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ABSTRACT | Identifying the pathways and mechanisms that

are significantly impacted in a given phenotype is challenging.

Issues include patient heterogeneity and noise. Many experi-

ments do not have a large enough sample size to achieve the

statistical power necessary to identify significantly impacted

pathways. Meta-analysis based on combining p-values from

individual experiments has been used to improve power.

However, all classical meta-analysis approaches work under

the assumption that the p-values produced by experiment-

level statistical tests follow a uniform distribution under the

null hypothesis. Here, we show that this assumption does not

hold for three mainstream pathway analysis methods, and sig-

nificant bias is likely to affect many, if not all, such meta-

analysis studies. We introduce DANUBE, a novel and unbiased

approach to combine statistics computed from individual

studies. Our framework uses control samples to construct em-

pirical null distributions, from which empirical p-values of in-

dividual studies are calculated and combined using either a

Central Limit Theorem approach or the additive method. We

assess the performance of DANUBE using four different

pathway analysis methods. DANUBE is compared to five

meta-analysis approaches, as well as with a pathway analysis

approach that employs multiple datasets (MetaPath). The

25 approaches have been tested on 16 different datasets re-

lated to two human diseases, Alzheimer’s disease (7 datasets)

and acute myeloid leukemia (9 datasets). We demonstrate

that DANUBE overcomes bias in order to consistently identify

relevant pathways. We also show how the framework im-

proves results in more general cases, compared to classical

meta-analysis performed with common experiment-level sta-

tistical tests such as Wilcoxon and t-test.

KEYWORDS | Acute myeloid leukemia; alzheimer’s disease; em-

pirical distribution; meta-analysis; pathway analysis; p-values

I . INTRODUCTION

The proliferation of high-throughput genomics technolo-

gies has resulted in an abundance of data, for many dif-

ferent biomedical conditions. Large public repositories

such as Gene Expression Omnibus [1], [2], The Cancer
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Genome Atlas (cancergenome.nih.gov), ArrayExpress [3],
[4], and Therapeutically Applicable Research to Generate

Effective Treatments (ocg.cancer.gov/programs/target)

store thousands of datasets, within which there are inde-

pendent experimental series with similar patient cohorts

and experiment design. Gene expression data, as mea-

sured by microarrays, are particularly prevalent in public

databases, such that some disease conditions are repre-

sented by half a dozen studies or more.
Experiments comparing two phenotypes, such as dis-

ease and control, yield lists of genes that are differen-

tially expressed (DE). However, lists of DE genes

obtained from similar but independent experiments tend

to have little in common, and taken alone, they usually

fail to elucidate the underlying biological mechanisms.

Effective meta-analysis approaches are needed to unify

the biological knowledge spread out over such similar
studies with apparently incongruent results.

The goal of the meta-analysis is to combine the re-

sults of independent but related studies and provide in-

creased statistical power and robustness compared to

individual studies analyzed alone [5], [6]. In spite of

the numerous sophisticated tools for meta-analysis,

many biological applications still use only Venn diagrams

(intersection/union) or vote counting for combining
multiple studies [7], [8]. Such approaches are useful for

demonstrating consistency when combining a few

studies. However, when combining many studies, Venn

diagrams are either too conservative (for intersection) or

too anti-conservative (for union), while vote counting is

statistically inefficient [5], [9], [10]. Regarding microar-

ray data, meta-analysis has been used at both gene level

[5], [7], [11]–[13] and pathway level [11], [14]. Pathway
analysis [15]–[18] was developed to correlate differential

gene expression evidence with a priori defined func-

tional modules, organized into biological pathway data-

bases, such as Kyoto Encyclopedia of Genes and

Genomes (KEGG) [19], [20], Reactome [21], Biocarta

(www.biocarta.com), or Molecular Signatures Database

(MSigDB) [22].

One straightforward and flexible way of integrating di-
verse studies is to combine the individual p-values provided

by each study. Classical meta-analysis methods of combining

p-values have been reviewed and compared in [23]. These

include Fisher’s method based on the chi-squared distribu-

tion [24], the additive method [25] using the Irwin–Hall

distribution [26], [27], minP [28], and maxP [29].

In an early study, Rhodes and others [13] collected

multiple prostate cancer microarray datasets and com-
bined p-values using Fisher’s method. Since then, other

sophisticated approaches have been proposed including

the weighted Fisher’s method [30] and the latent variable

approach [31], [32].

The major drawback of the available p-value-based

meta-analysis frameworks is that they work under the

assumption that the p-values provided by the individual

statistical tests follow a uniform distribution under the
null hypothesis. Previous reports describe nonuniform

distributions of p-values under the null as due to specific

factors such as improper normalization, cross-hybridization,

poorly characterized variance, and heteroskedasticity in

microarray data analysis [33], [34], or even due to proper-

ties of some more general distributions [35]. Here, we

show that this assumption also does not hold in the realm

of pathway analysis methods, severely compromising the
reliability of the results. In addition to strong statistical as-

sumptions, the current methods for combining p-values are

sensitive to outliers. For example, using Fisher’s method, a

p-value of zero in one individual case will result in a com-

bined p-value of zero regardless of the other p-values. The

same is true for the minP and maxP statistics, where outliers

greatly influence the combined p-value.

Here, we propose DANUBE (Data-driven meta-
ANalysis using UnBiased Empirical distributions), a new

meta-analysis framework that can combine the p-values

of multiple studies in a better way. Our contribution is

twofold. First, we use empirical null distributions to cal-

culate p-values for individual studies. This approach

learns from the data under the null hypothesis and com-

pensates for any bias potentially introduced by an indi-

vidual pathway analysis method. Second, we combine the
individual p-values using a method based on the Central

Limit Theorem. This is less sensitive to outliers and pro-

vides more reliable results. Our simulation experiments

demonstrate that both type-I and type-II errors of

DANUBE are better than those of classical meta-analysis

approaches using both parametric and nonparametric

tests.

We apply DANUBE in the context of pathway analy-
sis using 16 public gene expression datasets from two bi-

ological conditions and four different pathway analysis

methods. Gene Set Enrichment Analysis (GSEA) [36]

and Gene Set Analysis (GSA) [37] are Functional Class

Scoring methods [36]–[39], Down-weighting of Overlap-

ping Genes (PADOG) [38] is an enrichment method

[40]–[42], and Signaling Pathway Impact Analysis

(SPIA) [43], [44] is a topology-aware method [43], [45].
These pathway analysis methods are applied on the hu-

man signaling pathways from KEGG [19], [20].

We show that with the exception of GSEA, each of

the other three methods GSA, SPIA, and PADOG have

different biases, leading to nonuniform distributions of

p-values under the null hypothesis. Not surprisingly,

when combining p-values using classical methods such as

Fisher’s or the additive method, each of the three path-
way analysis methods (GSA, SPIA, and PADOG) yields a

very different list of significantly impacted pathways. We

then apply the DANUBE framework using the empirical

distributions characteristic to each of these methods. The

DANUBE results yield much more consistent lists of sig-

nificant pathways that are also pertinent to the

phenotypes.
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II . BACKGROUND

We first recapitulate the classical methods of combining

p-values, such as Fisher’s method [24] and the additive
method [25]–[27]. We then demonstrate the shortcom-

ings of existing approaches in pathway analysis.

A. Fisher’s Method
Fisher’s method [24] is one of the most widely used

methods for combining independent p-values. Considering

a set of m independent significance tests, the resulting

p-values P1; P2; . . . ; Pm are independent and uniformly dis-

tributed on the interval [0, 1] under the null hypothesis.

Denoting Xi ¼ �2 ln Pi ði 2 f1; 2; . . . ;mgÞ as new random

variables, the cumulative distribution function of Xi can
be calculated as follows:

FiðxÞ¼ PrðXi�xÞ¼Prð�2 ln Pi�xÞ¼Pr Pi�e
x
2

� �

¼
Z1

e�
x
2

fðpÞdp¼1� e�
x
2:

The above function is the cumulative distribution

function of a chi-squared distribution with two degrees

of freedom ð�2
2Þ. Since the sum of chi-squared random

variables is also a chi-squared random variable,

�2
Pm

i¼1 lnðPiÞ follows a chi-squared distribution with

2m degrees of freedom ð�2
2mÞ. In summary, the log prod-

uct of m independent p-values follows a chi-squared dis-
tribution with 2m degrees of freedom:

X ¼ �2
Xm
i¼1

lnðPiÞ � �2
2m: (1)

We note that if one of the individual p-values ap-

proaches zero, which is often the case for empirical

p-values, then the combined p-value approaches zero as

well, regardless of other individual p-values. For exam-

ple, if P1 ! 0, then X ! 1 and therefore, PrðXÞ ! 0
regardless of P2; P3; . . . ; Pm. Therefore, we see that

Fisher’s method is sensitive to outliers.

In practice, most pathway analysis methods use some

kind of permutation or bootstrap approach to construct

an empirical distribution of a statistic under the null. For

example, the empirical null distribution of the t statistic
is �t ¼ ft1; t2; . . . ; tNg. The empirical p-value calculated

from such a distribution is the fraction of the statistics’
values in the N random trials performed that are more

extreme than the observed one. Many times, there are

no occurrences of values more extreme than the ob-

served one, yielding an empirical p-value of zero. In this

situation, the combined p-value calculated using Fisher’s

method will be zero, even if all other p-values are equal

to one. It is important to note that this phenomenon

occurs because many methods choose to round the re-
ported empirical p-value down to zero (when in fact,

the real p-value is somewhere in the interval ½0; 1=N�),
and not because of the mathematical formulation of

Fisher’s method.

B. Additive Method
The additive method proposes an alternative ap-

proach that uses the sum of p-values instead of the log

product. Consider m random variables P1; P2; . . . ; Pm that
are independent and uniformly distributed on the inter-

val [0, 1]. Denoting X ¼ Pm
i¼1 Pi as a new random vari-

able, then X follows the Irwin–Hall distribution [26],

[27]. The cumulative distribution function of X can be

calculated as follows:

FðxÞ ¼ 1

2
þ 1

2m!

Xm
i¼0

ð�1Þi m
i

� �
ðx� iÞmsgnðx� iÞ: (2)

Using the above cumulative distribution function, we

can calculate the probability of observing the sum X ¼Pm
i¼1 Pi. We note that the concept of the additive method

was also presented in [25] with a slightly different for-

mulation and proof than in [26] and [27]. However, they

are equivalent and can be transformed into one another.

The additive method is not as sensitive to extremely

small individual p-values as Fisher’s method. However,

both methods assume the uniformity of the p-values un-

der the null hypothesis. We will show that this assump-
tion does not hold for three mainstream pathway

analysis methods. The inherent bias of these pathway

analysis methods is most likely to affect the classical

meta-analysis in most cases, and thus lead to systematic

bias in identifying significant pathways.

C. Pitfalls of the Existing Approaches
Null distributions are used to model populations so

that statistical tests can determine whether an observa-

tion is unlikely to occur by chance. The p-values pro-
duced by a sound statistical test must be uniformly

distributed in the interval [0, 1] when the null hypothe-

sis is true [33]–[35], [46]. For example, the p-values that

result from comparing two groups using a t-test should

be distributed uniformly if the data are normally distrib-

uted [35]. When the assumptions of statistical models do

not hold, the resulting p-values are not uniformly distrib-

uted under the null hypothesis. We will demonstrate this
fact using gene expression data and pathway analysis.

Using only the control samples from seven publicly

available Alzheimer’s datasets ðN ¼ 74Þ, we simulate

40 000 datasets as follows. We randomly label 37 as

“control” samples and the remaining 37 as “disease” sam-

ples. We repeat this procedure 10 000 times to generate

different groups of 37 control and 37 disease samples. To
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make the simulation more general, we also create 10 000
datasets consisting of 10 control and 10 disease samples,

10 000 datasets consisting of 10 control and 20 disease

samples, and 10 000 datasets consisting of 20 control and

10 disease samples. We then calculate the p-values of the

KEGG (version 65) human signaling pathways (extracted

as graph objects by the R package ROntoTools1.2.0 [44]

version 1.2.0) using the following methods: GSEA [36],

GSA [37], SPIA [43], [44], and PADOG [38].
Fig. 1 displays the empirical null distributions of

p-values using GSA, SPIA, and PADOG. The horizonal

axes represent p-values, while the vertical axes represent

p-value densities. Blue panels (A0–A6) show p-value dis-

tributions from GSA, while purple (B0–B6) and green

(C0–C6) panels show p-value distributions from SPIA

and PADOG, respectively. For each method, the larger

panel (A0, B0, and C0) shows the cumulative p-values
from all KEGG signaling pathways. The small panels,

six per method, display extreme examples of nonuniform

p-value distributions for specific pathways. For each

method, we show three distributions severely biased

towards zero (e.g., A1–A3), and three distributions se-

verely biased towards one (e.g., A4–A6).

These results show that, contrary to generally ac-

cepted beliefs, the p-values are not uniformly distributed
for three out of the four methods considered. Therefore,

one should expect a very strong and systematic bias in

identifying significant pathways for each of these

methods. Pathways that have p-values biased towards

zero will often be falsely identified as significant (false

positives). Likewise, pathways that have p-values biased

towards one are likely to rarely meet the significance

requirements, even when they are truly implicated in
the given phenotype (false negatives). Systematic bias,

due to nonuniformity of p-value distributions, results in

failure of the statistical methods to correctly identify

the biological pathways implicated in the condition, and

also leads to inconsistent and incorrect results. For ex-

ample, all three of the zero-biased GSA pathways shown

in Fig. 1—Prostate cancer (A1), Adherens junction (A2),

and Pathways in cancer (A3)—are reported as statisti-
cally significant by GSA (see Section IV), even though

these data were collected in an experiment comparing

Alzheimer’s disease patients versus healthy subjects, an

experiment that has nothing to do with cancer.

The effect of combining control (i.e., healthy) sam-

ples from different experiments is to uniformly distribute

all sources of bias among the random groups of samples.

If we compare groups of control samples based on exper-
iments, there could be true differences due to batch ef-

fects. By pooling them together, we form a population

that is considered the reference population. This ap-

proach is similar to selecting from a large group of peo-

ple that may contain different subgroups (e.g., different

ethnicities, gender, race, or living conditions). When we

randomly select samples (for the two random groups to

be compared) from the reference population, we expect
all bias (e.g., ethnic subgroups) to be represented equally

in both random groups, and therefore, we should see no

difference between these random groups, no matter how

many distinct ethnic subgroups were present in the pop-

ulation at large. Therefore, the p-values of a test for dif-

ference between the two randomly selected groups

should be equally probable between zero and one (see

Supplementary Section 4 and Figures S10–S11 for more
discussion).

We apply this procedure for the popular GSEA [36]

using the exact same 40 000 datasets simulated from the

pool of control samples of Alzheimer’s data. The result-

ing p-value distributions are uniform, as displayed in

Supplementary Figure S1, showing not only that our re-

sampled data correctly models the null, but also that

GSEA is an unbiased test. This supports the idea that the
nonuniformity of the distributions is due to the methods

rather than the data. We also plot the top 24 most biased

null distributions of GSEA (Figure S2) using the exact

same data and exact same random grouping of samples.

In each figure, the panels are sorted by the distribution

means. The distributions of GSEA (Figures S2 and S6)

are uniform while those of GSA (Figures S3 and S7),

SPIA (Figures S4 and S8), and PADOG (Figures S5 and
S9) are biased. Therefore, the bias is indeed due to the

methods and not to one specific pathway.

III . METHODS

In this section, we introduce the DANUBE framework

and its application in the context of pathway analysis.

A. DANUBE Framework
We propose a new framework for meta-analysis that

makes no assumptions on the data and is therefore ex-

pected to perform much better than any of the classical

methods when the individual p-values are not distributed

uniformly, as we have shown that it is the case for the

pathway analysis methods. Fig. 2 displays a flowchart

comparison between classical meta-analysis and
DANUBE. Both approaches take m independent studies

as input. The pipeline marked by blue arrows (I–II)

shows the classical meta-analysis, and the one marked by

black arrows (1–4) is DANUBE.

The classical approach first calculates a p-value for

each study using a parametric or nonparametric test,

then it combines the individual p-values into one. The

main limitation of the classical approach is that it relies
on the assumption of uniformity of the p-values under

the null hypothesis, which often does not hold true. As

shown in Fig. 1, this assumption is not true for real tran-

scriptomics data and KEGG pathways.

In the DANUBE framework, instead of modeling the

data under a specific assumption, we construct empirical

distributions and use them to calculate empirical p-values.
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Following the black arrows (1–4) in Fig. 2, we initially

calculate the values t1; t2; . . . ; tm of the discriminating sta-

tistic for the m studies in step (1). For example, instead

of using a statistical test to directly calculate the p-values,

we could calculate the means of the data samples over

the m studies. In step (2), we construct the empirical null

distribution �T for the chosen statistic. In step (3), we cal-

culate the empirical p-values ep1; ep2; . . . ; epm for the m
studies with respect to the empirical null distribution �T .
For all i 2 f1; 2; . . . ;mg, epi is calculated as the number

Fig. 1. Empirical null distributions of p-values using: top—GSA; middle—SPIA; and bottom—PADOG. The distributions are generated by

resampling from 74 control samples obtained from seven public Alzheimer’s datasets. The horizontal axes display the p-values, while

the vertical axes display the p-value densities. Panels A0–A6 (blue) show the distributions of p-values from GSA; panels B0–B6

(purple) show the distribution of p-values from SPIA; panels C0–C6 (green) show the distribution of p-values from PADOG. The large

panels on the left, A0, B0, and C0, display the distributions of p-values cumulated from all KEGG signaling pathways. The smaller

panels on the right display the p-value distributions of selected individual pathways, which are extreme cases. For each method,

the upper three distributions, for example A1–A3, are biased towards zero, and the lower three distributions, for example A4–A6,

are biased towards one. Since none of these p-value distributions are uniform, there will be systematic bias in identifying significant

pathways using any one of the methods. Pathways that have p-values biased towards zero will often be falsely identified as

significant (false positives). Likewise, pathways that have p-values biased towards one are more likely to be among false negative

results even if they may be implicated in the given phenotype.
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of elements in �T more extreme than ti, divided by the to-

tal number of elements in �T . We will prove that the re-

sulting empirical p-values are uniformly distributed under

the null hypothesis.

Lemma 1: Let T be a random variable with the empiri-

cal distribution �T and the cumulative distribution func-
tion FTðTÞ. We define the new random variable X as

follows:

X ¼ fx : x 2 �T ^ x � Tg�� ��
j�Tj (3)

where the numerator represents the number of elements

of �T that are smaller than or equal to T. If �T consists of

enough data points to be considered as continuous, then

X is uniformly distributed on the interval [0, 1].

Proof: Denote FTðTÞ as the cumulative distribution

function of T. For any value t 2 �T , FTðtÞ can be calcu-

lated as follows:

FTðtÞ ¼ fx : x 2 �T ^ x � tg�� ��
j�Tj : (4)

We can see that X ¼ FTðTÞ. In addition, FTðtÞ is a strictly
increasing function for all values t 2 �T . Let FXðXÞ be the

Fig. 2. DANUBE framework for meta-analysis. The blue arrows (I and II) show the classical meta-analysis pipeline, while black arrows

(1–4) show the pipeline of DANUBE. The first step (I) of the classical approach is to perform a parametric or nonparametric test for

each study. This step provides individual p-values which are independent and identically distributed (i.i.d.), but not necessarily

uniformly distributed under the null, as shown in Fig. 1. The second step (II) of the classical approach is to use a classical method,

such as Fisher’s, to combine the individual p-values, relying heavily on the assumption of uniformity under the null. In step (1) of

DANUBE, we choose the discriminating statistic and calculate the values of this statistic in each study ðt1; t2; . . . ; tmÞ. In step (2),

we generate the empirical distribution �T of the discriminating statistic under the null hypothesis. In step (3), we calculate the

probability of observing t1; t2; . . . ; tm using �T. In step (4), we combine the m empirical p-values using either the additive method

or the Central Limit Theorem (CLT).
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cumulative distribution function of X, we have the fol-
lowing formula:

FXðxÞ ¼ PrðX � xÞ
¼ Pr FTðTÞ � FTðtÞð Þ
¼ PrðT � tÞ ¼ FTðtÞ ¼ x: (5)

We note that FXðxÞ ¼ x is the cumulative distribution

function of the continuous uniform distribution on [0,

1]. Therefore, if we have enough data for FTðTÞ to be
considered continuous, then X will be a uniformly dis-

tributed random variable. g
In step (4), we combine the empirical p-values using

either the additive method or the Central Limit Theorem

(CLT). According to Lemma 1, the resulting p-values af-

ter step (3) are now truly uniformly distributed under

the null hypothesis and thus can be combined using the

additive method as described in (2). However, the addi-
tive method can be computationally intensive when m is

large. For this reason, we use the CLT to approximate

the combined p-value [47]. The uniform distribution has

mean and variance of 1/2 and 1/12, respectively. Accord-

ing to the CLT, the average of m independent and identi-

cally distributed (i.i.d.) variables (with large m) follows a
normal distribution with mean � ¼ 1=2 and variance

�2 ¼ 1=ð12mÞ. By default, we use this to approximate
the combined p-value when m � 20. We note that the

additive method of combining p-values in our framework

may be substituted by any other method of combining

p-values.

B. Application of DANUBE in Pathway Analysis
Here, we present the application of DANUBE in the

context of pathway analysis (Fig. 3). Let us consider a

method M, which can be GSEA, GSA, SPIA, or PADOG,

or any other method that outputs a p-value for each path-

way in the pathway database. We treat this p-value as the

discriminating statistic. In step (1), we calculate the

p-values of the pathways using the method M. A pathway
i will have m p-values ðpi1; pi2; . . . ; pimÞ for the m studies.

The m p-values for a pathway are i.i.d. However, these

p-values are not necessarily uniformly distributed under

the null hypothesis (see Fig. 1). Therefore, combining

these p-values will lead to systematic bias in identify-

ing significant pathways as shown in Section II-C and

as will be further illustrated in Section IV. Instead of

combining these p-values, we treat them as observed
values of the discriminating statistic.

To calculate the probability of observing such values,

we need to construct the empirical distribution under the

null hypothesis as described in steps (2)–(5) above. In

step (2), we take all of the control samples from the m
studies to create a set of control samples as shown in (C)

in Fig. 3. In step (3), we generate the k synthetic datasets

by random sampling from the pool of control samples.
For example, for a simulation, we choose two groups of

samples from the pool and label them as controls and

diseases. In our case study using the Alzheimer’s data-

sets, as described in Section II-C, we generated 10 000

simulations of 10 control and 10 disease samples,

10 000 simulations of 10 control and 20 disease samples,

10 000 of 20 control and 10 disease samples, and 10 000

of 37 control and 37 disease samples, for a total of
40 000 simulations.

After generating k simulations from the control

samples, we proceed to calculate the p-values for each

pathway and each simulation using the same method M.

For a pathway i, we have a set of p-values

spi1; spi2; . . . ; spik. Since all of these p-values are calcu-

lated from the real control samples (i.e., healthy people),

they can be considered as p-values under the null
hypothesis. These p-values will be used to construct

the empirical distribution �i in step (5). In summary,

steps (2)–(5) produce an empirical distribution for each

pathway, resulting in a total of n empirical distributions

for n pathways. These distributions will be used to calcu-

late the empirical p-values of the measurements done in

step (1).

After steps (1)–(5), for a pathway i, we have m
p-values pi1; pi2; . . . ; pim and an empirical distribution �i.
Using the formula described in (2), we calculate the em-

pirical p-values epi1; epi2; . . . ; epim. According to Lemma 1,

these empirical p-values are independent and uniformly

distributed under the null hypothesis. In step (7), we

combine these empirical p-values using the additive

method to have a single p-value pDANUBEi for pathway i.

IV. RESULTS AND VALIDATION

In this section, we illustrate the limitations of combining

p-values using classical meta-analysis approaches, and

show that DANUBE overcomes these limitations.

Section IV-A and B compare the classical approaches to

DANUBE for the specific application domain of pathway

analysis. Section IV-C and D compare the classical meta-
analysis approaches to DANUBE in the general case, ap-

plicable to any meta-analysis.

For the pathway analysis applications on which we fo-

cus in this paper, we compare DANUBE to five other

classical meta-analysis methods: Stouffer’s, Z-method,

Brown’s, Fisher’s, and the additive method [14], [24],

[48], [49], each of them combined with each of the four

pathway analysis methods (GSEA, GSA, SPIA, and
PADOG). We also compare these methods to a standa-

lone meta-analysis method, MetaPath. In total, we ana-

lyze the results of 25 approaches: six meta-analyses

combined with four pathway analysis methods, plus

MetaPath [11], [50]. Each of these methods is tested on

two diseases—one is Alzheimer’s disease with seven, and

the other is acute myeloid leukemia (AML) with nine
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Fig. 3. DANUBE’s application in pathway analysis. The input is m studies (datasets), and a pathway database, such as KEGG. Each

dataset has a certain number of control and disease samples. Step (1): Perform pathway analysis using a method M (e.g., GSA, SPIA,

or PADOG). For each pathway, the resulting m p-values are i.i.d. However, these p-values are not uniformly distributed under the null

hypothesis (see Fig. 1), and therefore combining them would result in systematic bias. Step (2): Pool the control samples from the m

datasets to produce a large set of control samples. Step (3): Generate k simulated datasets by randomly sampling from the pool. Since

the “disease” and “control” samples in each of the simulated datasets were chosen only from the control samples of the original m

studies, the resulting p-values are calculated under the null hypothesis. Step (4): Perform pathway analysis on the simulated data.

Step (5): Build an empirical distribution for each pathway, which consists of k p-values obtained under the null hypothesis. Step (6):

Calculate an empirical p-value for each p-value obtained from step (1). For example, using the empirical distribution �1, we calculate

the empirical p-value ep11 as the probability of observing a p-value more extreme than p1, i.e., ep11 ¼ jfsp1i � p11; i 2 ½1; . . . ;k�gj. Step (7):

Combine the m empirical p-values obtained for each pathway using either the additive method or the Central Limit Theorem.
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datasets. These conditions were selected for two reasons.

First, there is a pathway in KEGG for each of the dis-

eases. We refer to this as the target pathway and use it to

validate the methods. Second, there are multiple experi-

ments available in the public domain for both of these
diseases.

A. Pathway Analysis Applications: Alzheimer’s
Disease

The Alzheimer’s datasets we use in our data analysis

are GSE28146 (hippocampus) and GSE5281 [six different

tissues: entorhinal cortex (EC), hippocampus (HIP), me-
dial temporal gyrus (MTG), posterior cingulate (PC), su-

perior frontal gyrus (SFG), and primary visual cortex

(VCX)]. The four pathway analysis methods, GSEA, GSA,

SPIA, and PADOG, were used to process the expression

data in each study and output a p-value for each study

and for each pathway. Details of all datasets are provided

in Supplementary Section 3.

The rankings and FDR-corrected p-values of the tar-
get pathway Alzheimer’s disease for the seven Alzheimer’s

datasets are displayed in Fig. 4. The graphs demonstrate

that the adjusted p-values and rankings of the target

pathway vary substantially between the four methods for

a given study, and from one study to the next. Further-

more, both GSA and PADOG report the target pathway

Alzheimer’s disease as not significant in all seven studies.

We combine the four pathway analysis methods with
six meta-analyses: Stouffer’s, Z-method, Brown’s, Fisher’s,

the additive method, and DANUBE. Using a pathway

analysis method M, each pathway has seven p-values—

one per study. These seven p-values are combined using

each of the six meta analysis methods Therefore, each

pathway analysis method produces six lists of pathways.

Each list has 150 pathways ranked according to the

combined p-values. We then adjusted the combined p-

values for multiple comparisons in each list using FDR.

In order to run DANUBE, we generated the null

distributions from control samples as described in

Section III-B. We took the 74 control samples from the
seven Alzheimer’s datasets and randomly divided them

into “control” and “disease” subgroups. We generated

10 000 simulations of 10 controls and 10 diseases, 10 000

simulations of 10 controls and 20 diseases, 10 000 of

20 controls and 10 diseases, and 10 000 of 37 controls

and 37 diseases, for a total of 40 000 simulations. For

each pathway analysis method, we constructed 150 em-

pirical distributions for 150 KEGG signaling pathways
(totally 600 empirical distributions for the four methods

GSEA, GSA, SPIA, and PADOG). We used these empiri-

cal distributions to calculate the empirical p-values before

applying the additive method to combine the empirical

p-values for each pathway, resulting in 150 combined

p-values. We then adjusted the combined p-values for

multiple comparisons using FDR. Running time is re-

ported in Supplementary Section 5 and Tables S1 and S2.
Table 1 displays the results using GSA combined with

the six meta-analysis methods. The horizontal line across

each list marks the 1% significance threshold. The path-

way highlighted green is the target pathway Alzheimer’s
disease. Pathways highlighted in red are examples of false

positives. These pathways were expected to be reported

as false positives because their null distribution is very

skewed towards zero (see Fig. 1 panels A1–A3 and
Supplementary Figure S3). These include Adherens junction
and several cancer-related pathways, none of which are

known to be implicated in Alzheimer’s disease. Stouffer’s

method, the additive method, and DANUBE identify the

target pathway as significant. DANUBE yields the best

ranking.

Fig. 4. (a) Ranks and (b) p-values of the KEGG target pathway, Alzheimer’s disease, for seven Alzheimer’s datasets, using the pathway

analysis methods: GSEA, GSA, SPIA, and PADOG. The horizontal axes show the seven Alzheimer’s datasets. The vertical axis in

(a) shows the rankings of the target pathway for each dataset using the four methods. The vertical axis in (b) shows the FDR-corrected

p-values of the target pathway. The red horizontal line in (b) shows the threshold 0.01. Note how the rankings and p-values of the

target pathway vary greatly across different datasets and methods, making the interpretation of the results very difficult.
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Both Stouffer’s and the additive method identify the
target pathway as significant using GSA, as shown in

Table 1. However, the inherent bias of the null distri-

bution brings irrelevant results into the list of signifi-

cant pathways. For Stouffer’s method, pathways having

p-values biased toward zero, such as Prostate cancer,
Adherens junction, Pathways in cancer, and Pancreatic
cancer, are still among the significant pathways. For

the additive method, pathways having p-values biased
toward zero, such as Prostate cancer, Adherens junction,
and Pathways in cancer, are still among the significant

pathways.

Table 2 displays the results using PADOG combined

with the six meta-analysis methods. Only DANUBE iden-

tifies the target pathway as significant. Z-method and

Brown’s method return no significant pathways. For

Stouffer’s, Fisher’s, and the additive method, the system-
atic bias of the pathway analysis method greatly influ-

ences the outcome of the meta-analyses. Pathways

having p-values biased toward zero, such as Adherens
junction and cancer-related pathways (see Fig. 1 panels

C1–C3 and Supplementary Figure S5), are among the

significant pathways.

Supplementary Table S3 displays the results using

SPIA combined with the six meta-analysis methods. The
target pathway is significant and is ranked near the top

for all methods. DANUBE yields the shortest list of

significant pathways. All the five significant pathways,

Parkinson’s disease, Alzheimer’s disease, Synaptic vesicle
cycle, Cardiac muscle contration, and Huntington’s disease,
are also significant when we combine DANUBE with

GSA and PADOG.

Table 1 Seventeen Top-Ranked Pathways and FDR-Corrected p-Values Obtained by Combining the GSA p-Values Using Six Meta-Analysis Methods for

Alzheimer’s Disease. Stouffer’s Method, the Additive Method, and DANUBE Identify the Target Pathway as Significant and Rank It in Positions 11th,

6th, and 2nd, Respectively. DANUBE Yields the Best Ranking
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Supplementary Table S4 displays the results using

GSEA combined with the six meta-analysis methods. The

horizontal line across each list marks the cutoff

FDR ¼ 0:01. The pathway highlighted green is the target

pathway Alzheimer’s disease. The target pathway is signifi-

cant for all the six meta-analysis methods. Because GSEA

is unbiased, the additive method and DANUBE have

equivalent results. These two methods have a shorter list
of significant pathways and rank the target pathway high-

er than other methods. In addition, all the four signifi-

cant pathways, Cardiac muscle contration, Huntington’s
disease, Alzheimer’s disease, and Parkinson’s disease, ap-

pear in the lists of significant pathways when we com-

bine DANUBE with GSA, PADOG, and SPIA.

There is no gold standard for assigning true or false

values to each of the results, apart from the expectation

that a disease under study should impact its namesake

pathway. Indeed, the target pathway Alzheimer’s disease is
ranked as significant for all of the four pathway analysis

methods when combined with DANUBE. The target

pathway is also ranked higher when using DANUBE

compared to the results of other five meta-analysis

methods. In addition, the pathways Parkinson’s disease,
Alzheimer’s disease, Cardiac muscle constration, and
Huntington’s disease consistently appear as significant in

the results of all the four pathway analysis methods

when combined with DANUBE.

Alzheimer’s, Parkinson’s, and Huntington’s diseases

are three neurological disorders that have many common-

alities including abnormal protein folding, endoplasmic

reticulum stress, and ubiquitin mediated breakdown of

proteins, leading to programmed cell death. Given that

Table 2 Twenty Top-Ranked Pathways and FDR-Corrected p-Values Obtained by Combining the PADOG p-Values Using Six Meta-Analysis Methods for

Alzheimer's Disease. Only DANUBE Identifies the Target Pathway Alzheimer's disease as Significant and Ranks It in 6th Position
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the pathway Alzheimer’s disease is influenced by the mito-

chondrial compartment, which is strongly implicated in

the disease [51]–[54], it is not surprising that other path-
ways with strong mitochondrial components also garner

high rankings. Previous studies [55] have shown the pres-

ence of a cross-talk that makes the neurological disease

pathways, Alzheimer’s disease, Parkinson’s disease, and

Huntington’s disease, along with Cardiac muscle contrac-
tion, appear as significant simultaneously, due to their

dominant mitochondrial module. Cardiac muscle contrac-
tion has a strong mitochondrial component and is highly
dependent on calcium signaling, which is also prevalent

in Synaptic vesicle cycle, Alzheimer’s disease, and Hunting-
ton’s disease. Ca2+ regulates mitochondrial metabolism,

but calcium overload to mitochondria can result in cell

damage from reactive oxygen [56].

We also use MetaPath to combine the seven studies.

MetaPath is a standalone meta-analysis method, which

does not need an external pathway analysis tool. This

method performs meta-analysis at both gene (MAPE_G)

and pathway levels (MAPE_P), and then combines the
results (MAPE_I) to give the final p-value and ranking of

pathways. Supplementary Table S5 shows the top seven

pathways using MetaPath for the seven Alzheimer’s data-

sets. The target pathway Alzheimer’s disease is not signifi-
cant and is outranked by six other pathways.

B. Pathway Analysis Applications: AML
The AML datasets we use in our data analysis are

GSE14924 (CD4 and CD8 T cells), GSE17054 (stem cells),

GSE12662 (CD34+ cells, promyelocytes, and neutrophils

and PR9 cell line), GSE57194 (CD34+ cells), GSE33223

(peripheral blood, bone marrow), GSE42140 (peripheral

blood, bone marrow), GSE8023 (CD34+ cells), and

GSE15061 (bone marrow). The rankings and FDR-

corrected p-values of the target pathway Acute myeloid

Table 3 Twenty-OneTop-RankedPathwaysandFDR-Correctedp-ValuesObtainedbyCombiningtheGSAp-ValuesUsingSixMeta-AnalysisMethodsforAML.

The Target Pathway Acute myeloid leukemia Is Significant for Stouffer's, the Additive Method, and DANUBE With Rankings 13th, 2nd, and 1st, Respectively
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leukemia for the nine AML datasets are displayed in
Supplementary Figure S12. The graphs demonstrate that

the adjusted p-values and rankings of the target pathway

vary substantially between the four methods for a given

study, and from one study to the next. Furthermore, the

AML pathway was not found to be significant by any

method in any dataset.

We combine the four pathway analysis methods with

the six meta-analysis methods. Using a pathway analysis
method M, each pathway has nine p-values—one per

study. These nine p-values are combined using each of

the six meta-analysis methods Therefore, each pathway

analysis method produces six lists of pathways. Each

list has 150 pathways ranked according to the combined

p-values. We then adjust the combined p-values for multi-

ple comparisons in each list using FDR.

In order to run DANUBE, we generated the null
distributions from control samples as described in

Section III-B. We took the 140 control samples of the

nine AML datasets and randomly designated “control”

and “disease” subgroups. We generated 10 000 simula-

tions of 10 controls and 10 diseases, 10 000 simulations

of 30 controls and 50 diseases, 10 000 of 50 controls and

30 diseases, and 10 000 of 70 controls and 70 diseases,

for a total of 40 000 simulations. For each pathway anal-
ysis method, we constructed 150 empirical distributions

for 150 KEGG signaling pathways (totally 600 empirical

distributions for the four pathway analysis methods).

We then used the empirical distributions to calculate

the empirical p-values before applying the additive

method to combine the empirical p-values for each

pathway, resulting in 150 combined p-values. Finally,

Table 4 Twenty-ThreeTop-RankedPathwaysandFDR-Correctedp-ValuesObtainedbyCombiningthePADOGp-ValuesUsingSixMeta-AnalysisMethodsfor

AML. The Target Pathway Acute myeloid leukemia Is Significant for Stouffer's, Fisher's, the Additive Method, and DANUBE. DANUBE Yields the Best Ranking
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we adjusted the combined p-values for multiple com-

parisons using FDR.

Table 3 displays the results of GSA combined with

the six meta-analysis methods, ordered by the FDR
corrected p-values. We place a horizontal line across

each list to mark our 1% cutoff. Stouffer’s method,

the additive method, and DANUBE identify the target

pathway as significant. DANUBE yields the best rank-

ing (ranked 1st), followed by the additive (2nd) and

Stouffer’s method (13th). In addition, the target path-

way is the only significant pathway in DANUBE’s

result.
Table 4 shows the results of PADOG combined with

the six meta-analysis methods. The target pathway is

significant for the four methods: DANUBE, Stouffer’s,

Fisher’s, and the additive method. For DANUBE, Acute
myeloid leukemia is ranked 1st compared to 7th using

the other three meta-analysis methods. There are no

significant pathways using the Z-method and Brown’s

method.
Supplementary Table S6 shows the results of SPIA

combined with the six meta-analysis methods, ordered

by the FDR corrected p-value. Again, the target pathway

is significant using Stouffer’s, Fisher’s, the additive

method, and DANUBE. The additive method and

DANUBE have the same list of significant pathways. In

addition, both methods place the target pathway higher

than the other two methods.
Supplementary Table S7 displays the results of GSEA

combined with the six meta-analysis methods. The target

pathway Acute myeloid leukemia is highlighted in green.

For all six meta-analyses, the target pathway is not signif-

icant despite being ranked among the top pathways.

Since GSEA has no bias, the additive method and

DANUBE yield similar results. In essence, even though it

is completely unbiased, GSEA lacks the power to identify

the Acute myeloid leukemia (AML) as significant in the

AML data.

We also use MetaPath to combine the nine acute mye-

loid leukemia studies. Supplementary Table S8 shows the
top five pathways usingMetaPath. The target pathway is not

significant ðp ¼ 0:4Þ and is outranked by two other

pathways.

Table 5 summarizes all the results for the 25 ap-

proaches (four pathway analysis methods each combined

with one of six meta-analysis approaches, plus MetaPath).

On average, DANUBE performs best in terms of ranking,

as well as in terms of identifying the target pathway as
significant at the 1% cutoff.

We note that for both diseases, DANUBE and the ad-

ditive methods have the same results when combined

with GSEA because GSEA is an unbiased method with

uniform distributions of p-values under the null. In addi-

tion, the results of the two methods for SPIA are almost

equivalent because the distributions of the p-values pro-

duced by SPIA under the null are closer to the expected
uniform. Notably, DANUBE is more useful in conjunc-

tion with methods that have more skewed empirical null

distributions.

C. General Case: t-Test and Wilcoxon Test
In this section, we will demonstrate the generality of

the problem, beyond pathway analysis applications. In

order to do so, we have used the one sample t-test [57],
[58] and the one sample Wilcoxon signed-rank test

[59]–[61] as illustrative examples of parametric and non-

parametric tests. Using simulated null distributions, we

show that both the t-test and Wilcoxon tests have sys-

tematic bias depending on the shape and the symmetry

of the null distribution. When the p-values are biased to-

wards zero, combining multiple studies results in an

Table 5 Ranking and Significance of the Target Pathway for Alzheimer's Disease and AML. The First and Second Columns Show the Disease and the

Pathway Analysis Methods. The Next Six Columns Show the Ranking of the Target Pathways for Six Meta-Analysis Combined With the Four Pathway

Analysis Methods. Each Row Shows the Result of the Six Meta-Analysis Methods Combined With the Same Pathway Analysis Method. Each Cell Shows the

Ranking of the Target Pathways. The Y(es) or N(o) Letters Next to the Ranking Denote if the Target Pathway is Significant or Not. Cells Highlighted in

Green are Those That Are Significant and Have the Best Rankings in Their Row. The Last Column Shows the Result of MetaPath. For Both Diseases, and

for All the 4 Pathway Analysis Methods, the Target Pathway Is Significant and is Ranked the Highest When Using DANUBE. The Target Pathway Is Not

Significant for AML Data When the GSEA p-Values are Combined With Any of the Six Meta-Analysis Methods
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increase of type-I error (prevalence of false positives).
When the p-values are biased towards one, the test loses

power and more evidence is needed to identify true

positives.

In Fig. 5, panel (a) displays a simulated null distribu-

tion H0 that is not symmetrical and does not follow any

standard distribution. Panel (b) displays an alternative

distribution H1, which has the same shape as H0, but a

slightly smaller median. Panel (c) displays another alter-
native distribution H2, which has the same shape as H0

but a slightly larger median. Each population has

100 000 elements. The goal here is to investigate the

ability of each approach to distinguish between H0 and

H1, and between H0 and H2, respectively. This is at-

tempted using both a t-test and a Wilcoxon test.

Denoting M0 and m0 as the mean and median of the

null distribution H0, M0 is used as the parameter (mean)
for the t-tests where m0 is used as the parameter (me-

dian) for Wilcoxon test. To make the analysis more

general, the sample size is randomized between 3 and

10 every time we pick a sample. Since DANUBE uses the

additive method to combine the p-values, we also use the

additive method to combine the p-values of t-test and

Wilcoxon test. When the number of studies is larger or

equals to 20, the combined p-values are calculated using
the Central Limit Theorem as described in Section III.

Panels (d)–(h) show the results using the one sample

left-tailed t-test for the mean; panels (i)–(m) show the

results using the one sample right-tailed t-test for the

mean; panels (n)–(r) show the results using the one

sample left-tailed Wilcoxon test for the median; panels

(s)–(w) show the results using one sample right-tailed

Wilcoxon test for the median.
Panel (d) shows the distribution of p-values for sam-

ples drawn from the null distribution H0. To plot this

panel, we randomly select 100 000 samples from H0 and

then calculate the p-values using the left-tailed t-test.

Since the null distribution H0 is not normal, the result-

ing p-values are not uniformly distributed. Panel (e) dis-

plays the distribution of combined p-values for samples

drawn from the null distribution H0. To calculate a com-
bined p-value, we randomly pick 10 samples from the

null population H0 and then calculate the 10 p-values

using the left-tailed t-test. From these 10 p-values, we

calculate a combined p-value using the additive method.

This procedure is repeated 100 000 times to generate the

distribution of the combined p-values under the null hy-

pothesis. Similarly, panel (f) displays the distribution of

the combined p-values for samples drawn from the alter-
native distribution H1.

The red dashed lines in panels (e, f) show the 0.05

cutoff. Since the combined p-values in (e) are calculated

under the null hypothesis, values smaller than the cutoff

are false positives. Therefore, the blue area to the left of

the red dashed line is type-I error of the classical meta-

analysis using the left-tailed t-test. Similarly, combined

p-values larger than the cutoff in panel (f) are false
negatives. The blue area to the right of the red line

panel (f) displays type-II error.

The results show that combined p-values will be bi-

ased towards zero since p-values of the left-tailed t-test

are biased towards zero. To understand the behavior of

the meta-analysis, we display type-I and type-II error in

panels (g) and (h) with varying numbers of studies to be

combined. As the number of studies increases, the meta-
analysis becomes more biased, and type-I error increases.

For example, when the number of studies reaches 50, the

analysis has more than 60% false positives. Paradoxically,

increasing the number of studies will make the meta-

analysis less useful due to the increase of type-I error.

Panels (i)–(m) display the results of the right-tailed

t-test. Panel (i) displays the distribution of p-values for

samples drawn from the null distribution H0. Panel (j)
displays the combined p-values for samples drawn from

the null distribution H0. Panel (k) displays the com-

bined p-values for samples drawn from the alternative
distribution H2. Each combined p-value is calculated

from 10 individual p-values. The right-tailed t-test is bi-

ased towards one, therefore more evidence is required

to identify true positives. Compared to the left-tailed t-

test, the right-tailed t-test has smaller type-I error but
larger type-II error (less power). Therefore, many more

studies would be required for this test to identify true

positives. Panel (m) shows that for the case of combin-

ing 10 studies, the type-II error of the right-tailed t-test

is about 0.5, whereas the type-II error of the left-tailed

t-test is less than 0.2.

Panels (n)–(r) display the results of meta-analysis

using the one sample left-tailed Wilcoxon test for the
median. In this example, the left-tailed Wilcoxon test is

biased towards one, so more evidence is required to

identify true positives. As shown in panel (r), the ex-

pected type-II error of the meta-analysis is about 0.6

when combining 10 studies. Interestingly, the behavior

of the meta-analysis using the left-tailed Wilcoxon test is

similar to that of the right-tailed t-test. In both cases, the

meta-analysis needs a large number of studies to identify
true positives. Panels (m) and (r) show that type-II error

converges to zero as the number of studies increases.

Panels (s)–(w) display the results of meta-analysis

using the one sample right-tailed Wilcoxon test for the

median. Similar to the t-test, the right-tailed Wilcoxon

test is biased towards zero. As shown in panels (g) and

(v), type-I error using either of the two tests increases as

the number of studies increases.

D. General Case: DANUBE
In this section, we analyze the performance of

DANUBE using the same null and alternative distributions

that were used for the t-test and Wilcoxon tests. Fig. 6 dis-

plays the results using DANUBE. Panels (a)–(c) show the

null distribution H0 and two alternative distributions H1
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Fig. 5. Type-I and Type-II errors of the classical meta-analysis using one sample t-test and Wilcoxon signed-ranked test. (a) Probability

distribution under the null hypothesis H0. (b) Alternative distribution H1 that has the same shape as the null distribution with a

slightly smaller median. (c) Another alternative distribution H2 that has the same shape as the null distribution with a slightly larger

median. (d)–(h) Results using left-tailed t-tests. (d) Distribution of p-values using left-tailed t-test for samples drawn from the null

distribution H0. (e) Distribution of combined p-values using left-tailed t-test for samples drawn from the null distribution H0. The red

dashed line represents the threshold (0.05) below which the null hypothesis will be rejected. The blue area to the left of the red

dashed line is type-I error (false positives). (f) Distribution of combined p-values using a left-tailed t-test for samples drawn from the

alternative distribution H1. The blue area to the right of the red dashed line is type-II error (false negatives). (g) Type-I error with

varying number of studies. (h) Type-II error with varying number of studies using a left-tailed t-test for samples drawn from the

alternative distribution H1. Similarly, (i)–(m) display the results using right-tailed t-test; (n)–(r) display the results of left-tailed

Wilcoxon signed-rank test; (s)–(w) display the results of right-tailed Wilcoxon signed-rank test. In this example, the left-tailed t-test

and right-tailed Wilcoxon tests are biased towards 0 as shown in (e) and (f). Therefore, an increase in the number of studies makes

the combined p-values more biased towards 0, causing an increase in type-I error as shown in (g) and (v). On the contrary, the

right-tailed t-test and left-tailed Wilcoxon test are biased towards 1. This kind of bias makes the test less powerful. For example,

with 10 studies, type-II errors using right-tailed t-test and left-tailed Wilcoxon test are 0.51 and 0.61, respectively.
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Fig. 6. Type-I and type-II errors of DANUBE using mean and median as discriminative statistics. (a) Probability distribution under the

null hypothesis ðH0Þ. (b) Alternative distribution ðH1Þ, which has the same shape as the null distribution but a slightly smaller median.

(c) Alternative distribution ðH2Þ that has the same shape as the null distribution but a slightly larger median. (d)–(h) Results of the

left-tailed DANUBE using mean; (i)–(m) Results of the right-tailed DANUBE using mean; (n)–(r) Results of left-tailed DANUBE using

median; (s)–(w) Results of right-tailed DANUBE using median. (d), (i), (n), and (s) show the p-value distributions for samples drawn

from the null. For all four tests, p-values are uniformly distributed under the null hypothesis. Consequently, the combined p-values

(using the additive method) are also uniformly distributed under the null hypothesis as shown in (e), (j), (o), and (t). The result is

that the type-I error equals the threshold (0.05) regardless of the number of studies combined, as shown in (g), (l), (q), and (v).

(h), (m), (r), and (w) show that the type-II error converges quickly to zero. Combining 10 studies, the type-II errors of left- and

right-tailed DANUBE for the mean are both less than 0.3 compared to 0.51 for the right-tailed t-test. Similarly, using the median,

the type-II error of DANUBE is less than 0.2 compared to 0.61 for the left-tailed Wilcoxon test.
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and H2. Panels (d)–(h) display the results using left-tailed
DANUBE for the mean; panels (i)–(m) display the results

using right-tailed DANUBE for the mean; panels (n)–(r)

display the results using left-tailed DANUBE for the me-

dian; panels (s)–(w) display the results using right-tailed

DANUBE for the median.

We randomly select 10 000 samples from the null dis-

tribution and use them to construct the empirical distri-

bution of sample means [panels (d)–(m)] and likewise of
sample medians [panels (n)–(w)]. For a given empirical

distribution, we calculate the probability of observing the

discriminating statistic in a study. Panel (d) displays the

distribution of empirical p-values for samples drawn from

the null distribution H0; we see that these are uniformly

distributed under the null hypothesis. Panel (e) displays

the distribution of combined p-values for samples drawn

from the null distribution H0. Each combined p-value is
calculated from 10 individual empirical p-values. The

blue area to the left of the red dashed line is type-I error.

Since the individual p-values are uniformly distributed,

the combined p-values are also uniformly distributed.

Consequently, the type-I error of this test is equal to the

threshold. Panel (f) displays the distribution of combined

p-values for samples drawn from the alternative distribu-

tion H1. The blue area to the right of the red dashed line
is the type-II error.

Panels (g) and (h) display the type-I and type-II errors

of DANUBE with varying numbers of combined studies.

The graphs show that the type-I error of DANUBE consis-

tently equals the threshold, while type-II error decreases

when the number of studies increases. When combining

10 studies, the type-I and type-II errors of the left-tailed

DANUBE for the mean are 0.05 and 0.27, respectively,
compared to 0.24 and 0.14 for the left-tailed t-test. When

the number of the studies increases over 30, one can ex-

pect DANUBE to give a 0.05 type-I error and an almost

zero type-II error.

Similar to the left-tailed test, right-tailed DANUBE

on the mean has the expected type-I error and a reason-

able type-II error as shown in panels (l) and (m). With

10 studies to be combined, the right-tailed DANUBE’s
type-I and type-II errors are 0.05 and 0.25, respectively,

compared to 0.01 and 0.51 for the right-tailed t-test. The

results for the mean show that both left- and right-tailed

type-I errors are equal to the threshold while the type-II

error decreases rapidly. On the contrary, the left- and

right-tailed t-tests have unpredictable behavior due to

the skewness of the null distribution.

Panels (n)–(w) show the results of left- and right-
tailed DANUBE for the median. As expected, the type-I

error for the median is also equal to the threshold, re-

gardless of the number of studies that are combined. The

test is proven to be powerful for both tails with type-II

error less than 0.2 for 10 studies. When compared to the

left-tailed Wilcoxon test on 10 studies, the DANUBE left-
tailed type-II error is 0.17 as opposed to 0.61.

V. CONCLUSION

In this paper, we present a new framework to combine

the results of multiple studies in order to gain more sta-

tistical power. Our framework first calculates the empiri-

cal p-values for each study using the empirical

distribution of the discriminating statistic. It then com-

bines the empirical p-value using either the Central

Limit Theorem or the additive method. The new frame-

work makes no statistical assumptions about the data and
is therefore usable in many practical cases when no sim-

ple model is appropriate. In addition, use of the additive

method makes the framework more robust to outliers.

The advantage of the new meta-analysis framework is

demonstrated using both simulation and real-world data.

In our simulation study, we compare the results of

DANUBE to the classical additive method using the one

sample t-test and Wilcoxon signed-rank test. The skew-
ness and the nonnormality of the simulated null distribu-

tion produces systematic bias in classical meta-analysis,

either increasing type-I error or decreasing the power of

the test. In contrast, the type-I error of DANUBE is equal

to the threshold cutoff and type-II error declines quickly

when the number of studies increases.

Toevaluate theproposedframework forpathwayanalysis

applications, we examine seven Alzheimer’s and nine acute
myeloid leukemia datasets using 25 approaches: six meta-

analysis methods, Stouffer’s, Z-method, Brown’s, Fisher’s,

the additive method, and DANUBE, each of them com-

bined with four representative pathway analysis methods,

GSA, SPIA, PADOG, and GSEA, plus an additional inde-

pendent meta-analysis method MetaPath. The results

confirm the advantage of DANUBE over classical meta-

analysis to identify pathways relevant to the phenotype.
This work describes an important limitation of cur-

rent meta-analysis techniques and provides a general sta-

tistical approach to increase the power of an analysis

method using empirical distributions. With vast data-

bases of biological data being made available, this frame-

work may be powerful because it lets the data speak for

itself. The proposed framework is flexible enough to be

applicable to various types of studies, including gene-
level analysis, pathway analysis, or clinical trials to assess

the effect of a therapy in complex diseases. h
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