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Identifying representative sequences for groups of functionally similar proteins and enzymes poses
significant computational challenges. In this study, we applied submodular optimization, a method
effective in data summarization, to select representative sequences for thioesterase enzyme families.
We introduced and validated two algorithms, Greedy and Bidirectional Greedy, using curated protein
sequence data from the ThYme (Thioester-active enzYmes) database. Both algorithms generated
sequence subsets that preserved completeness (inclusion of all known family sequences) and specificity
(accurate family representation). The Greedy algorithm outperformed the Bidirectional Greedy
algorithm and other methods, particularly in reducing redundancy. Our study offers an efficient
approach for identifying representative protein sequences within families that have significant
sequence similarity, likely to deliver results close to theoretical optima in polynomial time, with the
potential to improve the selection and optimization of representative sequences in protein databases.
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Organizing proteins into families based on shared structure, function and catalytic mechanism, is a fundamental
aspect of comparative and evolutionary genomics'. This classification, primarily derived from amino acid
sequences, enables researchers to predict tertiary structures, identify catalytic residues, and elucidate enzymatic
mechanisms for particular sequences within entire protein families?®. Additionally, classifying enzyme
sequences in protein families enables the inference of structure and function for uncharacterized sequences in
organisms of interest by leveraging knowledge from well-studied proteins within the same family*°. A critical
step in managing and analyzing protein and enzyme families is the identification of representative sequences. This
process involves reducing a large set of protein sequences into a small subset that effectively captures the diversity
and essential characteristics of all sequences in the entire family. The selection of representative sequences aims
to strike a balance between maintaining completeness (ensuring all significant variations within the family are
represented) and curtailing redundancy (minimizing overrepresentation of highly similar sequences). Such
sequence subsets are crucial for various applications in biological and biomedical research, such as aiding in
modeling protein structures in structural biology, which is essential for understanding protein function and
interactions, and facilitating drug design®; enabling the identification and quantification of proteins in complex
samples using mass spectrometry”S; or being used in enzyme engineering and synthetic biology to develop novel
biological systems and enhance industrial applications’.

Representative sequences are particularly relevant in the context of specialized enzyme databases. Our group
recently updated and renewed the ThYme (Thioester-active enzYmes) database, an open-access resource that
categorizes thioesterase (TE) enzymes into 35 distinct families*. ThYme also includes sequences, classified into
families, of other enzymes involved in the fatty acid synthesis cycle, and/or active with substrates that include
thioesters such as acyl transferases®. We constructed each enzyme family in ThYme around a set of representative
sequences, which we use as the foundation for populating the families. However, selecting the most appropriate
representative sequences for each specific family presents a substantial challenge. For a dataset containing
n sequences, one must theoretically evaluate all 2" possible subsets to find the optimal representation. This
becomes computationally infeasible as # increases. Many existing approaches introduce a specific threshold (e.g.
% identity or similarity) to define sequence representation'?-'”. These approaches typically rely on heuristic
algorithms to find the smallest subset of the ground set that represents all sequences. However, these methods
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have significant limitations: they often disregard all similarities below the predefined threshold, potentially
overlooking important relationships, and there is no theoretical guarantee that these heuristic algorithms
produce a subset close to the optimal representative set of sequences.

Researchers have proposed a framework using submodular optimization to address these challenges, an
approach that has shown remarkable success in data summarization'®!. In a recent study, Libbrecht et al.?
demonstrated that this framework can yield a concise yet comprehensive representation of data, offering particular
benefits in handling the redundancy common in sequence datasets. However, the scientific community has not
adopted this approach for selecting representative sequences. Several factors contribute to this limited adoption:
(i) the NP-hard complexity of subset selection; (ii) the non-trivial task of defining submodular functions for
sequencing data and developing algorithms to use these functions; and iii) the lack of straightforward methods
to test algorithm efficiency or validate the completeness and non-redundancy of results.

In this article, we present a ranking-based submodular optimization framework to select representative
sequences for protein families in the ThYme database where sequences within each family share high sequence
similarity, and sequences in different families have low similarity. We aim to demonstrate how submodular
optimization can facilitate the creation of sequence subsets that maintain the integrity of protein and enzyme
families. Our approach ensures the inclusion of all known sequences within an enzyme family (completeness)
while correctly identifying sequences in their appropriate families (specificity). We explore how this optimization
framework excels in distributing known sequences across different enzyme families, providing a more accurate
and informative data representation. We apply our framework to enhance the selection process for representative
sequences of thioesterase families in the ThYme database, which currently relies on an ad hoc procedure with
expert curation. By implementing this methodology, we seek to improve the accuracy, efficiency, and robustness
of representative sequence selection. We also applied the submodular algorithms to two protein families in the
MEROPS (peptidases) and ESTHER (esterases) databases.

Methods

Representative protein sequences selection

The selection of representative sequences is critical in protein sequence analysis, with significant implications
for molecular biology and bioinformatics. Researchers choose representative sequences for each protein family,
defining them as a subset of sequences within that family. These carefully selected sequences serve multiple
crucial functions: populating protein families in databases?, classifying newly discovered protein sequences?!,
categorizing 3D protein structures?!, and guiding target selection in structural genomics initiatives??. The
objective of selecting representative sequences is to identify the smallest subset that fulfills a predefined criterion,
typically described as “maximum coverage with minimum redundancy” from a finite set of protein sequences,
referred to as the “ground set”. Maximum coverage ensures that each sequence in the family is represented by at
least one sequence in the representative set, while minimum redundancy guarantees that no two proteins in the
representative set exceed a predefined sequence identity threshold.

The primary challenge in selecting a representative set from a large dataset lies in its combinatorial
complexity. Even for a relatively small set of 100 sequences, evaluating all 2'°° ~ 103° possible combinations
to find the optimal subset is computationally infeasible. Hobohm et al.” developed one of the earliest systematic
approaches to construct a representative set of non-redundant protein sequences. This algorithm calculates
similarity between sequences, using an alignment score or similar metrics, and sets a specific threshold (e.g. %
similarity) to determine if two proteins are neighbors. Given a list of candidate proteins and a list of neighbors
for each of the proteins, the algorithm removes one protein at a time until those remaining in the list have
no neighbor. Subsequent algorithms, including CD-HIT??, PISCES?!, MMSEQS?® and UCLUST?®, have further
developed this concept, typically sorting protein sequences by length and sequentially adding sequences to the
representative set if no existing member exceeds a specified similarity threshold. However, these approaches
have several limitations: (i) reliance on greedy strategies often leads to suboptimal solutions, (ii) ignoring all
similarities below the specified cutoff may overlook important relationships, and iii) lack of control over the
size of the representative set as it is possible to include all sequences or only one depending on the predefined
threshold.

In this study, we apply classical submodular optimization to the challenge of selecting representative protein
sequences. This approach has demonstrated remarkable success in diverse fields, including the selection of
representative subsets in text document analysis'®!*?’, speech recognition?®-3°, machine translation’!, and
image analysis®2. However, its application in sequence analysis remains limited. A recent study by Libbrecht et
al.2% applied this approach to choose non-redundant representative subsets of protein sequences, demonstrating
that submodular optimization achieves the best possible results in polynomial time. In the following sections,
we provide a detailed description of how submodular optimization can be effectively utilized for selecting
representative protein sequences, exploring its potential to overcome the limitations of previous methods and
enhance the accuracy and efficiency of protein sequence analysis.

Mathematical description of submodular optimization
Mathematical notations
Capital letters denote sets and lowercase letters to denote items in the sets (i.e., sequences).

o {a, b, c} denotes a set with items a, b and c.

o (s the empty set.

e AU B is the union of A and B.

o A\ Bis the set of all items in A but not in B.
e a € A means aisan element of A.
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« A C B means A is a subset of B.

Submodular function
Figure 1 illustrates the application of submodular optimization in identifying a set of representative protein
sequences. Let S = {s1,52,...,5,} denote a finite set of protein sequences, and f : 2% — R represent a

function over subsets of S. The function f evaluates a set of elements and outputs a real value quantifying the
quality of that set. We assume that fis monotonically increasing. For any subset X C S, we define the marginal
improvement of adding an element s € S\ X to set X as f(X U {s}) — f(X). The function f is considered
submodular and normalized if and only if it satisfies the following three conditions:

f@ =0 (1)
F(XU{s}) — f(X)>0,Vse S\ X, X C S @)
FXU{s}) = f(X)> f(YU{s}) = f(Y),VX CY CS,s¢Y 3)

Equation (1) establishes that the function has a value of zero for an empty set. Equation (2) ensures the function is
monotonically non-decreasing, meaning that adding a new sequence to the representative set can only maintain
or increase its value. Equation (3) describes a crucial property of submodular functions: as we select more points
from the ground set, the incremental gain decreases. In the context of selecting representative sequences, this
property reflects that the benefit of adding a given protein sequence diminishes when the representative set
already contains similar sequences. Our objective is to identify a subset R C S that maximizes the value of f,
thereby obtaining an optimal set of representative sequences that efficiently captures the diversity within the
protein family.

Submodular functions form a broad class of functions with applications across various domains.
Notable examples include the weighted coverage function®, rank function of a matroid*, entropy*®, mutual
information®, and cut capacity’’. In this study, we employ a classical submodular function known as the facility
location function®® to select representative sequences for protein families. Facility location functions are versatile
submodular functions that, when maximized, select examples that effectively represent the data space. These
functions optimize the pairwise similarities between points in the dataset and their nearest neighbors, ensuring
that the chosen subset accurately reflects the overall data distribution. The general form of the facility location
function is:

1
JR) = g ng $(s,m) @)

where f denotes the facility location function, S is the ground set of all protein sequences, R C S is the selected
subset of representative sequences, s and r are individual sequences in the ground set, and ¢(s, ) represents the
similarity measure between sequences.

This function satisfies all properties defined in Egs. (1)-(3): (1) normalization: f(R) = 0 when R = 0; (2)
monotonicity: f is monotonically non-decreasing; and (3) submodularity: adding sequences similar to those
already in R yields diminishing returns in the value of the function. In our context, maximizing this facility
location function will select a subset of sequences that represents the entire protein family. These chosen
sequences serve as query sequences for retrieving related proteins from the database, efficiently capturing the
diversity within the family while minimizing redundancy.

Similarity function
The similarity function must be non-negative, with higher values indicating greater similarity between sequences.
In this study, we define the similarity between a pair of sequences, ¢(s, '), as the fraction of matching residues.

Representative set search —
Collection of n! solutions (NP complexity)

Representative
sequences

: ®
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Fig. 1. Selecting representative sequences using submodular optimization. The objective is to identify a subset
of sequences that effectively represent the diversity within a given protein family. While an exhaustive search

would require evaluating 2™ possible subsets (where # is the number of sequences), rendering the problem NP-
hard, submodular optimization offers an efficient approach to find a near-optimal solution in polynomial time.
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This metric, widely used in protein sequence analysis, can be efficiently calculated using BLAST (Basic Local
Alignment Search Tool) tools. For our analysis, we employed BLAST with its default settings optimized for
alignment tasks. These settings include: 1) an expect value for saving hits set at 0.05 (evalue), 2) retaining a
maximum of 100 aligned sequences (max_target_seqs), 3) a word size of 3 (wordsize), and 4) the BLOSUM62
substitution matrix. We observed that modifying these parameters did not significantly affect the similarity
measures returned by BLAST. In cases where BLAST does not report a similarity between a pair of sequences,
we assign a similarity value of 0.

Optimization algorithms

Submodular functions arise in numerous applications, making the study of submodular optimization both
natural and crucial. While extensive research has been conducted on minimizing submodular functions®”*?, our
focus lies on maximizing these functions in the context of representative sequence selection. Specifically, we aim
to solve problems of the form:

max f(R), subject to some contraints in R C S (5)

The simplest optimization approach involves cardinality constraints, where we require that |R| < k for
some positive integer k. In our application using the facility location function, this translates to finding the
k best representative sequences for a given protein family. However, even this seemingly simple approach is
computationally challenging and classified as NP-hard. Fortunately, efficient approximation algorithms for
submodular functions exist, capable of finding solutions guaranteed to be close to the optimal®**°. These
algorithms provide a balance between computational feasibility and solution quality. In this study, we employ
two such algorithms, as described hereinafter.

The first algorithm we employ is the Greedy algorithm, which guarantees solutions that are at least
(1 — 1)~ 63.2% of the optimal value!, where e is the base of natural logarithm. Algorithm 1 presents
the pseudocode for this approach. The algorithm starts by initializing an empty representative set and then
repeatedly identifies new representative sequences through the following steps. Particularly, for each sequence in
the remaining set, the algorithm calculates the marginal improvement in the submodular function (Equation 4)
when adding the sequence to the current representative set. Next, it selects the sequence that provides the largest
improvement and adds it to the representative set. The algorithm then removes the selected sequence from the
remaining set and eliminates other sequences in the remaining set that are identical to the selected sequence
(above a 90% threshold). The algorithm repeats this process until no sequences remain in the set.

- end while
. Return R

=S W B W

: Ro(—@,f(Ro) =0,5+§

: while length(S;) > 0 do

¢" = argmax,eq g (f(RiU{ei}) - f(Ri))
Riy1 =RV {6’,‘}

Si=8-1\ {ei,ej Z q)(e,-,ej) > 90%}

Algorithm 1. Pseudocode of the Greedy algorithm.

The second algorithm we employ is the Bidirectional Greedy algorithm, which guarantees solutions that are
at least  of the optimal value*2. Algorithm 2 presents the pseudocode for this approach. Unlike the standard
Greedy algorithm, this method introduces randomization and maintains two sets: a “growing set” initialized
as empty, and a “shrinking set” initialized as the complete ground set. The algorithm iteratively considers each
sequence, deciding whether to add it to the growing set or remove it from the shrinking set based on which
action yields the greater gain in the objective function (Eq. 4). If adding the sequence provides a greater gain, the
algorithm adds it to the growing set; otherwise, it removes the sequence from the shrinking set. The algorithm
terminates when the growing and shrinking sets converge to identical sets, either of which represents the final
solution.
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1 A—0,B+S
2 foric{1,....n} do

3 o= flAis U{e}) - flAin1)

4 Bi=f(Bi-1\{e}) - f(Bi-1)
50 if o/(o+Bi) > 0.5 then

6: A1=A,'_1U{e,‘},B[=B,'_1
7: else

8: A=A 0, B =81 e}
9: end if

10: end for

11: Return A, (= B,)

Algorithm 2. Pseudocode of the bidirectional Greedy algorithm.

We significantly enhance the performance of these algorithms by executing them multiple times to obtain the
optimal set with the highest score. We propose a ranking strategy that combines the results from multiple runs
of each algorithm to select the optimal set. For each run, we shuffle the ground set, generate a representative set,
and assign ranks to the sequences based on their inclusion order (lower rank indicates a better sequence). We
then iteratively select the sequences that appear most frequently and hold the lowest ranks, adding them to the
final set. We continue this addition process until a BLAST search using the selected sequences as query sequences
successfully retrieves all members of the ground set. We configure the BLAST parameters max_target_seqs and
evalue with default values of 999999 and 1e — 07, respectively.

Results

Protein sequences data

We evaluated our submodular optimization approach for selecting representative protein sequences using data
from thioesterase (TE) enzyme families. We downloaded protein sequence data in FASTA format from the
ThYme database that have been developed and maintained by our group (https://thyme.engr.unr.edu/v2.0/) In
the ThYme database, we categorized TE enzymes into 35 families based on their structural similarity, function,
and catalytic mechanism (Fig. 2). Enzymes with different structural folds catalyze thioesterase function. Most
TEs have either a HotDog fold or an alpha/beta-Hydrolase fold; however, enzymes with the NagB, SGCH,
Lactamase, Beta-hairpin/TIM barrel folds can also perform thioesterase function®. Enzymes families within
each fold are more closely related to each other than to families with a different structural fold. Our recent review
on TE enzymes, which describes in detail how the TE families were defined based on sequences similarity, shows
phylogenetic trees of how the TE families within the HotDog and alpha/beta-Hydrolase folds are related to each

Fig. 2. Five superimposed enzymes in TE15: 5PV] (Homo sapiens) - pink, 2W3X (Micromonospora echiospora
- yellow), 2XEM (Micromonospora chersina - orange), 2XFL (Micromonospora chersina - green), and 414]
(Streptomyces globisorus - blue) all have very similar tertiary structures even though they originate in different
organisms.
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Fig. 3. Sequence similarity among the TE families. We performed pairwise sequence alignments on
experimentally verified sequences from 35 TE families using blastp, with percentage identity used as a
measure of sequence similarity. For each pair of families, we calculated inter-family similarity by averaging the
percentage identities of the pairs consisting of one sequence from each family. Among different TEs, sequences
come from different structural folds, so the TE families are very different to others. Within each family,
sequence similarity is high.

other. The phylogenetic and structural diversity of the TEs ensures that the submodular optimization approach
works for different enzymes/protein families (Fig. 3), which is a reason why TEs were chosen to develop the
submodular optimization approach to identify representative sequences.

Each TE family is based on at least one experimentally verified sequence which serves as a representative
sequence. Families are populated with protein BLAST using the catalytic domain of the representative sequences
as a query. Families are verified to have nearly identical tertiary enzyme. This results in that ThYme families have
approximately 15-30% sequence similarity, which corresponds to narrow subfamilies of larger protein families
based on sequence profiles for example in the Pfam database®. Among different TEs, sequences come from
different structural folds, so the TE families are very different to others, as shown in Fig. 3. Accordingly, to
perform the representative sequences selection using submodular optimization, we created an initial ground
set of sequences for each TE family, including only unique and experimentally characterized sequences. We
identified these sequences using the “Evidence at Protein Level” indicator in UniProt, as clearly marked in the
ThYme database. We excluded families (TE5, TE12, TE19, TE24, TE28, TE32, TE33, and TE35) with fewer than
three sequences in their ground set from further analysis. In total, we obtained 737 sequences in the ground set
across all selected families, with each family containing between four and one hundred sequences, as shown in
Table 1.

The main goal of this article is to introduce the two greedy algorithms based on submodular optimization
to replace the ad hoc procedure with submodular optimization in the ThYme database. We are optimistic that
future algorithms based on submodular optimization can be developed for the purpose of finding representative
sequences for many other protein families. To demonstrate the potential of this new direction, we evaluate
the approach using sequence data from a carboxylesterase (CE) enzyme family and the peptidase family Al
(A1A). We retrieved 12,277 sequences of the CE family from the ESTHER database®® and 13,847 sequences
of the A1A family from the MEROPS database®®. Unlike TE families in which know the sequences that have
been experimentally characterized, we used all sequences for the CE and A1A families as available in MEROPS
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TE26 |26 AOA5G2R2F9 G8JVR4, AOALESRULY, A0A2S1GUX0 GSJVR4, AOAIESRULY | G8JVR4, A0A2SIGUXO0 AOAIE3P8S6
TE27 |8 BOJYMa4 AOAORAILM1 AOAORATLMI AOAORAILMI QINUJ1
AOA494BBA3,
TE29 |46 AOA7G2EI69, POWLCT, | QOSB70, Q8VYT1, AOA654G156, AOA7G2EI69 | BSB70: Q8VYTL, QISB70 Q6PCB6
AOAG654G156
AOAORATWO4
TE30 |8 QIY7Co QOCF71, Q35200 Q35200 QUCE71, Q352U0 AOA161CKG1
AOASISZSXS, HOY6P4, Q3UUI3, Q5T1C6, HOY6P4, Q5T1CS,
TE3L |6 AOASISZSX8, HOYeP4 | (000 Ao AOASISZSXS, AOAOG2JEK7 | QSN1Q8
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Ground Ad hoc w/
Family | setsize | Greedy Bidirectional Greedy CD-HIT MMseqs2 manual curation
TE34 |23 A3PGR7, Q8NOX4 P17725, QVZC38, FIRP25, Q5JVCI, S5N020 PATIES QUZC3SFIRP2S, | qgraNo
TE35 33 H7C3P5 H7C3P5, AOA1L8GNZ38 AOA1L8GNZS, P97819 Q95YD2, AOA1L8GNZ8 AO0A3L7I12I8

Ad hoc

Representative Sets

Table 1. Representative sets for TE families produced by Greedy algorithm, Bidirectional Greedy algorithm,
CD-HIT, MMseqs2, and the ad hoc with manual curation currently used in the ThYme database. The Ground
set size column indicates the number of experimentally verified protein sequences within the corresponding
family, which serve as the ground set on which the algorithms operate.

Similarity

TE families
ThYme Database

Sensitivity/
Specificity

Experimentally

Characterized For each family TEvaIuate

Sequences | ' ' me———————= e — Generated
Ground Sets Similarity Matrix Rep. Sets Predicted Sets

Submodular
MEROPS/ . Optimization BLaST p
ESTHER —>| Family 1 — Family 1
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£
4
Sequences

l ! Sequences

BLAST search

Local Database
For BLAST

Fig. 4. For each protein family, we use BLAST to compute pairwise percentage identities within the ground
set, generating an identity matrix that serves as input for the submodular function. For families from the
ThYme database, we compare the representative sequences generated by submodular optimization algorithms
with those from our ad hoc procedure as a benchmark. Our comparison focuses on correctly recognized
protein IDs and residue identity. For all families, we evaluate the quality of the representative sets using
sensitivity and/or specificity metrics. We perform a BLAST search against a local database of ground sets, using
sensitivity to assess completeness (coverage) and specificity to measure accuracy.

and ESTHER. To facilitate reproducibility of our analysis results, we consolidated all ground sets for individual
families into a single local database, which we provide as a .FASTA file (see Data availability).

Ad hoc procedure for identifying protein families

The TE enzyme families in the ThYme database are based from representative sequences that were chosen by
an ad hoc procedure from a larger pool that includes all known TE sequences that have been experimentally
verified?. The ad hoc method to identify enzyme families in ThYme prioritizes completeness to ensure the
inclusion of all known sequences with a specific function, particularly those experimentally characterized or with
known tertiary structures. We retrieved sequences with specific functions and experimental characterizations
from the UniProt database’®?’. We then used each retrieved sequence as a query in a Basic Local Alignment
Search Tool (BLAST)* search against all known protein sequences (nr database). We compared the BLAST
results against each other to identify the representative sequence of a family: which is the query sequence with
the BLAST results that ensure completeness. We then populated the families by subjecting the catalytic domain
of the representative sequence of a family through BLAST again and verifying sequence and structural similarity
with multiple sequence alignments and tertiary structure superimposition. After identifying representative
sequences using this ad hoc method, we performed expert manual curation to further refine the set and ensure
the inclusion of the correct sequences if needed. While this procedure ensures completeness, it remains labor-
intensive, particularly in verifying the quality of the representative set, which currently hampers the update and
maintenance processes of the ThYme database.

Evaluation workflow

Figure 4 illustrates our overall analysis workflow for method evaluation. In this analysis, we will apply submodular
optimization using the Greedy and Bidirectional Greedy algorithms and compare their performance to two
widely-used clustering methods for identifying representative protein sequences: CD-HIT?® and MMseqs22°. For
each family, after establishing the ground set, we used BLAST alignment tool (blastp) to compute the percentage
identity for every pair of sequences within this set. This step produces a pairwise percentage identity matrix that
captures the similarity relationships among the sequences, serving as input for our submodular function. For
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CD-HIT and MMseq2, we provided the required ground set .FASTA files as input and used the default settings
for the evaluation analysis.

For TE families, we compared the representative sequences generated by these algorithms with those
obtained through our ad hoc procedure, which includes manual curation as used in the current ThYme database.
We focus our comparison on the correctly recognized protein sequences that are highly similar to these optimal
sets of representative sequences. Additionally, we use two metrics, sensitivity and specificity, to assess the quality
of the representative sets generated by the submodular optimization in terms of completeness (inclusion of
all known sequences belonging to the family) and specificity (accurate family representation). To do this, we
use the representative sequences generated by the submodular optimization algorithms as the query set for a
BLAST search against a local database containing all experimentally characterized sequences from all families
in the TE group. We define sensitivity for a specific family as the percentage of that family’s sequences (ground
set) correctly identified in the BLAST search results. Specificity is calculated as one minus the proportion of
sequences from other families that are incorrectly identified as belonging to the family in question when using
its representative sequences as the query set.

We do not know how the MEROPS and ESTHER databases populate the CE and A1A families. Unlike the TE
families in ThYme which are based on blastp results of experimentally-verified sequences, we cannot compare
our results for the CE and AlA against representative sequences with experimental validation. Instead, we
assess the performance of the algorithms by comparing the coverage of the entire family, using sensitivity as the
primary metric. For the CE and A1A families, sensitivity reflects the proportion of sequences in the family that
are correctly identified by the representative sets returned by the different algorithms, providing a measure of
how well the returned sets cover the entire family.

Comparing the optimization approaches with the ad hoc procedure

Table 1 presents a comparative analysis of the representative sequence selection results across five different
methods: the Greedy algorithm, the Bidirectional Greedy algorithm, CD-HIT, MMseqs2, and the ad hoc
procedure (which includes manual curation) used in the ThYme database. The “Ground Set Size” column
indicates the number of experimentally verified protein sequences within each TE family, serving as the
ground set on which the algorithms operate. We considered the sets returned from the ad hoc procedure as
the benchmark in the analysis for TE families. In general, all algorithms produce representative sequence sets
that include most of the sequences identified by the ad hoc procedure for the majority of TE families. However,
there are notable differences in the size of the representative sets generated by each algorithm. The Greedy
algorithm, which focuses on selecting a minimal yet diverse set of representatives, performs similarly to the ad
hoc procedure in 12 out of the 27 TE families. It produces smaller sets in 6 families (e.g. TE1, TE6) and larger sets
in 9 families (e.g. TE2, TE4). In terms of redundancy, measured by the size of the representative set, the Greedy
algorithm performs similarly to our ad hoc procedure in 12 out of 27 TE families. It returns smaller sets in 6
families and larger sets in 9 families compared to the benchmark. Conversely, we observe that the Bidirectional
Greedy algorithm generally returns larger sets than the ad hoc procedure, with exceptions in TE27 (similar to
ad hoc) and TE6 (smaller than ad hoc). CD-HIT returns a larger set compared to the benchmark for 19 TE
families, sets with equal size for 6 TE families and did not return any result for 2 families (TE21 and TE34).
Similarly, MMseqs2 also returns less tighter representative sets for most of the families, with exeptions for TE3,
TE27, TE29 (equal size) and TE13 (smaller set). We conclude that the Greedy algorithm tends to select a smaller
number of representative sequences compared to the other algorithms. This approach effectively captures the
essential diversity within each family while minimizing unnecessary duplications, resulting in a more concise
and efficient representation.

We further compared the sequence identity of the sets returned by four algorithms-Greedy, Bidirectional
Greedy, CD-HIT, and MMseqs2- with the current set in our database, which we created using an ad hoc
procedure with careful manual curation. Figure 5 presents the distributions of percentage identity between the
sequences in the sets returned by the two algorithms and those in the optimal sets from our ad hoc procedure.
The results reveal that the Greedy and Bidirectional Greedy algorithms achieve sequence sets with high similarity
to the ad hoc procedure in many families, with a similarity exceeding 80% in TE1, TE8, TE18, TE21, TE22,
TE29, and TE35. However, in families with a larger number of sequences, such as TE4, TE16, TE26, TE27, and
TE30, the Greedy algorithm exhibits lower similarity, with percentage identities below 50%. The Bidirectional
Greedy algorithm also returns sets with lower similarity in families such as TE4, TE17, and TE30. For CD-HIT
and MMseqs2, the performance is more variable across TE families. CD-HIT tends to generate sets with high
similarity to the ad hoc sets in several families, including TE7, TE18, TE29, and TE31, but struggles with lower
similarity (below 50%) in families like TE4, TE6, TE26, and TE30. Similarly, MMseqs2 performs well for TE17,
TE18, TE22, and TE34 but shows lower similarity in TE4, TE26, and TE30.

Overall, the Greedy algorithm tends to select fewer representative sequences compared to the Bidirectional
Greedy algorithm, CD-HIT, and MMseqs2. This approach effectively captures the essential diversity within
each TE family while minimizing redundancy, resulting in a more concise and efficient representation of the
sequence space. The Bidirectional Greedy algorithm, although generally returning larger sets, also struggles with
certain families. Both CD-HIT and MMseqs2 show mixed results, indicating that further refinement is needed
to improve their performance, particularly in complex families with many sequences.

Sensitivity and specificity analysis

We assess the accuracy of both algorithms by using their returned representative sequences to populate their
corresponding TE families. Figure 6 provides insights into the sensitivity of the Greedy and Bidirectional
Greedy algorithms in selecting representative sequences for TE families. We observe robust performance
from both algorithms, which achieve a sensitivity of 100% across all TE families when considering sequences
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Fig. 5. Distributions of sequence identity between the benchmark representative sequences of each family
and the sets returned by four optimization methods: two submodular optimization algorithms (Greedy and
Bidirectional), CD-HIT, and MMseqs2. Each family is represented by four box plots showing the results for
the Greedy algorithm, Bidirectional Greedy algorithm, CD-HIT, and MMseqs2, arranged from left (high
transparency) to right (low transparency). A box plot with a single dot indicates that the algorithm returned a
set containing only one sequence; otherwise, the returned set contains multiple sequences. Overall, the Greedy
algorithm demonstrates the best performance, producing a tight set with high similarity to the ground truth.
CD-HIT also performs well, though its representative sets generally contain more sequences than those from
the Greedy algorithm. The Bidirectional Greedy algorithm and MMseqs2 show similar performance, often
returning larger sets of representative sequences for each family.

with evidence at the protein level. The Greedy algorithm, on average, achieves an impressive 80% sensitivity
with a representative set size of only 2 sequences. In contrast, the Bidirectional Greedy algorithm requires a
larger representative set size of 4 sequences to reach a similar sensitivity level. This difference highlights the
varying efficiency of the algorithms in capturing the diversity and coverage of sequences within each TE family.
Furthermore, we find that both algorithms consistently produce representative sets that effectively retrieve all
sequences from their respective TE families in BLAST searches, underscoring their utility in comprehensive
sequence representation.

We assess the specificity of the representative sets generated by the Greedy and Bidirectional Greedy
algorithms and show the results in Fig. 7. We observe a specificity of 1 across all TE families, indicating that both
algorithms terminate without errors in sequence identification from other families. The maximum error rate,
averaging around 0.02%, signifies the high precision and accuracy of these representative sets in distinguishing
sequences belonging exclusively to their respective families. Although both algorithms perform exceptionally
well, we find that the Greedy algorithm exhibits a slightly superior specificity compared to the Bidirectional
Greedy algorithm, showcasing its ability to minimize cross-family sequence identifications more effectively.

We emphasize that the size of the representative set produced by these algorithms was not our primary
focus in this application. We configure the Greedy algorithm to terminate based on a predefined threshold of
sequence similarity, ensuring that the selected sequences adequately represent the diversity within each family.
In contrast, we allow the Bidirectional Greedy algorithm to continue until it successfully identifies all sequences
in the ground set via BLAST, potentially resulting in larger representative sets. Since the Bidirectional Greedy
algorithm builds upon the Greedy algorithm, their sensitivity and specificity outcomes are generally comparable.
This consistency in performance underscores the reliability of both algorithms in accurately identifying and
representing sequences from their respective TE families.

Coverage analysis for carboxylesterase and peptidase families

Here we demonstrate that submodular functions can be applied to identify representative sequences of other
protein families. Results show the potential of greedy algorithms in finding representative protein sequences of
enzymes families with high sequence similarity; however, results are not complete without a thorough validation

Scientific Reports |

(2025) 15:1069 | https://doi.org/10.1038/s41598-025-85165-1 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

0.8-

Sensitivity
o
[}

0.4-

0.2-

Greedy Bidirectional Greedy

Family
-~ TE1 - TE17
TE2 - TE18
-o- TE3 -e TE20
-~ TE4 -e- TE21
TE6 -o TE22
TE7 - TE23
TES - TE26
-~ TE9 -e- TE27
- TE10 TE29
TE11 - TE30
-o- TE13 -e- TE31
- TE14 TE34
-~ TE15 - TE35
- TE16

3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

# Selected Rep. Seq.

Fig. 6. Comparison of the sensitivity of two algorithms, Greedy and Bidirectional Greedy, in optimizing
submodular functions for identifying representative protein sequences. The sensitivity values are plotted
against the number of selected representative sequences across protein families in the TE group. Both
algorithm demonstrates high sensitivity, but Greedy algorithm performs better in reducing the redundancy
than Bidirectional Greedy algorithm does.

that greedy algorithms can identify representative sequences for any protein family. We applied the approach to
two additional protein families, carboxylesterase (CE) enzyme family and the peptidase family A1 (A1A). We
also compared the four methods (Greedy, Bidirectional Greedy, CD-HIT, MMseqs2) using the same data from
CE and A1A families. For these two families, MMseqs2 returned many representative sequences. Specifically,
MMseqs2 returned 2,323 representative sequences for the CE family and 1,701 for the A1A family. On the
other hand, CD-HIT generated 10,564 representative sequences for the CE family and 8,774 for the A1A family.
Note that CD-HIT and MMsegs2 are based on clustering, i.e., the methods group the sequences based on their
similarity and then returns a representative sequence for each cluster®. There are two potential drawbacks of
such approach: (1) it might return many clusters with many representative sequences, as shown above, and (2) it
does not necessary provide high coverage because a cluster of sequences might not be covered 100% by a single
representative sequence.

In contrast, the submodular optimization approaches offer more flexibility, allowing us to control the number
of representative sequences returned Fig. 8 shows the coverage against on the number of representative sequences
chosen by the two submodular algorithms. For CE family, both algorithms achieve 100% coverage with less than
10 representative sequences. For the A1A family, both algorithms achieve over 90% coverage with less than 10
representative sequences. The two algorithms achieve a 100% coverage with approximately 600 sequences, in
which the Greedy algorithm has a slightly tighter set.

Discussion

In this study, we employed submodular optimization techniques to select representative sequences within
thioesterase protein families in the ThYme database. This approach was motivated by the inherent redundancy
in biological sequence datasets, which can obscure meaningful patterns and complicate genetic analysis.
Our goal was to demonstrate the effectiveness of the facility location function, a widely used submodular
function, in conjunction with optimization algorithms to enhance the selection of representative sequences.
We specifically selected these algorithms because they minimize redundancy while ensuring high coverage of
the protein family. Facility location functions have proven effective in modeling problems that involve selecting
a representative subset from a larger set, particularly in clustering and summarization tasks. These functions
balance the need to maximize coverage while minimizing redundancy, making them an ideal choice for selecting
representative sequences from biological datasets. In contrast, information-theoretic functions like entropy or
mutual information-though powerful-focus primarily on maximizing information gain. They are more suited to
scenarios where capturing diverse information is essential, such as in cases involving uncertainty>2, rather than
focusing on physical proximity or sequence similarity. Since our primary objective was to select a set of sequences
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Fig. 7. Comparison of the specificity of two algorithms, Greedy and Bidirectional Greedy, in optimizing
submodular functions for identifying representative protein sequences. The specificity values are plotted
against the number of selected representative sequences across various protein families (TE1 to TE35). Both
algorithms exhibit high specificity, with the maximum error rate is around 0.02%.
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Fig. 8. Comparison of the coverage of two algorithms, Greedy and Bidirectional Greedy, in optimizing
submodular functions for identifying representative protein sequences. The coverage values are plotted
against the number of selected representative sequences across protein families in the two protein families:
the carboxylesterase (CE) enzyme family and the peptidase family A1 (A1A). Both algorithm demonstrates
to return the representative set with high coverage, but Greedy algorithm performs better in reducing the
redundancy than Bidirectional Greedy algorithm does.
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based on similarity and redundancy reduction, facility location functions were more directly applicable to our
problem. However, information-theoretic approaches could be valuable for future extensions of this work.

Accordingly, we applied the approaches to real-world datasets to evaluate their performance. The results of
our study highlight several key findings. Firstly, the submodular optimization approach consistently produced
representative sets that effectively captured the entire spectrum of sequences within their respective families,
achieving high sensitivity. This capability is crucial in ensuring that no significant sequence variations or genetic
traits are overlooked during analysis. Furthermore, we meticulously evaluated the specificity of our approach.
This involved assessing the extent to which sequences from unrelated families were mistakenly identified
when using the representative sequences of a specific family as query sequences Our findings indicate that the
representative sets generated through submodular optimization exhibited commendable specificity, minimizing
the occurrence of false positive identifications and maintaining accurate family-level distinctions. In terms
of optimization algorithm performance, the Greedy algorithm emerged as particularly effective in enhancing
specificity and reducing redundancy compared to the Bidirectional Greedy algorithm. The Greedy algorithm
systematically adds sequences based on their marginal contributions to the overall representation, thereby
optimizing the balance between coverage and specificity, which explains its superior performance.

When applied to protein families with significant sequence similarity, our approach enables the selection of
smaller, yet highly informative set of representative sequences compared to traditional clustering algorithms. It
is important to note that representative subset selection differs fundamentally from clustering. While clustering
results in groups of similar sequences, representative subset selection focuses on choosing individual sequences
that best represent the entire dataset. Applying clustering methods to representative selection requires an
additional step to identify an exemplar sequence for each cluster. In practice, clustering algorithms are rarely
used for the purpose of selecting representative sequences from large datasets?®. We note that when dealing with
large datasets, unverified sequences are often present, and submodular optimization algorithms may frequently
select these unverified sequences based solely on amino acid sequences, which can lead to inaccuracies. This
means that these algorithms are not necessarily robust to errors occurring in generic-purpose databases, and are
to be used for carefully curated datasets.

In summary, our study underscores the significant advantages of employing submodular optimization in the
selection of representative sequences within protein families with significant sequence similarity in specialized,
curated databases. By addressing redundancy and enhancing specificity, this methodology not only improves
the accuracy of biological analyses but also contributes to a deeper understanding of genetic diversity and
evolutionary relationships. These insights are pivotal for advancing research in various biological disciplines and
informing strategies for precision medicine and biotechnological applications.

Data availability

The protein sequences data are available at ThYme database https://thyme.engr.unr.edu/v2.0/, MEROPS databa
se https://www.ebi.ac.uk/merops/, and ESTHER database https://bioweb.supagro.inrae.fr/ ESTHER/. The code
and data for reproducing the results are available at https://doi.org/10.5281/zenodo.14063070.
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