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Background
Since the advent of single-cell RNA sequencing technology, researchers can study the 
dynamic cellular process at the resolution of an individual cell. Some dynamic processes 
such as cell differentiation, cell development, and cell fate decisions can be analyzed 

Abstract 

Background:  The advance in single-cell RNA sequencing technology has enhanced 
the analysis of cell development by profiling heterogeneous cells in individual cell reso-
lution. In recent years, many trajectory inference methods have been developed. They 
have focused on using the graph method to infer the trajectory using single-cell data, 
and then calculate the geodesic distance as the pseudotime. However, these methods 
are vulnerable to errors caused by the inferred trajectory. Therefore, the calculated 
pseudotime suffers from such errors.

Results:   We proposed a novel framework for trajectory inference called the single-
cell data Trajectory inference method using Ensemble Pseudotime inference (scTEP). 
scTEP utilizes multiple clustering results to infer robust pseudotime and then uses the 
pseudotime to fine-tune the learned trajectory. We evaluated the scTEP using 41 real 
scRNA-seq data sets, all of which had the ground truth development trajectory. We 
compared the scTEP with state-of-the-art methods using the aforementioned data 
sets. Experiments on real linear and non-linear data sets demonstrate that our scTEP 
performed superior on more data sets than any other method. The scTEP also achieved 
a higher average and lower variance on most metrics than other state-of-the-art meth-
ods. In terms of trajectory inference capacity, the scTEP outperforms those methods. In 
addition, the scTEP is more robust to the unavoidable errors resulting from clustering 
and dimension reduction.

Conclusion:  The scTEP demonstrates that utilizing multiple clustering results for 
the pseudotime inference procedure enhances its robustness. Furthermore, robust 
pseudotime strengthens the accuracy of trajectory inference, which is the most crucial 
component in the pipeline. scTEP is available at https://​cran.r-​proje​ct.​org/​packa​ge=​
scTEP.
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using the gene expression matrix and modeled by generating the graph showing the 
stage and pseudotime of cells. The development of single-cell RNA-sequencing technol-
ogy has made enormous progress in scale, from analyzing dozens of cells to millions of 
cells. Therefore, the research in single-cell data is enhanced.

Many trajectory inference methods have been developed in recent years. We catego-
rize the trajectory inference methods into two categories based on how they construct 
the trajectory. The first category of trajectory inference approaches is based on the min-
imum spanning tree (MST) algorithm, which attempts to infer the developmental trajec-
tory of single-cell data. Monocle [1], The first pseudotime inference method, utilized the 
MST algorithm on individual cells to find the longest path and assign the pseudotime of 
each cell. Monocle2 [2] learns the cell trajectory using the MST algorithm and updates 
the cell positions by shifting cells toward the nearest vertex in the MST. Monocle2 then 
repeats this procedure until the cell trajectory and positions are stable. It finally calcu-
lates the pseudotime of the cells by their geodesic distance along the MST from the root 
vertex. Tools for Single Cell Analysis (TSCAN) [3] run the MST algorithm on clusters 
to construct a cluster-based MST, then orders the cells by orthogonally projecting cells 
onto the edges of the MST. It is worth mentioning that the total computation of the 
MST algorithm is reduced significantly by running on the cluster level instead of the 
cell level. Waterfall [4] is similar to TSCAN, it constructs the MST on clusters that are 
used as the trajectory, and calculates pseudotime by orthogonally projecting cells onto 
edges. Slingshot [5] constructs trajectory using the MST algorithm. When calculating 
pseudotime, Slingshot proposed a simultaneous principal curves algorithm to construct 
smooth curves from the MST, it then projects cells onto the smooth curves instead of 
MST edges.

The second category is the graph-based trajectory inference method. Diffusion pseu-
dotime (DPT) [6] utilizes a weighted k-nearest-neighbor (KNN) algorithm to construct 
the trajectory of the cells. Then diffusion pseudotime algorithm is introduced to calcu-
late the pseudotime of cells in what they call the ‘diffusion map space’. Partition-based 
graph abstraction (PAGA) [7] first compresses and denoises original data and constructs 
what they describe as a symmetrized KNN-like graph. It then finds the community of 
vertices using the Louvain [8] algorithm to partition this KNN-like graph. Monocle3 [9] 
generates the trajectory using the principal graph algorithm. It then calculates the geo-
desic distance of cells from the user-selected root node in the trajectory as the pseudo-
time. URD [10] uses a KNN graph between transcriptomes in gene expression space to 
construct trajectory. It then calculates the pseudotime of cells by utilizing the simu-
lating diffusion algorithm to determine the distance of cells from the root.

The third category is the RNA velocity assisted trajectory inference method. VeTra 
[11] utilized RNA velocity vectors to construct multiple directed graphs that are 
obtained from lineage tracing to determine the transition state of cells based on k near-
est neighbors of cells. Then, VeTra constructs independent cell transition paths by 
identifying weakly connected components. Lastly, those transition paths are clustered 
together to obtain trajectory. The pseudotime of cells is calculated by projecting them 
onto the principal curve which is obtained from lineages of trajectory. Cytopath [12] uti-
lized RNA velocity to infer the root and terminal states. By combining the cell-to-cell 
transition probability matrix and cell states, Cytopath constructs multiple simulations of 
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trajectories that are used to assign cell states. The pseudotime was estimated from those 
trajectories.

However, these existing methods have some drawbacks. Firstly, the existing methods 
have poor scalability in efficiency and accuracy. When the total number of cells reaches 
hundreds of thousands, the execution time increases rapidly and the accuracy drops. 
Furthermore, this situation becomes worse when the number of cells exceeds 10,000. 
Secondly, the existing methods do not utilize pathway information [13]. Pathway analy-
sis is a very effective methodology to enhance the ability of gene expression analysis. 
It strengthens gene expression analysis by dividing genes related to each other into the 
same group. However, the existing trajectory inference methods did not utilize this 
effective tool. Thirdly, when conducting trajectory inference, users usually know that 
one cell or a group of cells is the starting point of the trajectory. Therefore, we can use 
the relative relationship between the remaining cells or clusters with the starting point 
(e.g. Euclidean distance) as additional information to construct the trajectory. However, 
many existing methods only use the starting point information to define the starting 
point of its generated trajectory. Fourthly, most developed trajectory inference methods 
in recent years use clustering to generate a graph that represents the trajectory at the 
cluster level, the pseudotime is then calculated from the graph. It is therefore very sus-
ceptible to errors in clustering and graph construction.

To solve these problems, we propose single-cell data Trajectory inference method 
using Ensemble Pseudotime inference (scTEP), which consists of four major parts. The 
first part is pathway gene set intersection which utilizes the pathway information and 
generates latent for all pathways. The second part is scDHA [14] clustering and dimen-
sion reduction, which consists of a non-negative kernel autoencoder and a variational 
autoencoder. scDHA achieved outstanding performance on both latent representation 
and clustering tasks. We utilized scDHA as a part of the pipeline to enhance the capac-
ity of trajectory inference. The third part is pseudotime inference from multiple cluster-
ing results that generate more robust pseudotime results. The fourth part is pseudotime 
fine-tuned trajectory inference, which utilizes the pseudotime inferred from the pre-
vious part and fine-tunes the constructed graph by sorting the vertex according to its 
average pseudotime. We conduct extensive experiments on real data sets and the results 
show that scTEP outperforms state-of-the-art methods in accuracy and robustness.

Results and discussion
In this section, we show the scTEP’s experimental results using two collections of data 
sets. First, we use the gold standard data sets collected in [15] to compare the perfor-
mance of the trajectory inference methods. The gold standard collection consists of data 
sets where their ground truth trajectory is not obtained from the gene expression data. 
The gold standard collection had data sets of many trajectory types, such as linear, bifur-
cation, multi-bifurcation, tree, connected, and disconnected. We utilized 26 members of 
the gold data collection out of 27 (all of the Homo sapiens and Mus musculus data sets), 
of which 17 are linear data sets and the remaining 9 data sets are non-linear. Second, we 
demonstrate the pseudotime obtained by scTEP on larger linear data sets. We used six 
state-of-the-art methods shown to be most accurate in [15] and evaluated the pseudo-
time inference capacity of all methods using 1 example dataset of size 128 and 14 linear 
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data sets ranging in size from 1,907 to 182,174 cells. It is worth noting that we assembled 
this collection to evaluate the performance across this spectrum of sizes.

Gold standard data sets

To benchmark scTEP on branching data sets, we utilized all the Homo sapiens and 
Mus musculus members of the gold standard data sets collected by Saelens in [15]. This 
selected subset of the gold standard data sets consists of 17 linear data sets and 9 non-
linear data sets. We conducted experiments on gold standard data sets to evaluate the 
trajectory inference capability of scTEP. In addition to their paper [15], Saelens et al. also 
developed a collection of R packages called dynverse to help researchers working on the 
trajectory inference task. The dynverse collection consists of four main packages, dyn-
wrap [16], dynplot [17], dyneval [18], and dynmethods [19]. The dynmethods package 
contains state-of-the-art trajectory inference methods. The dynplot and dyneval pack-
ages provide the functionality to visualize and evaluate the output of dynmethods. The 
dynwrap package is committed to allowing the user to wrap their developed method in 
the formatting consistent with dynverse. Therefore, we can use dynplot, dyneval, and 
dynmethods to compare a user’s developed method with state-of-the-art methods.

To utilize the convenience of dynverse packages, we wrapped scTEP using the dyn-
wrap, then used dyneval to conduct extensive experiments on the linear and non-linear 
gold standard data sets. Then, we compared scTEP with state-of-the-art methods. The 
dynwrap package used in the experiment is version 1.2.2. We selected 8 state-of-the-
art methods that performed the best according to the accuracy results in [15] from the 
dynmethods package version 1.0.5., note that we wrapped the Monocle3 method using 
dynwrap since dynmethods did not contain it. Finally, we used dynplot and version 0.9.9 
dyneval packages to visualize and evaluate the comparison.

To evaluate the performance of trajectory inference methods, we utilized the HIM 
(Hamming-Ipsen-Mikhailov distance), F1 branches, F1 Milestones, and correlation met-
rics in the dyneval package, and the experiment results using gold standard data sets 
are present in Fig.  1. Those metrics are also used in the [15] to evaluate the accuracy 
of 45 trajectory inference methods that generate different formatting outputs. To com-
pare multiple methods, the dyneval package abstracts a method’s output trajectory into 
a uniform format that uses a milestone network and the assignment of cells within the 
milestone network to represent the trajectory and pseudotime of a method’s output. The 
HIM metric uses the adjacency matrix, with the length of edges within the milestone 
network as the values of its elements, to calculate the similarity in topology between 
two graphs regardless of the assignment of cells. F1 branches and F1 Milestones aim to 
compare the accuracy of cell assignment within the milestone network. To calculate F1 
branches and F1 Milestones, the dyneval package first map cells to their closest branch 
and milestone, respectively, then use the F1 score to evaluate the accuracy of the cell 
assignment. The correlation metric represents the correlation between a method’s out-
put cell geodesic distance from the starting point within the milestone network and 
ground truth. Saelens et al. [15] provide detailed descriptions and calculations of those 
metrics in the supplementary file.

The HIM metric indicates the similarity between the inferred trajectory by methods 
and the ground truth trajectory. In Fig. 1a, we present the box plot of HIM values of gold 
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standard data sets. The average HIM of scTEP is 0.87. Slicer is the second-best method 
that achieved an average HIM of 0.83, which is shown in Fig. 1a as the diamond shape in 
the box and red dashed horizontal line. Note that although Slicer can infer nonlinear tra-
jectories. However, all Slicer’s outputs are linear after being wrapped into milestone net-
works by dynwrap. Monocle3 and Slingshot are the third and fourth best methods and 
have an average of 0.74 and 0.71, respectively. The remaining methods performed sig-
nificantly worse as shown in Fig. 1a. As for the accuracy of pseudotime inference, scTEP 
performed the best on both F1 branches (Fig.  1b) and F1 milestones (Fig.  1c). For F1 
branches, scTEP’s average is 0.687. Monocle3 is the second-best method in terms of this 
metric, with an average of 0.642. Slingshot has a lower average of 0.53. As for the rest, 
they performed significantly worse. For F1 milestones, scTEP’s average is 0.5. The per-
formance of Monocl3e and Slingshot is similar. The average F1 milestones of Monocle3 
is 0.464. The Slingshot is a bit worse, with an average of 0.456. Lastly, Fig. 1d shows the 
correlation values. The scTEP has the best result of an average of 0.355. paga_tree is the 
second best, its average correlation is 0.354. Monocle3 and Slingshot are the third and 
fourth, with an average of 0.3498 and 0.342, respectively. Those methods all performed 
well in terms of correlation metrics.

Overall, we conclude that scTEP performed the best on gold standard data sets. It 
has better accuracy in both trajectory and pseudotime inference.

Fig. 1  Box plots for HIM, F1 branches, F1 milestones, and correlation values for 26 gold standard data sets. 
The diamond shape in the box indicates the mean value of a method. The mean value of scTEP is also shown 
as a red dashed horizontal line for comparison. The scTEP outperforms other state-of-the-art trajectory 
inference methods by having the best mean values regarding all four metrics
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Figure  2 shows the visualization of ground truth and trajectory inference results of 
scTEP and other three state-of-the-art methods on the Mesoderm development 

loh data set [20]. The NKT differentiation engel data set consists of nine types 
of cells: H7hESC, APS, MPS, DLL1pPXM, D2.25_Smtmrs, ESMT, D5CntrlDrmmtm, 
Sclrtm, D2LtM. Figure 2a shows the ground truth trajectory and cell types of the Meso-
derm development loh data set in reduced dimensional spaces output by scTEP, 
Slingshot, Monocle3, and PAGA, respectively. The solid black dots in the figure show 
the center of cell types, which is the ground truth cell types of the data set in Fig. 2a and 
the cell type identified by trajectory inference methods in Fig. 2b. The solid black lines 
with arrows connecting the dots indicate the development trajectory of cells. The trajec-
tory of the Mesoderm development loh data set is a tree. The H7hESC is the root 
cell type, all the other types of cells are derived from H7hESC. Then divided into two 
branches starting with APS and MPS. The MPS branch is linear and followed by D2LtM 
cells. The APS branch is followed by DLL1pPXM, D2.25_Smtmrs, and ESMT cells. Then 
bifurcate after ESMT cells into D5CntrlDrmmtm and Sclrtm cells. Figure 2b shows the 

Fig. 2  The visualization of ground truth, inferred trajectories, and pseudotime on the Mesoderm 
development loh data set. The landscape in the reduced dimension space provided by each method is 
colored by: a ground truth development stages, b trajectory inference results, c ground truth pseudotime, d 
pseudotime inferred by methods
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inferred trajectory by scTEP, Slingshot, Monocle3, and PAGA. scTEP clustered cells into 
8 groups. It missed the branch consisting of MPS and D2LtM. It correctly identified the 
second differentiation point near the end of another branch. Slingshot identified the 
branch consisting of MPS and D2LtM. However, it failed on another branch by connect-
ing another branch after the D2LtM cells. It also connects D5CntrlDrmmtm cells after 
the branch of MPS and D2LtM cells. Monocle3 identified a branch consisting of MPS 
and Sclrtm cells, then ended with differentiated into D5CntrlDrmmtm and D2LtM cells. 
Another branch has four start cell types, which is far from the ground truth shown in 
Fig. 2a. PAGA generated four independent trajectories. It also generated cycles in group 
4 which doesn’t exist in the ground truth trajectory. Overall, PAGA’s output is signifi-
cantly worse than the rest methods.

Figure 2c shows the ground truth pseudotime of Mesoderm development loh 
data set. It is worth mentioning that the D2LtM and D3GARPpCrdcM cells has a smaller 
pseudotime than cells on another branch. Figure  2d shows the pseudotime inference 
results of scTEP, Slingshot, Monocle3, and PAGA. For scTEP, the pseudotime for D5Cn-
trlDrmmtm and Sclrtm cells is incorrect, the rest cells are close to the ground truth. 
For Slingshot, the pseudotime of ESMT, D5CntrlDrmmtm, and Sclrtm cells are incor-
rect. For Monocle3, the pseudotime of MPS, ESMT, D5CntrlDrmmtm, and Sclrtm cells 
are incorrect. Since PAGA generated four independent trajectories, it failed on calculat-
ing the cells are not connected to the starting point. Therefore, most cells don’t have 
pseudotime.

Our collection

We compared scTEP with six methods that are recognized as the best on linear data sets 
according to [15]. These methods are also widely used to solve the pseudotime inference 
problem. Note that TSCAN and SCORPIUS are only able to generate linear output. We 
collected the data sets presented in Table 1, then converted the raw data into the Sin-
glecellExperiment object for the convenience of comparison. Table 1 summarizes 

Table 1  Description of the linear single-cell data sets

Data set Tissue Size Class Accession ID

 1. Goolam Mouse Embryo 124 5 E-MTAB-3321 [21]

 2. Manno (Mouse) Mouse Brain 1,907 6 GSE76381 [22]

 3. Han Mouse Embryo 3,105 3 GSE108097 [23]

 4. Manno (Human) Human Brain 4,029 12 GSE76381 [22]

 5. Yuzwa Mouse Embryo 6,316 4 GSE107122 [24]

 6. Pijuan Mouse Embryo 16,936 2 E-MTAB-7324 [25]

 7. Green Mouse Testis 22,954 3 GSE112393 [26]

 8. Hochgerner Mouse Embryo 24,185 8 GSE104323 [27]

 9. Vladoiu Mouse Brain 55,325 9 GSE118068 [28]

10. Weinreb (Cytokine) Mouse Blood 65,076 4 GSE140802 [29]

11. Ernst Mouse testis 84,018 11 E-MTAB-6946 [30]

12. Delile Mouse Embryos 97,771 5 E-MTAB-7320 [31]

13. Park Human Thymus 129,493 3 E-CURD-79 [32]

14. Weinreb (inVitro) Mouse Blood 130,887 3 GSE140802 [29]

15. Weinreb (inVivo) Mouse Blood 182,174 3 GSE140802 [29]
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the characteristics of linear data sets in our collection. These linear data sets are labeled 
with developmental stages, such as known cell types or the time point of the cell, and 
these labels were used to evaluate the accuracy of the various methods.

In our experiments, we used the following packages: (i) TSCAN version 1.24.0 from 
Github [33], (ii) SCORPIUS version 1.0.7 from CRAN, (iii) Slingshot version 1.4.0 from 
Bioconductor, (iv) Monocle3 version 1.0.0 from Bioconductor, (v) PAGA through Scanpy 
version 1.7.2, (vi) VIA [34] through pyVIA version 0.1.7. TSCAN and SCORPIUS are 
designed to work without prior information of start or end cells. The start cell type prior 
information is provided to the rest methods in the experiments.

Since these data sets were labeled with developmental stages, we used the correlation 
between inferred pseudotime and ground truth developmental stages as a criterion to 
evaluate the pseudotime inference accuracy of these methods. Table 2 summarizes the 
evaluation results of scTEP and 5 state-of-the-art methods on 15 linear data sets pre-
sented in Table 1, as well as the mean, median, and variance of correlation values.

The average and median correlation values of scTEP are 0.61 and 0.66, respectively. 
scTEP is the highest among all compared methods. The second-best method, Monocle3 
achieved an average correlation of 0.53. Slingshot has a slightly lower average correlation 
of 0.50. PAGA and VIA achieved a significantly lower average correlation of 0.32 and 
0.30, respectively. The remaining methods, TSCAN and SCORPIUS have an average of 
around 0. We deduced that due to the absence of the ability to utilize the start cells prior 
information, they failed to identify meaningful pseudotime.

Figure 3a shows the box plot of pseudotime inference results of scTEP and the 6 state-
of-the-art methods on all 15 linear data sets. We conclude that scTEP outperformed the 
other method significantly by having the highest mean and median correlation values. 
As for variance, scTEP also is significantly better than the compared methods. We con-
clude that scTEP has better robustness. For the rest methods, Slingshot and Monocle3 

Table 2  The trajectory inference results on 15 data sets

data set scTEP Slingshot TSCAN SCORPIUS PAGA​ Monocle3 VIA

 1. Goolam 0.89 0.90 −0.27 −0.28 0.29 0.86 −0.63

 2. Manno (Mouse) 0.27 0.30 −0.34 0.17 0.33 0.46 −0.18

 3. Han 0.73 0.69 −0.76 0.39 0.66 0.19 0.27

 4. Manno (Human) 0.68 0.77 −0.76 0.81 0.41 0.42 0.17

 5. Yuzwa 0.66 0.41 0.62 −0.66 0.66 0.35 0.62

 6. Pijuan 0.62 0.58 0.20 −0.82 0.56 0.67 0.86

 7. Green 0.72 0.75 −0.50 −0.23 0.08 0.84 0.28

 8. Hochgerner 0.67 0.57 0.23 −0.39 0.07 0.76 0.72

 9. Vladoiu 0.50 0.16 0.31 0.13 0.23 0.59 0.73

10. Weinreb (Cytokine) 0.50 0.21 −0.32 0.05 0.30 0.40 NA

11. Ernst 0.68 0.73 0.65 -0.36 0.09 0.80 0.49

12. Delile 0.71 0.49 −0.50 -0.66 NA 0.35 0.31

13. Park 0.33 0.20 −0.58 0.48 0.06 0.70 −0.08

14. Weinreb (inVitro) 0.53 0.41 0.09 0.58 0.43 0.20 NA

15. Weinreb (inVivo) 0.64 0.36 −0.09 0.33 0.34 0.43 NA

Mean 0.61 0.50 −0.13 −0.03 0.32 0.53 0.30

Median 0.66 0.49 −0.27 0.05 0.315 0.59 0.30

Variance 0.025 0.054 0.216 0.248 0.047 0.051 0.19
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are working promisingly, while PAGA and VIA lag behind in accuracy. Both TSCAN and 
SCORPIUS have an average correlation of around 0 and fail on many data sets. Overall, 
scTEP enhanced the pseudotime inference ability over state-of-the-art methods.

In recent years, the cell size of single-cell RNA sequence data sets has reached more 
than a million, a significant increase compared to several years ago. The increas-
ing number of cells makes trajectory inference harder. Cell clustering is a fundamen-
tal component in the trajectory inference pipeline and is more challenging to conduct 
on a large data set. The error in clustering affects trajectory inference in two aspects. 
First, the wrong number of clusters will cause errors in the graph that is the basis of the 
cell development trajectory. For instance, the graph construction method can generate 
extra branches that don’t exist in the ground truth trajectory because of incorrect clus-
ters from clustering results. Second, most state-of-the-art methods build the graph at 
the cluster level instead of the individual cell level. There are always a certain amount 
of cells grouped into incorrect clusters because of the intrinsic property of the cluster-
ing task. Therefore, the errors from the clustering procedure will result in projecting 
those cells to the wrong position in the graph. Hence, the inferred pseudotime for those 
cells is incorrect. Increasing cell size also affects the dimension reduction component 
in the trajectory inference pipeline. It is much harder to generate a low-dimensional 
space that makes the same group of cells closer and cells from different groups farther. 
We observed that the landscape in the low-dimension space becomes dense when the 
data set size is beyond several thousand. In the circumstance of multiple groups of cells 
overlapping with each other in the low-dimensional space, the trajectory inference task 
becomes much more challenging.

When the data set size is greater than 50,000 cells (data sets 9–15 of Table 2), scTEP 
also achieved the best accuracy in terms of correlation, an average of 0.55. Monocle3 
performed second with an average of 0.495. The rest of the comparison methods suf-
fer from the large data set size, and the performance degrades significantly. Slingshot 
is the third-best with an average of 0.365. Figure 3b shows the box plot of 7 data sets 
with more than 50,000 cells. The performance of scTEP, Slingshot, PAGA, and Monocle3 

Fig. 3  Box plots for correlation values for 15 real scRNA-seq data sets. The diamond shape in the box 
indicates the mean value of a method. The mean value of scTEP is also shown as a red dashed horizontal line 
for comparison. The scTEP outperforms other state-of-the-art trajectory inference methods by having the 
best average correlation value. a The correlation values of all data sets. b The correlation values of data sets 
that are larger than 50,000 cells
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dropped from their average over all 15 data sets. The experiment validates that trajectory 
inference is a more challenging task for large data sets, and scTEP performed the best 
among the 5 state-of-the-art methods compared.

In addition to the overall best accuracy, scTEP achieved better robustness over all the 
data sets. Scrutinizing the data sets individually, we observed that all the comparison 
methods performed well on most data sets while failing on a few data sets. Although 
Monocle3 performed better than Slingshot on large data sets, the overall performance 
of Slingshot and Monocle3 is promising according to the results exhibited in Table 2 and 
Fig. 3. Although both Slingshot and Monocle3 achieved overall good results, Slingshot 
had an abnormally low accuracy on the four data sets of Vladoiu, Weinreb (Cytokine), 
and Park. Monocle3 suffers the same issue on Han and Weinreb (inVitro) data sets. 
PAGA failed on Green, Hochgerner, Vladoiu, Ernst, Delile, and Park data sets. Espe-
cially its correlation with ground truth on Green, Hochgerner, Ernst, and Park are 0.08, 
0.07, 0.09, and 0.06, respectively. That is barely better than a random guess. In particu-
lar, PAGA doesn’t work on the Delile data set. Therefore, scTEP has better accuracy and 
robustness on large data sets.

Figure  4a–c show the landscape, trajectory, and pseudotime inferred by scTEP on 
the Goolam [21] data set in the two-dimensional space visualized by UMAP [35]. The 
Goolam data set consists of five cell types: 2cell, 4cell, 8cell, 16cell, and blast. The one 
imperfection in the scTEP’s output is that scTEP clustered 4cell into 3 groups and gen-
erated one additional lineage by mistake. However, the 3 4cell groups still have a very 
close pseudotime inferred, between 2cell and 8cell as shown in Fig. 4d. scTEP achieved a 
correlation of 0.89, the second among the compared methods. Figure 4c shows the land-
scape of the Goolam dataset colored by scTEP’s output pseudotime. The overall trend of 
the scTEP’s output pseudotime is consistent with the ground truth. Figure 4d–j shows 
pseudotime against development stages. scTEP has an almost perfect pseudotime except 
for 16cell and blast cells are close to each other. Slingshot correctly inferred pseudotime 
for 2cell, 4cell, and 8cell, and also failed with 16cell and blast. Some 8cell has a higher 
pseudotime than 16cell and blast. The outputs of TSCAN and SCORPIUS are over-
all incorrect. Both methods made 2cell, 4cell, and 8cell have a higher pseudotime than 
16cell and blast, which is inconsistent with the ground truth. PAGA failed on 4cell and 
8cell by assigning those cells a higher pseudotime than blast. Monocle3 has a similar 
output with Slingshot, 8cell cells are separated into two groups, but the inferred pseudo-
time for one group is higher than that for 16cell and blast. VIA’s inferred reversed pseu-
dotime and 8cell, 16cell, and blast are intervened (Fig. 5a–c).

show the visualization of the Yuzwa data set and the trajectory inference results of 
scTEP methods. The Yuzwa dataset consists of four types of cells collected from four 
timepoints, namely E11, E13, E15, and E17. Figure 5a shows the landscape of the Yuzwa 
data set. We observed that four types of cells are not separable. Cells from multiple time 
points are located in two areas and overlap with each other. Although such a landscape 
is challenging for pseudotime inference, scTEP generated the correct linear trajectory 
and a correlation of 0.66, as shown in Fig.  5b. Overall, Fig.  5c shows the pseudotime 
pattern on the landscape is that the pseudotime of cells is increasing from right to left, 
which is consistent with the ground truth. The lower row of Fig. 5d–j shows the pseu-
dotime against the development stages of scTEP and compared methods. scTEP has 
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similar results with the landscape, the pseudotime for four types of cells are intervened. 
However, there is still a trend from E11 to E17. All methods output a pseudotime that 
intervened four cell types except for SCORPIUS. However, SCORPIUS output a pseu-
dotime in reversed order. We conclude that scTEP consistently infers promising pseudo-
time when compared to state-of-the-art methods.

Methods
In this section, we first introduce the overall structure of the proposed pipeline and then 
discuss the details of the pipeline parts. Figure 6 shows the overall workflow of the pipe-
line consisting of four parts: (a) data pre-processing and pathway gene sets intersection, 
(b) scDHA clustering and dimension reduction, (c) ensemble pseudotime inference, and 
(d) trajectory inference.

Fig. 4  Visualization and comparison on the Goolam [21] data set: a The landscape of Goolam data set using 
UMAP colored by ground truth development stages. b UMAP landscape colored by clustering results. c 
UMAP landscape colored by pseudotime. d The pseudotime of scTEP against ground truth development 
stages. e Slingshot. f TSCAN. g SCORPIUS. e PAGA. i Monocle3. j VIA
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Software package and setting

In scTEP, we utilized the following packages: (i) org.Hs.eg.db [36] version 3.10.0 from 
Bioconductor, (ii) org.Mm.eg.db [37] version 3.10.0 from Bioconductor, (iii) Seurat 
[38] version 3.2.0 from CRAN, (iv) scDHA [14] version 1.1.2 from CRAN, (v) igraph 
[39] version 1.2.11 from CRAN, (vi) psych [40] version 2.1.6 from CRAN, (vii) doPar-
allel [41] version 1.0.16 from CRAN. scDHA provides the dimension reduction and 
clustering functionalities, and igraph provides the functionality to construct the MST. 
Therefore, the scDHA and igraph packages have a greater influence on the results 
than the others.

Fig. 5  Visualization and comparison on the Yuzwa [24] data set: a The landscape of MouseCortex data set 
using UMAP colored by ground truth development stages. b UMAP landscape colored by clustering results. 
c UMAP landscape colored by pseudotime. d The pseudotime of scTEP against ground truth development 
stages. e Slingshot. f TSCAN. g SCORPIUS. h PAGA. i Monocle3. j VIA
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Data pre‑processing

Figure 6a shows the data pre-processing procedure. The input for scTEP is single-cell 
RNA sequence data which comes in as an m ∗ n matrix representing the expression 
of n genes on m cells. There are several techniques used to normalize the single-cell 
data sets, such as raw counts, counts per million mapped reads (CPM), reads per 
kilobase million (RPKM), and transcript per million (TPM). One drawback of these 
normalization techniques is that some genes could have a much larger scale than oth-
ers and become dominant when compared to other genes. To make the most of the 
gene expression profile, we first perform the log transformation (base 2) to rescale the 
raw expression count until the range of gene expression is smaller than 100. Another 
drawback of the gene expression matrix is that many genes collected don’t have a 
count read on any cell or only in a small portion of the cells. Since these columns are 
mostly 0, their contribution approaches 0 and wastes computation time. Therefore, 
those genes only expressed in very few cells should be removed from further analysis. 
We perform gene quality control by removing genes expressed in less than 20% of 
cells from the input.

Pathway gene sets intersection

Figure 6a also shows the pathway gene sets intersection. There are tens of thousands 
of genes collected in an expression matrix. In a biological process, hundreds of thou-
sands of genes work together corporately to direct the behavior of a cell instead of 
working alone. However, the relationships between genes during the development 
process are neglected in the previous methods. Those methods handle all genes indis-
criminately and independently in dimension reduction and clustering tasks, Instead 
of utilizing the dependencies of genes. We believe that only a part of the genes con-
tributes to the process of cell development. Therefore, we introduce the KEGG data-
base and utilize it with an intersection operation with gene sets in the KEGG database 

Fig. 6  The architecture of our proposed single-cell data Trajectory inference method using Ensemble 
Pseudotime inference (scTEP). It consists of four parts: a Data pre-processing and Pathway gene sets 
intersection, b scDHA [14] clustering and dimension reduction, c Ensemble pseudotime inference, and d 
Trajectory construction using MST algorithm on clusters and fine-tuned by Pseudotime
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to better learn the information about gene expression. The KEGG database collects 
and categorizes genes whose expression is related to each other. For instance, Homo 
sapiens (human) consists of 330 pathways, and the size of the individual pathway 
ranges from dozens of genes to fifteen thousand genes. We first select the corre-
sponding pathway gene sets of the data set from KEGG, then intersect the genes in 
the expression matrix with each pathway to have an intersect gene expression matrix 
for all pathways. However, we expect to have some pathways that only have several 
genes matched in the gene expression matrix of the data set. We remove those path-
ways from the following computation. Heuristically, we set 10 genes as a threshold for 
pathway removal. We then have a gene expression submatrix for each gene set in the 
pathway. However, the intersected gene expression submatrix between pathways is on 
a different scale ranging from dozens to thousands of genes. Therefore, some path-
ways with significantly large sizes will be dominant if we analyze the intersected gene 
expression submatrix. We instead generate a latent representation for the individual 
pathway from the gene expression submatrix.

To learn the latent from pathways, we used the factor analysis function from the psych 
package to conduct factor analysis on all pathways’ gene expression matrix from the 
intersection and generate pathway factors. The output factor of each pathway will only 
be two dimensions, the factor analysis step further reduces the dimension of the gene 
expression matrix and meanwhile keeps maintaining information. Then, we concatenate 
the factors from pathways into one whole matrix, in which the dimension will be two 
times the number of pathways left. Note that we scrutinized the distribution of factor 
analysis results and observed that most of the values are between −5 and 5 with very few 
outliers outside of this range. Therefore, we apply the outlier cutting technique to set all 
the outliers to −5 or 5 based on their value. By applying intersection and factor analysis 
to the gene expression matrix, we significantly reduce the dimensions of the gene expres-
sion matrix, for example, from a total gene count of more than 20,000 to a few hundred. 
Therefore, the amount of computation of the following pipeline is reduced significantly.

Given that the pathway gene sets intersection is one of the main components and 
contributions of scTEP, we experimented to validate its effectiveness. We tested scTEP 
without pathway gene sets intersection procedure (scTEP-pw) and evaluated its per-
formance. Figure 7 shows the results of scTEP without pathway gene sets intersection 
procedure compared with other methods using gold standard datasets. Figure 7a and b 
show that scTEP-pw’s performance drops significantly in terms of HIM and F1 branches, 
respectively. On the other hand, scTEP-pw’s performance dropped less in terms of F1 
milestones and correlation from the original scTEP, as shown in Fig.  7c and d. Over-
all, by removing the pathway gene sets intersection procedure, scTEP’s average value 
dropped 0.20, 0.19, 0.06, and 0.03 in terms of HIM, F1 branches, F1 milestones, and cor-
relation, respectively. Those results demonstrated that the pathway gene sets intersec-
tion procedure is essential to scTEP. It is worth mentioning that HIM, F1 branches, and 
F1 milestones are metrics affected by the topology of the trajectory. Those are affected 
more significantly than the correlation of pseudotime.

Figure 8a shows the results of scTEP-pw compared with other methods using our col-
lection datasets. The performance drop in terms of correlation is 0.01. Figure 8b shows 
the results of scTEP-pw compared with other methods using our collection datasets that 
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are larger than 50,000 cells. scTEP-pw’s average correlation dropped from the original 
scTEP with only 0.0007. We speculate that the difference in performance is because 
the pathway gene sets intersection procedure is mainly influential for the generation of 

Fig. 7  Box plots for HIM, F1 branches, F1 milestones, and correlation values for 26 gold standard datasets. 
The diamond shape in the box indicates the mean value of a method. The mean values of scTEP and scTEP 
without pathway gene sets intersection procedure (scTEP-pw) are also shown as a red and blue dashed 
horizontal line for comparison, respectively. The scTEP’s performance is degraded by removing the pathway 
gene sets intersection procedure

Fig. 8  Box plots for correlation values for 15 real world datasets. The diamond shape in the box indicates 
the mean value of a method. The mean values of scTEP and scTEP without pathway gene sets intersection 
procedure (scTEP-pw) are also shown as a red and blue dashed horizontal line for comparison, respectively. 
The scTEP without pathway gene sets intersection procedure only degraded a trivial amount regarding the 
correlation. a The correlation values of all data sets. b The correlation values of data sets that are larger than 
50,000 cells
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low-dimensional spaces. The calculation of correlation results shown in Fig. 8 used the 
pseudotime inferred from ensemble clustering results. It is more robust to variations 
in low-dimensional space. On the other hand, the dynverse package calculates all four 
HIM, F1 branches, F1 milestones, and correlation using the graph constructed in the 
low-dimensional space. Hence, those results are more vulnerable to the latent represen-
tation generated without the pathway gene sets intersection procedure.

scDHA clustering and dimension reduction

Figure 6b shows the scDHA clustering and dimension reduction procedure. An Autoen-
coder is a type of neural network which aims to infer the output which contains the 
essential information from the input. Tran et  al. proposed an encoder-decoder archi-
tecture generative deep neural network named scDHA [14]. scDHA consists of two 
core modules. The non-negative kernel autoencoder is the first module used to filter 
out insignificant genes or components and generate intermediate states. The stacked 
bayesian autoencoder based on a variational autoencoder(VAE) [42] is utilized as the 
decoder to project the high-dimensional intermediate states into low-dimension space, 
also known as latent. scDHA has demonstrated superior performance in single-cell data 
analysis, such as dimension reduction and clustering.

Considering that both dimension reduction and clustering are two fundamental steps 
in the trajectory inference pipeline, we choose to integrate scDHA into our proposed 
pipeline to conduct dimension reduction and clustering from learned factors of path-
ways. To demonstrate the importance of dimension reduction and clustering proce-
dures, we tested replacing scDHA with three other dimension reduction algorithms 
(PCA, TSNE [43], and UMAP [35]) and four other clustering algorithms (K-means, Lou-
vain [8], Leiden [44], and scCAN [45]) in scTEP. However, replacing scDHA with either 
of those algorithms will degrade the performance of scTEP.

In the proposed framework, we utilized scDHA to achieve two goals. The first goal is 
to apply scDHA six times with the parameter k (cluster number) set from 5 to 10 that 
runs clustering all the cells into k clusters, as shown in Fig. 6c. Then scTEP utilizes these 
six clustering results to produce a robust ensemble pseudotime for cells. The second 
goal is to generate the latent and clustering result with the automatically detected cluster 
number from intersected factors, as shown in Fig. 6b. The scTEP then utilized scDHA’s 
latent and cell clustering to learn a graph as the trajectory produced by scTEP.

Ensemble pseudotime inference

Figure 6c shows the ensemble pseudotime inference procedure. The pseudotime infer-
ence task is crucial to trajectory inference. Most of the methods inferred the trajectory 
first and then use it to infer the pseudotime. For instance, the slingshot method con-
structs an MST and utilizes simultaneous principal curves to generate the smooth rep-
resentation of the lineages of MST, then conducts orthogonal projection of cells onto the 
principal curves. Finally, the slingshot calculates the arc length from the start point to 
all the projected points on the principal curve of cells as the pseudotime. However, the 
pseudotime is very susceptible to errors in generating MST. Monocle3 follows a simi-
lar workflow learning a principal graph in the low-dimensional space and calculating 
by geodesic distance. In practice, it is hard to prevent the construction of an inaccurate 
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MST because both dimension reduction and clustering are challenging unsupervised 
learning tasks. To address this issue and produce a more robust pseudotime, we infer 
the pseudotime of the cells first. Therefore, we can use this pseudotime as a weak label to 
contribute to the modification process of the inferred trajectory.

One basic assumption for the trajectory inference task is that the cells closer to each 
other on the trajectory have a similar gene expression profile. This assumption is valid 
for the low-dimensional space generated by a dimension reduction algorithm. There-
fore, those cells belonging to the same development stage have similar latent in the low-
dimension space. To verify this assumption, we conducted experiments on pseudotime 
inference using the true cell types instead of clustering results. We chose the euclidean 
distance as the metric of similarity between cells. First, we selected the start group of 
cells as the start point and calculate the euclidean distance between the center points 
of the start group and other groups of cells as its pseudotime. Although the idea and 
computation were simple, we found that the pseudotime of the cells can be inferred very 
accurately with the true label.

When applying pseudotime inference by euclidean distance without the true cell type, 
the accuracy drops significantly because of two aspects. The first is that when replacing 
the true cell type with clustering results, some cells are grouped into the wrong cluster 
because of the limited capacity of the clustering method. Secondly, it is a challenging 
task for the clustering method to infer the correct number of cell types, and an incorrect 
cluster number will result in poor clustering accuracy and cause the constructed graph 
to be inaccurate in the following step. Hence, the pseudotime inference accuracy was 
degraded.

To address these issues, we proposed a robust pseudotime inference algorithm uti-
lizing multiple scDHA clustering results at different resolutions from coarse-scale (5 
clusters) to fine-scale (10 clusters). Algorithm  1 illustrates the pseudotime inference 
algorithm. It requires the clustering result of the data set obtained by scDHA as input. 
In addition, one or multiple cells at the start point are required input as the prior infor-
mation to identify the starting cluster. The pseudotime inference algorithm starts with 
the scDHA clustering result set k as 5, the Algorithm 1 first determines that a cluster is 
the starting cluster based on prior knowledge of the starting cells given by the user, and 
the mode cluster of the given starting cells is defined as the starting cluster. Algorithm 1 
assigns the pseudotime of cells in the starting cluster to 0. In the second step, traverse 
through the clusters in the clustering result except for the starting cluster, calculate the 
euclidean distance from the starting cluster center point and assign the pseudotime of 
cells in the corresponding clusters. Repeat the above two steps for k from 5 to 10, Algo-
rithm 1 obtains six pseudotime values for all cells. The last step is to sum the six pseudo-
time results element-wisely and divide it by six to generate the final pseudotime.

To verify the effect of the choice of the range of k on scTEP’s performance, we tested 
scTEP with multiple maximum k value setting from 11 to 20. The clustering result 
obtained from a larger maximum k value setting discriminated cells at a more fine 
scale. Hence, there are more differences between the pseudotime of the cells generated 
by Algorithm 1. In general, a larger maximum k value is beneficial, but insignificant, to 
pseudotime inference accuracy at the cost of running the clustering method a few more 
times. In the trade-off between accuracy and time efficiency, we set the default range of 
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k value from 5 to 10. Users can set the minimum and maximum k values based on their 
needs.

Trajectory inference

Figure  6d shows the trajectory inference procedure. The last part of the pipeline is to 
utilize the latent obtained by scDHA to infer the trajectory of the cells. We choose the 
igraph [39] package to determine the MST from the scDHA latent. The first step is to 
calculate the center of the clusters, which will be the vertices in the MST representing 
the center of the cells belonging to that cluster. We calculate a distance matrix of the 
center of clusters using the euclidean distance. Then we use the distance matrix as the 
adjacency matrix to build an undirected fully connected graph. Note that the euclidean 
distance between two vertices is the weight of the edge connecting those vertices on the 
graph and the average pseudotime is the attribute of vertices. Next, we construct the 
MST from the undirected fully connected graph using the igraph package. Lastly, we 
select the mode cluster index in the prior start cells given by the user as the start vertex. 
Therefore, we obtain a directed tree with the start vertex as the root vertex.

Slingshot and other methods have demonstrated that the MST algorithm has the 
state-of-the-art capacity to construct a graph for the trajectory inference task. Although 
these methods calculate the pseudotime differently, one common property is that they 
no longer modify the MST’s structure. However, we observed that the MST algorithm 
has poor robustness for the trajectory inference task. One drawback of the MST algo-
rithm is that it is committed to constructing an undirected graph. Therefore, the MST 
algorithm can generate a tree with the minimum sum of edge weights while having a 
reversed order of vertices compared to the ground truth development stages. Another 
drawback is that the MST algorithm depends entirely on the weights between edges and 
neglects the information on the vertex’s attributes. While the vertex’s attributes are the 
profile of the cluster of cells, they are very beneficial to the trajectory inference task. 
When we compared the MST with ground truth, we observed that the order of vertices 
in the MST does not match the development stages of cells on some data sets. We con-
clude that the previously mentioned drawbacks are related to this issue. To solve these 
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problems, we proposed a method to fine-tune the MST based on the induced pseudo-
time from the previous part in the pipeline.

The Pseudotime MST fine-tune algorithm presented in Algorithm 2 requires 3 inputs: 
(i) a directed MST, (ii) the pseudotime for vertices of the MST, and (iii) the root ver-
tex. The algorithm starts with the root vertex vstart , finds all the descendent vertices and 
neighbors of vstart , represented as Vdescendents and Vneighbors respectively. It then finds the 
descendants that connect to vstart directly by intersecting Vdescendents and Vneighbors , rep-
resented as Vdescendents_direct . The essential idea of the pseudotime MST fine-tune algo-
rithm is to modify the MST to make its order of vertices consistent with the pseudotime 
inferred from the previous part. To achieve this, we find the vertex vmin with minimum 
pseudotime from the descendent vertices Vdescendents . By comparing the pseudotime 
of the root vertex vstart with vmin , we analyzed if the order of the root vertex with its 
descendants is correct. If the pseudotime of root vertex vstart is greater than vmin , we 
swap the position of vstart and vmin , the weight of the edges that connect vstart and vmin 
with their neighbor vertices are recalculated. We then traverse the subtrees starting with 
vertices in Vdescendents_direct and conduct the pseudotime MST fine-tune algorithm on the 
subtrees. After the pseudotime MST fine-tuning algorithm is finished we have a sorted 
MST Gs in which the lineages are consistent with the pseudotime. 

Conclusions
This paper presented a novel approach toward trajectory inference and pseudotime 
inference using single-cell RNA sequencing data. We call this approach scTEP. scTEP 
utilizes the ensemble clustering results to infer robust pseudotime. Utilizing pseudo-
time, scTEP further fine-tunes the MST to enhance its accuracy and robustness. In addi-
tion, scTEP adopts the modularity design idea and consists of several major components 
in terms of clustering, dimension reduction, pseudotime inference, and trajectory infer-
ence. Therefore, it is convenient to incorporate other state-of-the-art methods for the 
individual components. Experimental results demonstrate the effectiveness of scTEP.
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