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Abstract—Recent advancements in single-cell RNA sequencing
(scRNA-seq) technologies have allowed us to monitor the gene
expression of individual cells. This level of detail in monitoring
and characterization enables the research of cells in rapidly
changing and heterogeneous environments such as early stage
embryo or tumor tissue. However, the current scRNA-seq tech-
nologies are still facing many outstanding challenges. Due to the
low amount of starting material, a large portion of expression
values in scRNA-seq data is missing and reported as zeros. More-
over, scRNA-seq platforms are trending toward prioritizing high
throughput over sequencing depth, which makes the problem
become more serious in large datasets. These missing values
can greatly affect the accuracy of downstream analyses. Here
we introduce scINN, a neural network-based approach, that can
reliably recover the missing values in single-cell data and thus can
effectively improve the performance of downstream analyses. To
impute the dropouts in single-cell data, we build a neural network
that consists of two sub-networks: imputation sub-network and
quality assessment sub-network. We compare scINN with state-
of-the-art imputation methods using 10 scRNA-seq datasets with
a total of more than 100,000 cells. In an extensive analysis,
we demonstrate that scINN outperforms existing imputation
methods in improving the identification of cell sub-populations
and the quality of transcriptome landscape visualization.

Index Terms—single cell, scRNA-seq, imputation, neural net-
work, gene expression, dimension reduction, clustering, visual-
ization

I. INTRODUCTION

The ability to monitor and characterize biological sam-
ples at single-cell resolution has opened up many novel
research fields, such as studying cells in early embryonic
stage or decomposition heterogeneous environment of cancer
tumors [1, 2]. These promising applications have led to the
generation of a massive amount of single-cell data, where each
dataset consists of hundreds of thousands of cells [3, 4].

Current single-cell RNA sequencing (scRNA-seq) technolo-
gies still need to overcome significant challenges to ensure the
accurate measurement of gene expression [5, 6]. One notable
challenge of scRNA-seq is the dropout events, which happen

when a gene that generally has high expression values but
does not express in some cells [7]. The source of these errors
can be attributed to the limitation of sequencing technologies.
Due to the low amount of starting mRNA collected from
individual cells, failed amplification can happen and causes
the expression values to be inaccurately reported [8–10]. This
leads to an excessive amount of zeros in the expression values
of scRNA-seq data. On the other hand, the zero expression
values can also be due to biological variability. Since most
downstream analyses of scRNA-seq are performed on gene
expression data, it is essential to have a precise expression
measurement. Therefore, imputing scRNA-seq data to recover
the information loss caused by dropout events would greatly
improve the quality of downstream analyses.

Thus far, numerous methods have been developed to in-
fer the missing values caused by dropout events [11–18].
Those methods can be classified into two categories: (i)
statistical-based methods, and (ii) diffusion smooth-based
methods. Methods in the first category include bayNorm [11],
SAVER [12], scImpute [13], scRecover [19], and RIA [15].
These methods typically model the data as a mixture of
distributions. For example, scImpute models the gene expres-
sion as a mixture of two different distributions: the Gaussian
distribution represents the actual gene expression while the
Gamma distribution accounts for the dropout events. Similarly,
SAVER [12] models read counts as a mixture of Poisson-
Gamma and then uses a Bayesian approach to estimate true
expression values of genes by borrowing information across
genes. More recent methods, RIA [15] and scIRN [18], assume
that highly expressed genes follow a normal distribution and
apply hypothesis testing method to identify true dropouts.
Next, they impute missing values by using a linear regression
model. All of these methods assume the gene expression data
follows a specific distribution, which does not always hold true
in reality. In addition, exiting methods involve the estimation
of many parameters for genes across the whole genome. This
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Fig. 1. The workflow of single-cell Imputation using Residual Network (scINN). The first module (similarity module, upper part) generates an accurate
clustering result of the data, and calculates the similarity between all pairs of samples. The input data is first filtered using a one-layer, non-negative kernel
autoencoder to remove genes that have insignificant contribution to the global structure of the data. Next, the data is projected onto a low-dimensional space to
obtain a compressed data matrix (latent data). Using this latent data, we cluster the samples into groups and compute the similarity matrix for all samples. In
the second module (imputation module, lower part), zero values in input matrix are imputed using a neural network-based imputation model. These imputed
values are added to original data without modifying the non-zeros values to produce the imputed data. The parameters of the neural network are repeatedly
adjusted so that the clustering assignments and similarity matrix inferred from the imputed data is as similar to the output of the first module as possible.

can potentially lead to overfitting and high time complexity.
Methods in the second category include DrImpute [14],

MAGIC [16], and kNN-smoothing [17]. MAGIC imputes zero
expression values using a heat diffusion algorithm [20]. It
constructs the affinity matrix between cells using a Gaussian
kernel and then constructs a Markov transition matrix by
normalizing the sc-RNA similarity matrix. Next, MAGIC
estimates the weights of other cells using the transition matrix.
Another method is DrImpute [14] that is based on the cluster
ensemble and consensus clustering. It performs clustering for a
predefined number of times and imputes the data by averaging
expression values of similar cells. If the number of clusters
is not provided by users, DrImpute uses some default values
that might not be optimal for the data. kNN-smoothing is
designed to reduce noise by aggregating information from
similar cells (neighbors). The method assumes that the zero
counts of scRNA-seq data follows a Poisson distribution. For
cells that contain zero counts, kNN-smoothing performs a
smoothing step using each cell’s k nearest neighbors either
through the application of diffusion models or weighted sums.
The major drawback of these methods is that they rely on
many parameters to fine-tune their model, which often leads
to over-smoothing the data.

Here we propose a new approach, single-cell Imputation
using Neural Network (scINN), that can reliably impute miss-
ing values from single-cell data. The method consists of two
steps. The first step is to generate an accurate clustering result
of the original data, and calculate the similarity between all
pairs of samples. The second step is to estimate the missing
values using a neural network and the similarity information
generated in the first module. The approach is evaluated using
10 single-cell datasets in comparison with four other methods.
We demonstrate that scINN outperforms existing imputation

methods (DrImpute [14], MAGIC [16], scImpute [13], and
SAVER [12]) in improving the identification of cell sub-
populations and the quality of biological landscape.

II. METHODS

The input of scINN is an expression matrix, in which rows
represent cells and columns represent genes or transcripts. The
overall workflow of scINN is described in Figure 1, which
consists of two modules: (i) generating an accurate clustering
results of the original data, and calculating the similarity
between all samples, and (ii) imputing the dropout values.
The purpose of the first module is to learn the similarity
information between each pair of samples. The output of the
first module is the clustering assignments for samples in the
dataset, and a similarity matrix with Pearson correlations for
all pairs of samples. These information are used as the target
for the second module. In the second module, we impute
the original data using a neural network. The parameters
of the neural network are repeatedly adjusted so that the
clustering assignments and similarity matrix inferred from the
imputed data is as similar to the outputs of the first module as
possible. The details of each step are described in the following
subsections.

A. Generating similarity information

To generate a compressed, low-dimensional representation
of original data, we apply our previously developed method,
called scDHA [21]. scDHA consists of two core modules.
The first module is a non-negative kernel autoencoder that
can filter out genes or components that have insignificant
contributions to the representation. The second module is a
Stacked Bayesian Self-learning Network that is built upon the
Variational Autoencoder [22] to project the filtered data onto
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TABLE I
DESCRIPTION OF THE 10 SINGLE-CELL DATASETS USED TO ASSESS THE PERFORMANCE OF IMPUTATION METHODS.

Dataset Accession Tissue Sequencing Drop. Class Size
ID Protocol Rate

1. Yan GSE36552 Human Embryo Tang 0.456 6 90
2. Goolam E-MTAB-3321 Mouse Embryo Smart-Seq2 0.685 5 124
3. Deng GSE45719 Mouse Embryo Smart-Seq 0.605 6 268
4. Camp GSE75140 Human Brain SMARTer 0.801 7 734
5. Klein GSE65525 Mouse Embryo inDrop 0.658 4 2,717
6. Romanov GSE74672 Human Brain SMARTer 0.878 7 2,881
7. Baron GSE84133 Human Pancreas inDrop 0.906 14 8,569
8. Tasic GSE115746 Mouse Visual Cortex SMART-Seq 0.798 6 23,178
9. Zilionis GSE127465 Human Lung inDrop 0.982 9 34,558
10. Hrvatin GSE102827 Mouse Visual Cortex inDrop 0.942 8 48,266

a much lower-dimensional space. The output of scDHA is
a low-dimensional matrix that preserves the global structure
of the original data. Using this representation, scDHA can
cluster the samples into groups with high accuracy. We also
generate the similarity matrix for all samples in the dataset.
The similarity between two samples is measured by Pearson
correlation. We use the similarity information between samples
in the dataset to optimize our imputation module so the same
information can be inferred from imputed data using a network
with simpler structure.

B. Imputing dropout data using neural network

To impute the dropouts in single-cell data, we build a neural
network that consists of two sub-networks. The first network
aims to infer the true value of zeros in the data. The output is
a matrix with the same size as the input, in which the values
at zero positions are modified. The non-zero values remain
the same as of the original data. The second network aims to
infer the clusters of input cells and the Pearson correlations
between them. By minimizing the difference between the
inferred results and the results from the first module, the
imputed values are ensured to have high accuracy.

The formulation of the neural network can be written as:

XI = fI(X)
C + S = fP (XI)

where X ∈ Rn
+ is the input of the model (X is simply

the original data), fI and fP represent the transformation
by the two sub-networks, fI imputes the zero values in the
data, fP predicts the clusters of the input cells and the
correlations between them, C is the clustering results, and S
is the similarity matrix between all input cells. The network
is optimized by minimizing: (i) the binary cross entropy loss
between the inferred clusters and the clustering result from the
first module, and (ii) the mean square error loss between the
inferred similarity matrix and the similarity matrix calculated
using the representations from the first module.

III. RESULTS

We compare our method with four state-of-the-art im-
putation methods: DrImpute [14], MAGIC [16], scImpute
[13], and SAVER [12]. Each of these methods represents

a distinct strategy to single-cell data imputation: DrImpute
integrates clustering result from other software, MAGIC is
a Markov-based technique, while scImpute and SAVER use
statistical models. Table I shows the 10 datasets used in
our data analysis. These scRNA-seq datasets are available
on NCBI [23], and ArrayExpress [24]. The processed data
of the first 7 datasets are downloaded from Hemberg lab’s
website (https://hemberg-lab.github.io/scRNA.seq.datasets). In
each dataset, the cell sub-populations are known. We used this
information a posteriori to assess how the imputation methods
improve the identification of cell populations, and how they
enhance the visualization of transcriptome landscapes.

For each dataset, we used the above methods to impute the
data. The quality of the imputed data is assessed using two
downstream analyses: clustering and visualization. For cluster-
ing, we partitioned the data using k-means and compared the
obtained partitioning against the true cell types using Adjusted
Rand index (ARI) [25]. For visualization, we used UMAP
[26] to generate the 2D representation and then calculated the
silhouette index (SI) [27] of the 2D representation. SI measures
the cohesion among cells of the same type, as well as the
separation between different cell types.

A. scINN improves the identification of sub-populations

Given a dataset, we used the five methods to impute the
data. After imputation, we have 6 matrices: the raw data and
five imputed matrices (from DrImpute, MAGIC, scImpute,
SAVER, and scINN). To assess how separable the cell types
in each matrix is, we reduced the number of dimensions using
PCA and then clustered the data using k-means where k is the
true number of cell types. The accuracy of cluster assignments
is measured by ARI.

Figure 2 shows the ARI values for the raw and imputed data.
Existing methods improve cluster analysis in some datasets but
decreases the ARI values in some others. For example, SAVER
has higher ARIs than the raw data for the Goolam, Camp,
Klein, Romanov, Baron, and Zilionis but has lower ARIs in
the remaining 4 datasets. scINN is the only method able to
improve the clustering performance compared to raw data in
every dataset. Moreover, scINN has the highest ARIs in all but
Zilionis datasets. The average ARI of scINN-imputed data is
0.72, which is higher than those obtained from raw data and
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Fig. 2. Adjusted Rand index (ARI) obtained from clustering on raw data and data imputed by DrImpute, MAGIC, scImpute, SAVER, and scINN. The x-axis
shows the names of the datasets while the y-axis shows ARI value of each method. scINN outperforms other methods in all datasets except Zilionis.

Fig. 3. Normalized mutual information (NMI) obtained from clustering on raw data and data imputed by DrImpute, MAGIC, scImpute, SAVER, and scINN.
The y-axis shows NMI value of each method. scINN outperforms other methods in all datasets except Zilionis.

Fig. 4. Jaccard index (JI) obtained from clustering on raw data and data imputed by DrImpute, MAGIC, scImpute, SAVER, and scINN. The y-axis shows
JI value of each method. scINN outperforms other methods in all datasets except Zilionis.

data imputed by DrImpute, MAGIC, scImpute, SAVER (0.52,
0.58, 0.48, 0.36, 0.53, respectively).

For a more comprehensive analysis, we also report the
assessment using normalized mutual information (NMI) and
Jaccard index (JI) [28] in Figures 3 and 4, respectively.
Regardless of the assessment metrics, scINN outperforms
other methods by having the highest NMI (9/10 datasets) and
JI (9/10 datasets) values. These results demonstrate that cluster

analysis using scINN-imputed data leads to a better accuracy
than using the raw data or data imputed by other imputation
methods.

B. scINN improves transcriptome landscape visualization

In this subsection, we demonstrate that scINN improves
the visualization of the single-cell data. We used UMAP [26]
to generate the transcriptome landscapes from raw and data
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Fig. 5. Visualization quality using raw and imputed data, measured by silhouette index (SI). The y-axis shows SI value of each method.

Fig. 6. Transcriptome landscape of the Klein dataset. The scatter plot shows the first two principal components calculated by UMAP. Different colors represent
different cell types. The 2D representation generated by scINN has a clear structure, where cells from different groups are separated from one other.

imputed by DrImpute, MAGIC, scImpute, SAVER, and scINN.
We performed data visualization and calculated the silhouette
index for each of the 10 datasets. Figure 5 shows the SI
values obtained for the raw data and data imputed by the
five imputation methods. The figure shows that scINN can
improve the quality of data visualization in most of the datasets
(8/10 datasets). These results demonstrate that data imputation
using scINN would lead to a much better visualization of
transcriptome landscapes compared to using raw data or data
imputed by other methods.

Figure 6 shows the transcriptome landscapes of the Klein
dataset. The 2D representation of scINN-imputed data is the
only one that has four separable groups, corresponding to the
four real cell types. The landscapes generated using raw and
data imputed by other methods have different cell types mixed
together. The data imputed by scINN has the highest SI value
(0.77 compared to 0.68 of the second best).

IV. CONCLUSION

In this article, we introduced a new method, scINN, to
recover the missing data caused by dropout events in scRNA-
seq data. We compared scINN with four state-of-the-art im-
putation methods using 10 scRNA-seq datasets. scINN out-
performed existing approaches in improving the identification
of cell sub-populations. scINN also improved the quality of
transcriptome landscapes generated by UMAP. A potential
improvement of this research is to investigate the scalability
of scINN by analyzing datasets with higher number of cells.
Another direction is to investigate the imputation method in
other research applications, including pseudo-time trajectory
inference and supervised learning. For future work and broader
applications, we will apply scINN in conjunction with other
analysis methods in the context of pathway analysis [29–36],
meta-analysis [37–39], and multi-omics integration [40–43].
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