upper row) and perturbed connectivity matrices (lower row). For

k = 3, the algorithm correctly separates the three classes using the original data. As we perturb the data, samples of the same class are still grouped together, making the perturbed
connectivity matrix identical to the original connectivity matrix. For k > 3, the algorithm further splits each class into smaller groups. However, when the data are perturbed,
samples of the same class tend to connect to each other. For k = 2, the original connectivity matrix C, shows that two of the three classes are merged but the connectivity between
them is not stable when the data are perturbed. The perturbed connectivity matrices clearly suggest that the data consists three groups of samples, which is the true structure of
Dataset3. Panel (C) displays the empirical cumulative distribution functions (CDF) Fy, of the difference matrix Dy, k € [2..10]. The horizontal axis represents the entries of the
difference matrix while the vertical axis displays the values of the function (the number of elements in Dy smaller than or equal to each entry). Panel (D) shows the AUC values for
Dataset3 (red curve), Gaussianl (black curve) and the difference (blue) between the two curves. The AUC curve shows that only the partitioning P5 is stable against data
perturbation, i.e. k=3.PINS correctly and deterministically discovers the true classes of the dataset Dataset3.
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Simulated dataset Dataset5 (5 classes)
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Figure S5. PINS workflow for the simulated dataset Dataset5. The dataset consists of 100 samples and 1,000 genes. Panel (A) shows the expression of the 5 classes. Each class
consists of 20 samples. The " class has genes the i 100 genes up-regulated, e.g. genes 1 — 100 are up-regulated in the first class and genes 401 — 500 are up-regulated in the fifth
class. These up-regulated genes follow the distribution ./#"(2,1) with mean 2. Other genes follow the distribution .4 (0, 1) with mean 0. Panel (B) shows the original connectivity
matrices (upper row) and perturbed connectivity matrices (lower row). For k = 5, the algorithm correctly separates the 5 classes using the original data. As we perturb the data,
samples of the same class are still grouped together, making the perturbed connectivity matrix identical to the original connectivity matrix. For k > 5, the algorithm further splits
each class into smaller groups but samples of the same class tend to connect to each other when the data are perturbed. For k < 5, some classes are merged together, but the
connectivity between samples of different classes is not stable against data perturbation. The perturbed connectivity matrices clearly suggest that the data consists 5 groups of
samples, which is the true structure of Dataset5. Panel (C) displays the empirical cumulative distribution functions (CDF) Fy of the difference matrix Dy, k € [2..10]. The
horizontal axis represents the entries of the difference matrix while the vertical axis displays the values of the function (the number of elements in D; smaller than or equal to each
entry). Panel (D) shows the AUC values for Dataset5 (red curve), Gaussianl (black curve) and the difference (blue) between the two curves. The AUC curve shows that only the
partitioning Ps is stable against data perturbation, i.e. k=5. PINS correctly and deterministically discovers the true classes of the dataset Dataset5.
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Simulated dataset Dataset9 (9 classes)
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Figure S6. PINS workflow for the simulated dataset Dataset9. The dataset consists of 100 samples and 1,000 genes. Panel (A) shows the expression of the 9 classes. Each of the
8 first classes consists of 11 samples and ninth class consists of 12 samples (totally 100). The i class has genes the i’ 100 genes up-regulated, e.g. genes 1 — 100 are up-regulated
in the first class and genes 801 — 900 are up-regulated in the 9" class. These up-regulated genes are normally distributed with mean 2 and variance 1. Other genes are normally
distributed with mean 0 and variance 1 (.#"(0,1)). Panel (B) shows the original connectivity matrices (upper row) and perturbed connectivity matrices (lower row). For k = 9, the
algorithm correctly separates the 9 classes using the original data. As we perturb the data, samples of the same class are still grouped together, making the perturbed connectivity
matrix identical to the original connectivity matrix. For k = 10, the algorithm further splits a class into two smaller groups but samples of the same class tend to connect to each
other when the data are perturbed. For k < 9, some classes are merged together, but the connectivity between samples of different classes is not stable against data perturbation.
The perturbed connectivity matrices clearly suggest that the data consists 9 groups of samples, which is the true structure of Dataset9. Panel (C) displays the empirical cumulative
distribution functions (cdf) Fy of the difference matrix Dy, k € [2..10]. The horizontal axis represents the entries of the difference matrix while the vertical axis displays the values
of the function (the number of elements in D; smaller than or equal to each entry). Panel (D) shows the AUC values for Dataset9 (red curve), Gaussianl (black curve) and the
difference (blue) between the two curves. The AUC curve shows that only the partitioning Py is stable against data perturbation, i.e. k=9.PINS correctly and deterministically
discovers the true classes of the dataset Dataset9.
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Figure S7. Area under the curve (AUC) of the 10 simulated datasets. The horizontal axis shows the number of clusters while the vertical axis shows the AUC values. The :AUC
values of Gaussianl (random data) are the lowest for all values of &, and range from 0.5 to 0.85. For all other datasets, PINS correctly identifies the true number of clusters k
(AUC, = 1). These optimal AUC values are much higher than the AUC values of the purely random dataset (Gaussian1).

Regardless of the value of k being used, the perturbed connectivity matrices clearly show that there are only two groups of
strongly connected patients, reflecting the true structure of the dataset. Panel (C) shows the CDF curves obtained from the
difference matrices while panel (D) shows the AUC values. Since the original and perturbed connectivity matrices are identical
for k =2, we have F»(0) = 1 and AUC, = 1. In other words, P, is the only partitioning that is stable against data perturbation,
and therefore k = 2 is the optimal number of subtypes for the dataset Dataset2. PINS correctly and deterministically recovers
the true classes of the dataset Dataset2.

Similarly, Dataset3 is created to have three classes, with 33, 33, and 34 samples, totaling 100, as before. Each class has 100
up-regulated genes, as shown in Figure S4A: gene numbers 1 — 100 for the first class, 101 — 200 for the second, and 201 — 300
for the third. Original and perturbed connectivity matrices are shown for k = 2, k = 3, and k = 10 in Figure S4B. When k = 3,
the algorithm correctly separates the data into three classes using the original data or the perturbed data. As k increases beyond
k = 3, the non-perturbed data is split into smaller groups by the algorithm. However, when k # 3, data perturbation allows
samples of the same class to connect to each other with higher probability, producing a shadow image of the correct number of
classes in Figure S4B. When k = 2, the original connectivity matrix C, shows that the second and third classes are merged,
but the connectivity between them is not stable against data perturbation. All perturbed connectivity matrices clearly suggest
that the data consists of three groups of samples, which is the true structure. Panels (C, D) display the CDF curves and the
AUC values for different values of k. P3 is the only partitioning that is stable against data perturbation with AUC3; = 1. PINS
deterministically discovers the true classes of the dataset Dataset3.

Finally, Figures S5 and S6 display the PINS results for the simulated datasets Dataset5 (5 classes) and Dataset9 (9 classes).
In both cases, the perturbed connectivity matrices clearly show the true structure of the data and PINS correctly discovers the
true classes of each dataset. A plot of the AUC values for all of the 10 datasets are shown in Figure S7. When the data have no
structure as in Gaussianl, the AUC values monotonically increase with &, and range between 0.5 and 0.85. When the data
consist of at least two classes, the AUC values greatly increase. For any value of k, the AUC value of Gaussianl is always
smaller than the AUC value of any other dataset. PINS correctly identifies the optimal number of clusters k with AU C; =1 for
all 9 datasets.
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3 Experimental studies

3.1 Implementation and settings

PINS was implemented in the R programming language. For Consensus Clustering (CC),' we used the R package Consen-
susClusterPlus (version 1.24.0),> downloaded from the Bioconductor website. ConsensusClusterPlus returns a graph that
shows the change of the area under the curve A(k) as the number of clusters k increases. According to the original CC
manuscript,’ the optimal number of clusters k is chosen where the area under the curve levels off and A(lAc) approaches zero. For
Similarity Network Fusion (SNF), we used the R package SNFtool (version 2.1), downloaded from the website of the authors
(compbio.cs.toronto.edu/SNF/SNF/Software.html). We calculate the number of clusters for SNF using the
function estimateNumberOfClustersGivenGraph. This function returns four possible choices, in order of preference. We
select the first as the best choice for the number of clusters. For iClusterPlus, we use the R package iClusterPlus (version
1.2.0), downloaded from the Bioconductor website. To choose the best k, iClusterPlus first computes the deviance ratio
which is the ratio of the fitted log-likelihood - null model’s log likelihood divided by the full model’s log-likelihood - null
mode’s log-likelihood. It then chooses the value of k where the ratio levels off. For all four algorithms (PINS, CC, SNF, and
iClusterPlus), we set the range for the number of clusters & to [2..10].

3.2 Subtyping gene expression data
For this single data type analysis, we downloaded 8 gene expression datasets, from a variety of human cancers with known
classes (subtypes). Details of the 8 datasets are described in Table S1. The 5 datasets GSE10245,% GSE19188,* GSE43580,
GSE15061,% and GSE149247 were downloaded from Gene Expression Omnibus (https://www.ncbi.nlm.nih.gov/
geo/). For these datasets, the subtypes and the number of samples per subtype were collected from the description of
each dataset and from the corresponding reference manuscripts. GSE10245 has a total of 58 lung cancer samples (40
adenocarcinomas and 18 squamous cell carcinomas). GSE19188 consists of 91 tumor samples (45 adenocarcinomas, 19
large cell carcinomas, and 27 squamous cell carcinomas). GSE43580 includes 150 tumor samples (77 adenocarcinomas and
73 squamous cell carcinomas). GSE15061 include 366 leukemia related samples (202 acute myeloid leukemias and 164
myelodysplastic syndromes). The fifth dataset, GSE14924, includes 20 leukemia samples (10 CD4 T cells and 10 CDS T cells).
The other three datasets were downloaded from the Broad Institute. The dataset AML2004%° was downloaded from
https://archive.broadinstitute.org/cancer/pub/nmf/. Subtype information of AML2004 is described in
Brunet et al.,” and is available in the file “ALL_AML _samples.txt” on the website. AML2004 includes 38 leukemia samples
(11 acute myeloid leukemia, 19 acute lym- phoblastic leukemia B cell, and 8 T cell). T