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Identifying representative sequences for groups of functionally similar proteins and enzymes poses 
significant computational challenges. In this study, we applied submodular optimization, a method 
effective in data summarization, to select representative sequences for thioesterase enzyme families. 
We introduced and validated two algorithms, Greedy and Bidirectional Greedy, using curated protein 
sequence data from the ThYme (Thioester-active enzYmes) database. Both algorithms generated 
sequence subsets that preserved completeness (inclusion of all known family sequences) and specificity 
(accurate family representation). The Greedy algorithm outperformed the Bidirectional Greedy 
algorithm and other methods, particularly in reducing redundancy. Our study offers an efficient 
approach for identifying representative protein sequences within families that have significant 
sequence similarity, likely to deliver results close to theoretical optima in polynomial time, with the 
potential to improve the selection and optimization of representative sequences in protein databases.
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Organizing proteins into families based on shared structure, function and catalytic mechanism, is a fundamental 
aspect of comparative and evolutionary genomics1. This classification, primarily derived from amino acid 
sequences, enables researchers to predict tertiary structures, identify catalytic residues, and elucidate enzymatic 
mechanisms for particular sequences within entire protein families2,3. Additionally, classifying enzyme 
sequences in protein families enables the inference of structure and function for uncharacterized sequences in 
organisms of interest by leveraging knowledge from well-studied proteins within the same family4,5. A critical 
step in managing and analyzing protein and enzyme families is the identification of representative sequences. This 
process involves reducing a large set of protein sequences into a small subset that effectively captures the diversity 
and essential characteristics of all sequences in the entire family. The selection of representative sequences aims 
to strike a balance between maintaining completeness (ensuring all significant variations within the family are 
represented) and curtailing redundancy (minimizing overrepresentation of highly similar sequences). Such 
sequence subsets are crucial for various applications in biological and biomedical research, such as aiding in 
modeling protein structures in structural biology, which is essential for understanding protein function and 
interactions, and facilitating drug design6; enabling the identification and quantification of proteins in complex 
samples using mass spectrometry7,8; or being used in enzyme engineering and synthetic biology to develop novel 
biological systems and enhance industrial applications9.

Representative sequences are particularly relevant in the context of specialized enzyme databases. Our group 
recently updated and renewed the ThYme (Thioester-active enzYmes) database, an open-access resource that 
categorizes thioesterase (TE) enzymes into 35 distinct families4. ThYme also includes sequences, classified into 
families, of other enzymes involved in the fatty acid synthesis cycle, and/or active with substrates that include 
thioesters such as acyl transferases5. We constructed each enzyme family in ThYme around a set of representative 
sequences, which we use as the foundation for populating the families. However, selecting the most appropriate 
representative sequences for each specific family presents a substantial challenge. For a dataset containing 
n sequences, one must theoretically evaluate all 2n possible subsets to find the optimal representation. This 
becomes computationally infeasible as n increases. Many existing approaches introduce a specific threshold (e.g. 
% identity or similarity) to define sequence representation10–17. These approaches typically rely on heuristic 
algorithms to find the smallest subset of the ground set that represents all sequences. However, these methods 
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have significant limitations: they often disregard all similarities below the predefined threshold, potentially 
overlooking important relationships, and there is no theoretical guarantee that these heuristic algorithms 
produce a subset close to the optimal representative set of sequences.

Researchers have proposed a framework using submodular optimization to address these challenges, an 
approach that has shown remarkable success in data summarization18,19. In a recent study, Libbrecht et al.20 
demonstrated that this framework can yield a concise yet comprehensive representation of data, offering particular 
benefits in handling the redundancy common in sequence datasets. However, the scientific community has not 
adopted this approach for selecting representative sequences. Several factors contribute to this limited adoption: 
(i) the NP-hard complexity of subset selection; (ii) the non-trivial task of defining submodular functions for 
sequencing data and developing algorithms to use these functions; and iii) the lack of straightforward methods 
to test algorithm efficiency or validate the completeness and non-redundancy of results.

In this article, we present a ranking-based submodular optimization framework to select representative 
sequences for protein families in the ThYme database where sequences within each family share high sequence 
similarity, and sequences in different families have low similarity. We aim to demonstrate how submodular 
optimization can facilitate the creation of sequence subsets that maintain the integrity of protein and enzyme 
families. Our approach ensures the inclusion of all known sequences within an enzyme family (completeness) 
while correctly identifying sequences in their appropriate families (specificity). We explore how this optimization 
framework excels in distributing known sequences across different enzyme families, providing a more accurate 
and informative data representation. We apply our framework to enhance the selection process for representative 
sequences of thioesterase families in the ThYme database, which currently relies on an ad hoc procedure with 
expert curation. By implementing this methodology, we seek to improve the accuracy, efficiency, and robustness 
of representative sequence selection. We also applied the submodular algorithms to two protein families in the 
MEROPS (peptidases) and ESTHER (esterases) databases.

Methods
Representative protein sequences selection
The selection of representative sequences is critical in protein sequence analysis, with significant implications 
for molecular biology and bioinformatics. Researchers choose representative sequences for each protein family, 
defining them as a subset of sequences within that family. These carefully selected sequences serve multiple 
crucial functions: populating protein families in databases4, classifying newly discovered protein sequences21, 
categorizing 3D protein structures21, and guiding target selection in structural genomics initiatives22. The 
objective of selecting representative sequences is to identify the smallest subset that fulfills a predefined criterion, 
typically described as “maximum coverage with minimum redundancy”9 from a finite set of protein sequences, 
referred to as the “ground set”. Maximum coverage ensures that each sequence in the family is represented by at 
least one sequence in the representative set, while minimum redundancy guarantees that no two proteins in the 
representative set exceed a predefined sequence identity threshold.

The primary challenge in selecting a representative set from a large dataset lies in its combinatorial 
complexity. Even for a relatively small set of 100 sequences, evaluating all 2100 ≈ 1030 possible combinations 
to find the optimal subset is computationally infeasible. Hobohm et al.9 developed one of the earliest systematic 
approaches to construct a representative set of non-redundant protein sequences. This algorithm calculates 
similarity between sequences, using an alignment score or similar metrics, and sets a specific threshold (e.g. % 
similarity) to determine if two proteins are neighbors. Given a list of candidate proteins and a list of neighbors 
for each of the proteins, the algorithm removes one protein at a time until those remaining in the list have 
no neighbor. Subsequent algorithms, including CD-HIT23, PISCES24, MMSEQS25 and UCLUST26, have further 
developed this concept, typically sorting protein sequences by length and sequentially adding sequences to the 
representative set if no existing member exceeds a specified similarity threshold. However, these approaches 
have several limitations: (i) reliance on greedy strategies often leads to suboptimal solutions, (ii) ignoring all 
similarities below the specified cutoff may overlook important relationships, and iii) lack of control over the 
size of the representative set as it is possible to include all sequences or only one depending on the predefined 
threshold.

In this study, we apply classical submodular optimization to the challenge of selecting representative protein 
sequences. This approach has demonstrated remarkable success in diverse fields, including the selection of 
representative subsets in text document analysis18,19,27, speech recognition28–30, machine translation31, and 
image analysis32. However, its application in sequence analysis remains limited. A recent study by Libbrecht et 
al.20 applied this approach to choose non-redundant representative subsets of protein sequences, demonstrating 
that submodular optimization achieves the best possible results in polynomial time. In the following sections, 
we provide a detailed description of how submodular optimization can be effectively utilized for selecting 
representative protein sequences, exploring its potential to overcome the limitations of previous methods and 
enhance the accuracy and efficiency of protein sequence analysis.

Mathematical description of submodular optimization
Mathematical notations
Capital letters denote sets and lowercase letters to denote items in the sets (i.e., sequences).

• {a, b, c} denotes a set with items a, b and c.
• ∅ is the empty set.
• A ∪ B is the union of A and B.
• A \ B is the set of all items in A but not in B.
• a ∈ A means a is an element of A.
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• A ⊆ B means A is a subset of B.

Submodular function
Figure  1 illustrates the application of submodular optimization in identifying a set of representative protein 
sequences. Let S = {s1, s2, . . . , sn} denote a finite set of protein sequences, and f : 2S → R represent a 
function over subsets of S. The function f evaluates a set of elements and outputs a real value quantifying the 
quality of that set. We assume that f is monotonically increasing. For any subset X ⊆ S, we define the marginal 
improvement of adding an element s ∈ S \ X  to set X as f(X ∪ {s}) − f(X). The function f is considered 
submodular and normalized if and only if it satisfies the following three conditions:

 f(∅) = 0  (1)

 f(X ∪ {s}) − f(X) ≥ 0, ∀s ∈ S \ X, X ⊆ S  (2)

 f(X ∪ {s}) − f(X) ≥ f(Y ∪ {s}) − f(Y ), ∀X ⊆ Y ⊆ S, s ̸∈ Y  (3)

Equation (1) establishes that the function has a value of zero for an empty set. Equation (2) ensures the function is 
monotonically non-decreasing, meaning that adding a new sequence to the representative set can only maintain 
or increase its value. Equation (3) describes a crucial property of submodular functions: as we select more points 
from the ground set, the incremental gain decreases. In the context of selecting representative sequences, this 
property reflects that the benefit of adding a given protein sequence diminishes when the representative set 
already contains similar sequences. Our objective is to identify a subset R ⊆ S that maximizes the value of f, 
thereby obtaining an optimal set of representative sequences that efficiently captures the diversity within the 
protein family.

Submodular functions form a broad class of functions with applications across various domains. Notable examples 
include the weighted coverage function33, rank function of a matroid34, entropy35, mutual information36, and cut 
capacity37. In this study, we employ a classical submodular function known as the facility location function38 to 
select representative sequences for protein families. Facility location functions are versatile submodular functions 
that, when maximized, select examples that effectively represent the data space. These functions optimize the 
pairwise similarities between points in the dataset and their nearest neighbors, ensuring that the chosen subset 
accurately reflects the overall data distribution. The general form of the facility location function is:

 
f(R) = 1

|S|
∑
s∈S

max
r∈R

ϕ(s, r) (4)

where f denotes the facility location function, S is the ground set of all protein sequences, R ⊆ S is the selected 
subset of representative sequences, s and r are individual sequences in the ground set, and ϕ(s, r) represents the 
similarity measure between sequences.

This function satisfies all properties defined in Eqs.  (1)–(3): (1) normalization: f(R) = 0 when R = ∅; (2) 
monotonicity: f is monotonically non-decreasing; and (3) submodularity: adding sequences similar to those 
already in R yields diminishing returns in the value of the function. In our context, maximizing this facility 
location function will select a subset of sequences that represents the entire protein family. These chosen 
sequences serve as query sequences for retrieving related proteins from the database, efficiently capturing the 
diversity within the family while minimizing redundancy.

Fig. 1. Selecting representative sequences using submodular optimization. The objective is to identify a subset 
of sequences that effectively represent the diversity within a given protein family. While an exhaustive search 
would require evaluating 2n possible subsets (where n is the number of sequences), rendering the problem NP-
hard, submodular optimization offers an efficient approach to find a near-optimal solution in polynomial time.
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Similarity function
The similarity function must be non-negative, with higher values indicating greater similarity between sequences. 
In this study, we define the similarity between a pair of sequences, ϕ(s, r), as the fraction of matching residues. 
This metric, widely used in protein sequence analysis, can be efficiently calculated using BLAST (Basic Local 
Alignment Search Tool) tools. For our analysis, we employed BLAST with its default settings optimized for 
alignment tasks. These settings include: 1) an expect value for saving hits set at 0.05 (evalue), 2) retaining a 
maximum of 100 aligned sequences (max_target_seqs), 3) a word size of 3 (wordsize), and 4) the BLOSUM62 
substitution matrix. We observed that modifying these parameters did not significantly affect the similarity 
measures returned by BLAST. In cases where BLAST does not report a similarity between a pair of sequences, 
we assign a similarity value of 0.

Optimization algorithms
Submodular functions arise in numerous applications, making the study of submodular optimization both 
natural and crucial. While extensive research has been conducted on minimizing submodular functions37,39, our 
focus lies on maximizing these functions in the context of representative sequence selection. Specifically, we aim 
to solve problems of the form:

 max f(R), subject to some contraints in R ⊆ S (5)

The simplest optimization approach involves cardinality constraints, where we require that |R| ≤ k for 
some positive integer k. In our application using the facility location function, this translates to finding the 
k best representative sequences for a given protein family. However, even this seemingly simple approach is 
computationally challenging and classified as NP-hard. Fortunately, efficient approximation algorithms for 
submodular functions exist, capable of finding solutions guaranteed to be close to the optimal33,40. These 
algorithms provide a balance between computational feasibility and solution quality. In this study, we employ 
two such algorithms, as described hereinafter.

The first algorithm we employ is the Greedy algorithm, which guarantees solutions that are at least (1 − 1
e
) ≈ 63.2% 

of the optimal value41, where e is the base of natural logarithm. Algorithm 1 presents the pseudocode for this 
approach. The algorithm starts by initializing an empty representative set and then repeatedly identifies new 
representative sequences through the following steps. Particularly, for each sequence in the remaining set, the 
algorithm calculates the marginal improvement in the submodular function (Equation  4) when adding the 
sequence to the current representative set. Next, it selects the sequence that provides the largest improvement 
and adds it to the representative set. The algorithm then removes the selected sequence from the remaining set 
and eliminates other sequences in the remaining set that are identical to the selected sequence (above a 90% 
threshold). The algorithm repeats this process until no sequences remain in the set.

Algorithm 1. Pseudocode of the Greedy algorithm.

The second algorithm we employ is the Bidirectional Greedy algorithm, which guarantees solutions that are 
at least 1

2  of the optimal value42. Algorithm 2 presents the pseudocode for this approach. Unlike the standard 
Greedy algorithm, this method introduces randomization and maintains two sets: a “growing set” initialized 
as empty, and a “shrinking set” initialized as the complete ground set. The algorithm iteratively considers each 
sequence, deciding whether to add it to the growing set or remove it from the shrinking set based on which 
action yields the greater gain in the objective function (Eq. 4). If adding the sequence provides a greater gain, the 
algorithm adds it to the growing set; otherwise, it removes the sequence from the shrinking set. The algorithm 
terminates when the growing and shrinking sets converge to identical sets, either of which represents the final 
solution.
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Algorithm 2. Pseudocode of the bidirectional Greedy algorithm.

We significantly enhance the performance of these algorithms by executing them multiple times to obtain the 
optimal set with the highest score. We propose a ranking strategy that combines the results from multiple runs 
of each algorithm to select the optimal set. For each run, we shuffle the ground set, generate a representative set, 
and assign ranks to the sequences based on their inclusion order (lower rank indicates a better sequence). We 
then iteratively select the sequences that appear most frequently and hold the lowest ranks, adding them to the 
final set. We continue this addition process until a BLAST search using the selected sequences as query sequences 
successfully retrieves all members of the ground set. We configure the BLAST parameters max_target_seqs and 
evalue with default values of 999999 and 1e − 07, respectively.

Results
Protein sequences data
We evaluated our submodular optimization approach for selecting representative protein sequences using data 
from thioesterase (TE) enzyme families. We downloaded protein sequence data in FASTA format from the 
ThYme database that have been developed and maintained by our group (https://thyme.engr.unr.edu/v2.0/)4. In 
the ThYme database, we categorized TE enzymes into 35 families based on their structural similarity, function, 
and catalytic mechanism (Fig. 2). Enzymes with different structural folds catalyze thioesterase function. Most 
TEs have either a HotDog fold or an alpha/beta-Hydrolase fold; however, enzymes with the NagB, SGCH, 
Lactamase, Beta-hairpin/TIM barrel folds can also perform thioesterase function4. Enzymes families within 
each fold are more closely related to each other than to families with a different structural fold. Our recent review 
on TE enzymes, which describes in detail how the TE families were defined based on sequences similarity, shows 
phylogenetic trees of how the TE families within the HotDog and alpha/beta-Hydrolase folds are related to each 

Fig. 2. Five superimposed enzymes in TE15: 5PVJ (Homo sapiens) - pink, 2W3X (Micromonospora echiospora 
- yellow), 2XEM (Micromonospora chersina - orange), 2XFL (Micromonospora chersina - green), and 4I4J 
(Streptomyces globisorus - blue) all have very similar tertiary structures even though they originate in different 
organisms.
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other. The phylogenetic and structural diversity of the TEs ensures that the submodular optimization approach 
works for different enzymes/protein families (Fig. 3), which is a reason why TEs were chosen to develop the 
submodular optimization approach to identify representative sequences.

Each TE family is based on at least one experimentally verified sequence which serves as a representative 
sequence. Families are populated with protein BLAST using the catalytic domain of the representative sequences 
as a query. Families are verified to have nearly identical tertiary enzyme. This results in that ThYme families have 
approximately 15-30% sequence similarity, which corresponds to narrow subfamilies of larger protein families 
based on sequence profiles for example in the Pfam database43. Among different TEs, sequences come from 
different structural folds, so the TE families are very different to others, as shown in Fig.  3. Accordingly, to 
perform the representative sequences selection using submodular optimization, we created an initial ground 
set of sequences for each TE family, including only unique and experimentally characterized sequences. We 
identified these sequences using the “Evidence at Protein Level” indicator in UniProt, as clearly marked in the 
ThYme database. We excluded families (TE5, TE12, TE19, TE24, TE28, TE32, TE33, and TE35) with fewer than 
three sequences in their ground set from further analysis. In total, we obtained 737 sequences in the ground set 
across all selected families, with each family containing between four and one hundred sequences, as shown in 
Table 1.

The main goal of this article is to introduce the two greedy algorithms based on submodular optimization 
to replace the ad hoc procedure with submodular optimization in the ThYme database. We are optimistic that 
future algorithms based on submodular optimization can be developed for the purpose of finding representative 
sequences for many other protein families. To demonstrate the potential of this new direction, we evaluate 
the approach using sequence data from a carboxylesterase (CE) enzyme family and the peptidase family A1 
(A1A). We retrieved 12,277 sequences of the CE family from the ESTHER database44 and 13,847 sequences 
of the A1A family from the MEROPS database45. Unlike TE families in which know the sequences that have 
been experimentally characterized, we used all sequences for the CE and A1A families as available in MEROPS 

Fig. 3. Sequence similarity among the TE families. We performed pairwise sequence alignments on 
experimentally verified sequences from 35 TE families using blastp, with percentage identity used as a 
measure of sequence similarity. For each pair of families, we calculated inter-family similarity by averaging the 
percentage identities of the pairs consisting of one sequence from each family. Among different TEs, sequences 
come from different structural folds, so the TE families are very different to others. Within each family, 
sequence similarity is high.
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Family
Ground 
set size Greedy Bidirectional Greedy CD-HIT MMseqs2

Ad hoc w/
manual curation

TE1 6 P32316 Q9HTC2, P83773, B3EY95, Q7MVN7, P32316 P83773, P32316 Q9HTC2, P83773, B3EY95, 
Q7MVN7 P32316

TE2 44 Q86TX2
G3V4F2, Q9QYR7, A0A287B8D4, A2AKK5, 
A0A287A758, A0A287BCT2, D3ZIQ1, 
A0A8I6A6H9, O55137, Q9QYR9, Q8BWN8, 
Q8BGG9, F1SSB1

Q9QYR7, A0A287A758, 
A0A287BCT2, 
A0A8I6A6H9, Q8BWN8

G3V4F2, A0A287BCT2, 
Q8BGG9 Q86TX2

TE3 8 A0A4P1LYH5 A0A1Z1F9L9, A0A4P1LYH7, A0A4P1LYH6, 
Q07792, Q9HZY8, P0ADA1, A0A4P1LYH5

A0A1Z1F9L9, 
A0A4P1LYH7, Q07792, 
Q9HZY8, P0ADA1

A0A1Z1F9L9, Q07792 P0ADA1, 
A0A4P1LYH5

TE4 29

Q95Q68, Q73Z74, 
A0A3E2MQQ7, 
O06135, P41903, 
Q9U1Q5, Q19781, 
P58137, B3H5Z2, 
A0A0M3KKU4

A0A7U8YAW7, Q73Z74, A0A3E2MQQ7, 
P41903, F4HU51, B3H5Z2, Q8VHK0, 
A0A0M3KKU4

Q73Z74, P41903, 
Q8VHK0

Q73Z74, A0A3E2MQQ7, 
P41903, F4HU51, Q8VHK0, 
A0A0M3KKU4

P41903, O14734, 
Q73Z74

TE6 33 Q814K4, A0A5P8YGN6, 
Q9DBK0

A0A0M0KCI4, A0A8J0V2L8, A0A2U0QTN1, 
Q8WXI4, A0A287A7V2

A0A0M0KCI4, 
Q6GM80, A0A8J0V2L8, 
A0A2U0QTN1, Q8WXI4

A0A0M0KCI4, Q6GM80, 
A0A2U0QTN1

P44886, 
Q8WXI4, 
Q6ZUV0, 
A1KUS8, 
A0A0H3K033, 
A0A5P8YGN6

TE7 28 Q7T175, Q23044, 
H7C5Q2 Q6AWX1, Q9V9W4, S4TF94, Q95TK5, Q94245 Q6AWX1, Q9V9W4, 

S4TF94, Q95TK5, Q94245 Q6AWX1, Q9V9W4, Q94245 Q9Y305

TE8 15 Q18187 Q9VZZ6, P34419, F1RUE0, A0A0P0WAD4, 
A0A178W7W7, A9ULW5

P34419, F1RUE0, 
A0A0P0WAD4, 
A0A178W7W7, A9ULW5

Q9VZZ6, P34419, 
F1RUE0, A0A0P0WAD4, 
A0A178W7W7

Q9NPJ3

TE9 7 P44679, A0A1P8AM78 A0A0H3M6V9, Q9C7I5, P44679, P0A8Z5, 
P94842

A0A0H3M6V9, Q9C7I5, 
P94842

A0A0H3M6V9, Q9C7I5, 
P44679, P0A8Z5, P94842

B5B3P5, P94842, 
A0A0H3M6V9

TE10 4 Q9KBC9 P56653, Q5SJV0, Q9KBC9, O67466 P56653, Q5SJV0, Q9KBC9 P56653, Q5SJV0, Q9KBC9, 
O67466

P56653, 
Q9KBC9

TE11 16 P45083 P0A8Y8, Q7SGA6, Q9I3A4, P77781, Q9SX65, 
Q04416

P0A8Y8, NCU02744.1, 
Q9I3A4, P77781, Q9SX65, 
BAB40578.1

P0A8Y8, NCU02744.1, 
Q9SX65, BAB40578.1

Q04416, P77781, 
Q9SX65, 
B4XYA6

TE13 7 P76084 Q5SJP3, A0A0M3KL08, A0A0M3KL07, 
Q8DUV0

A0A0M3KL08, Q8DUV0, 
P76084 A0A0M3KL08, P76084

P76084, 
A0A0H2URF0, 
Q5SJP3

TE14 12 A0A174JUF1, Q41635, 
Q0J0M2, G3ESV0 Q9SJE2, A0A837P8G3, G3ESU9, Q9SQI3 Q9SJE2, Q9SQI3 A0A837P8G3, G3ESU9 Q9SQI3

TE15 4 Q8KNG2 Q84HI7, Q8GME8, A0A2D0TCG5, Q8KNG2 Q84HI7, Q8GME8, 
A0A2D0TCG5, Q8KNG2 Q84HI7, Q8GME8 Q8KNG2

TE16 79 A0A0S2E7W7, B3FWS8, 
Q0UI00, P0DUV3

P25464, A0A0B4ESU9, B3FWT6, P0C064, 
A0A384XH94, I3LCW1, Q71SP7, P91871, 
O31784, A0A0X1KH98, O31827, A5YV76, 
Q45563, Q08787, I1RF58, P0DUV3, 
A0A125R003, P0DUV4, Q5AUX1

A0A384XH94, I3LCW1, 
Q71SP7, A5YV76, Q45563

1JMK, S0DZM7, Q12053, 
P25464, B3FWT6, 
P0C064, A0A384XH94, 
I3LCW1, P91871, O31784, 
A0A0X1KH98, O31827, 
I1RF58, P0DUV3, 
A0A125R003, A0A142C799

P12276, Q45563, 
Q03149, 
A5YV76

TE17 5 Q03133 A5TZD1, Q03133, F1CLA7, Q9ZGI2, A4KCE5 A5TZD1, Q03133 A5TZD1, Q03133, F1CLA7, 
Q9ZGI2, A4KCE5 Q03133

TE18 22 Q5VUB9, P9WQD5 A0A061LQM0, Q7BUF9, Q9I1H3, O54157, 
P08635 Q7BUF9, O54157, P08635 Q7BUF9, Q9I1H3, O54157, 

P08635
Q9NV23, 
Q7BUF9

TE20 65
A0A0G2JKR3, 
Q8L7H5, P50897, 
Q9LVS4, A0A1P8B5G7, 
A0A286YFL8

A0A654G8S8, Q10T53, A5A8Z8, Q336S3, 
Q9LY31, Q9W3C7, P50897, A0A5S9XTF3, 
A0A287AYH9, Q9LVS4, P45478, A0A5G2QB02, 
A0A0G2JLK6, E9PVM9, E9PIA8, O59747

K7GLB5, A0A0G2JLK6, 
O59747

Q10T53, K7GLB5, 
A0A287AYH9, O59747

O59747, O35448, 
Q9UMR5

TE21 72 Q5QPN5, E5RJ48, 
C6VYE5, Q94E46

E5RGR0, C6VYE5, Q9HXE7, Q8L9X1, Q53547, 
Q5VWZ2, Q9VGV9, Q3UFF7, D3Z269

E5RGR0, C6VYE5, Q8L9X1, 
Q53547, Q5VWZ2 O75608, Q3J2V1

TE22 44 B8Y562, B7F3S0, 
H3BL99

P51025, A0A7U9J4Q3, Q07XK4, Q8LAS8, 
D0VWZ4, A0A8J0UAE1 P51025, A0A7U9J4Q3 P51025, A0A7U9J4Q3, 

A0A8I6A8R5
P51025, P33018, 
Q2FUY3

TE23 74
Q10LW8, A0A0H3JL43, 
Q0CCY4, 
A0A8I5KVK5, A7Z4X7, 
Q53H82

O24496, A0A2I1C3U0, Q8ZRM2, E1ACR1, 
A7Z4X7, Q53H82, A0A1L9WLF1, D7PHZ8, 
F1RU12, Q16775, C8WS08, Q5AXB0

B1XD76, Q8ZRM2, 
C8WS08

O24496, B1XD76, Q53H82, 
D7PHZ8, C8WS08

P0AC84, 
P0CU68

TE26 26 A0A5G2R2F9 G8JVR4, A0A1E5RUL9, A0A2S1GUX0 G8JVR4, A0A1E5RUL9 G8JVR4, A0A2S1GUX0 A0A1E3P8S6

TE27 8 B9JYM4 A0A0R4ILM1 A0A0R4ILM1 A0A0R4ILM1 Q9NUJ1

TE29 46
A0A494BBA3, 
A0A7G2EI69, P9WLC7, 
A0A0R4IW94

Q9SB70, Q8VYT1, A0A654G156, A0A7G2EI69 Q9SB70, Q8VYT1, 
A0A654G156 Q9SB70 Q6PCB6

TE30 8 Q9Y7C9 Q0CF71, Q3S2U0 Q3S2U0 Q0CF71, Q3S2U0 A0A161CKG1

TE31 6 A0A8I5ZSX8, H0Y6P4 A0A8I5ZSX8, H0Y6P4, Q3UUI3, Q5T1C6, 
A0A0G2JEK7

H0Y6P4, Q5T1C6, 
A0A0G2JEK7 A0A8I5ZSX8, A0A0G2JEK7 Q8N1Q8

Continued
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and ESTHER. To facilitate reproducibility of our analysis results, we consolidated all ground sets for individual 
families into a single local database, which we provide as a .FASTA file (see Data availability).

Ad hoc procedure for identifying protein families
The TE enzyme families in the ThYme database are based from representative sequences that were chosen by 
an ad hoc procedure from a larger pool that includes all known TE sequences that have been experimentally 
verified2. The ad hoc method to identify enzyme families in ThYme prioritizes completeness to ensure the 
inclusion of all known sequences with a specific function, particularly those experimentally characterized or with 
known tertiary structures. We retrieved sequences with specific functions and experimental characterizations 
from the UniProt database46,47. We then used each retrieved sequence as a query in a Basic Local Alignment 
Search Tool (BLAST)48,49 search against all known protein sequences (nr database). We compared the BLAST 
results against each other to identify the representative sequence of a family: which is the query sequence with 
the BLAST results that ensure completeness. We then populated the families by subjecting the catalytic domain 
of the representative sequence of a family through BLAST again and verifying sequence and structural similarity 
with multiple sequence alignments and tertiary structure superimposition. After identifying representative 
sequences using this ad hoc method, we performed expert manual curation to further refine the set and ensure 
the inclusion of the correct sequences if needed. While this procedure ensures completeness, it remains labor-
intensive, particularly in verifying the quality of the representative set, which currently hampers the update and 
maintenance processes of the ThYme database.

Evaluation workflow
Figure 4 illustrates our overall analysis workflow for method evaluation. In this analysis, we will apply submodular 
optimization using the Greedy and Bidirectional Greedy algorithms and compare their performance to two 
widely-used clustering methods for identifying representative protein sequences: CD-HIT23 and MMseqs225. For 
each family, after establishing the ground set, we used BLAST alignment tool (blastp) to compute the percentage 
identity for every pair of sequences within this set. This step produces a pairwise percentage identity matrix that 
captures the similarity relationships among the sequences, serving as input for our submodular function. For 

Fig. 4. For each protein family, we use BLAST to compute pairwise percentage identities within the ground 
set, generating an identity matrix that serves as input for the submodular function. For families from the 
ThYme database, we compare the representative sequences generated by submodular optimization algorithms 
with those from our ad hoc procedure as a benchmark. Our comparison focuses on correctly recognized 
protein IDs and residue identity. For all families, we evaluate the quality of the representative sets using 
sensitivity and/or specificity metrics. We perform a BLAST search against a local database of ground sets, using 
sensitivity to assess completeness (coverage) and specificity to measure accuracy.

 

Family
Ground 
set size Greedy Bidirectional Greedy CD-HIT MMseqs2

Ad hoc w/
manual curation

TE34 23 A3PGR7, Q8N0X4 P17725, Q9ZC38, F1RP25, Q5JVC1, S5N020 P17725, Q9ZC38, F1RP25, 
S5N020 Q8R4N0

TE35 33 H7C3P5 H7C3P5, A0A1L8GNZ8 A0A1L8GNZ8, P97819 Q95YD2, A0A1L8GNZ8 A0A3L7I2I8

Table 1. Representative sets for TE families produced by Greedy algorithm, Bidirectional Greedy algorithm, 
CD-HIT, MMseqs2, and the  ad hoc with manual curation currently used in the ThYme database.  The Ground 
set size column indicates the number of experimentally verified protein sequences within the corresponding 
family, which serve as the ground set on which the algorithms operate.
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CD-HIT and MMseq2, we provided the required ground set .FASTA files as input and used the default settings 
for the evaluation analysis.

For TE families, we compared the representative sequences generated by these algorithms with those 
obtained through our ad hoc procedure, which includes manual curation as used in the current ThYme database. 
We focus our comparison on the correctly recognized protein sequences that are highly similar to these optimal 
sets of representative sequences. Additionally, we use two metrics, sensitivity and specificity, to assess the quality 
of the representative sets generated by the submodular optimization in terms of completeness (inclusion of 
all known sequences belonging to the family) and specificity (accurate family representation). To do this, we 
use the representative sequences generated by the submodular optimization algorithms as the query set for a 
BLAST search against a local database containing all experimentally characterized sequences from all families 
in the TE group. We define sensitivity for a specific family as the percentage of that family’s sequences (ground 
set) correctly identified in the BLAST search results. Specificity is calculated as one minus the proportion of 
sequences from other families that are incorrectly identified as belonging to the family in question when using 
its representative sequences as the query set.

We do not know how the MEROPS and ESTHER databases populate the CE and A1A families. Unlike the TE 
families in ThYme which are based on blastp results of experimentally-verified sequences, we cannot compare 
our results for the CE and A1A against representative sequences with experimental validation. Instead, we 
assess the performance of the algorithms by comparing the coverage of the entire family, using sensitivity as the 
primary metric. For the CE and A1A families, sensitivity reflects the proportion of sequences in the family that 
are correctly identified by the representative sets returned by the different algorithms, providing a measure of 
how well the returned sets cover the entire family.

Comparing the optimization approaches with the ad hoc procedure
Table  1 presents a comparative analysis of the representative sequence selection results across five different 
methods: the Greedy algorithm, the Bidirectional Greedy algorithm, CD-HIT, MMseqs2, and the ad hoc 
procedure (which includes manual curation) used in the ThYme database. The “Ground Set Size” column 
indicates the number of experimentally verified protein sequences within each TE family, serving as the 
ground set on which the algorithms operate. We considered the sets returned from the ad hoc procedure as 
the benchmark in the analysis for TE families. In general, all algorithms produce representative sequence sets 
that include most of the sequences identified by the ad hoc procedure for the majority of TE families. However, 
there are notable differences in the size of the representative sets generated by each algorithm. The Greedy 
algorithm, which focuses on selecting a minimal yet diverse set of representatives, performs similarly to the ad 
hoc procedure in 12 out of the 27 TE families. It produces smaller sets in 6 families (e.g. TE1, TE6) and larger sets 
in 9 families (e.g. TE2, TE4). In terms of redundancy, measured by the size of the representative set, the Greedy 
algorithm performs similarly to our ad hoc procedure in 12 out of 27 TE families. It returns smaller sets in 6 
families and larger sets in 9 families compared to the benchmark. Conversely, we observe that the Bidirectional 
Greedy algorithm generally returns larger sets than the ad hoc procedure, with exceptions in TE27 (similar to 
ad hoc) and TE6 (smaller than ad hoc). CD-HIT returns a larger set compared to the benchmark for 19 TE 
families, sets with equal size for 6 TE families and did not return any result for 2 families (TE21 and TE34). 
Similarly, MMseqs2 also returns less tighter representative sets for most of the families, with exeptions for TE3, 
TE27, TE29 (equal size) and TE13 (smaller set). We conclude that the Greedy algorithm tends to select a smaller 
number of representative sequences compared to the other algorithms. This approach effectively captures the 
essential diversity within each family while minimizing unnecessary duplications, resulting in a more concise 
and efficient representation.

We further compared the sequence identity of the sets returned by four algorithms-Greedy, Bidirectional 
Greedy, CD-HIT, and MMseqs2- with the current set in our database, which we created using an ad hoc 
procedure with careful manual curation. Figure 5 presents the distributions of percentage identity between the 
sequences in the sets returned by the two algorithms and those in the optimal sets from our ad hoc procedure. 
The results reveal that the Greedy and Bidirectional Greedy algorithms achieve sequence sets with high similarity 
to the ad hoc procedure in many families, with a similarity exceeding 80% in TE1, TE8, TE18, TE21, TE22, 
TE29, and TE35. However, in families with a larger number of sequences, such as TE4, TE16, TE26, TE27, and 
TE30, the Greedy algorithm exhibits lower similarity, with percentage identities below 50%. The Bidirectional 
Greedy algorithm also returns sets with lower similarity in families such as TE4, TE17, and TE30. For CD-HIT 
and MMseqs2, the performance is more variable across TE families. CD-HIT tends to generate sets with high 
similarity to the ad hoc sets in several families, including TE7, TE18, TE29, and TE31, but struggles with lower 
similarity (below 50%) in families like TE4, TE6, TE26, and TE30. Similarly, MMseqs2 performs well for TE17, 
TE18, TE22, and TE34 but shows lower similarity in TE4, TE26, and TE30.

Overall, the Greedy algorithm tends to select fewer representative sequences compared to the Bidirectional 
Greedy algorithm, CD-HIT, and MMseqs2. This approach effectively captures the essential diversity within 
each TE family while minimizing redundancy, resulting in a more concise and efficient representation of the 
sequence space. The Bidirectional Greedy algorithm, although generally returning larger sets, also struggles with 
certain families. Both CD-HIT and MMseqs2 show mixed results, indicating that further refinement is needed 
to improve their performance, particularly in complex families with many sequences.

Sensitivity and specificity analysis
We assess the accuracy of both algorithms by using their returned representative sequences to populate their 
corresponding TE families. Figure  6 provides insights into the sensitivity of the Greedy and Bidirectional 
Greedy algorithms in selecting representative sequences for TE families. We observe robust performance 
from both algorithms, which achieve a sensitivity of 100% across all TE families when considering sequences 
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with evidence at the protein level. The Greedy algorithm, on average, achieves an impressive 80% sensitivity 
with a representative set size of only 2 sequences. In contrast, the Bidirectional Greedy algorithm requires a 
larger representative set size of 4 sequences to reach a similar sensitivity level. This difference highlights the 
varying efficiency of the algorithms in capturing the diversity and coverage of sequences within each TE family. 
Furthermore, we find that both algorithms consistently produce representative sets that effectively retrieve all 
sequences from their respective TE families in BLAST searches, underscoring their utility in comprehensive 
sequence representation.

We assess the specificity of the representative sets generated by the Greedy and Bidirectional Greedy 
algorithms and show the results in Fig. 7. We observe a specificity of 1 across all TE families, indicating that both 
algorithms terminate without errors in sequence identification from other families. The maximum error rate, 
averaging around 0.02%, signifies the high precision and accuracy of these representative sets in distinguishing 
sequences belonging exclusively to their respective families. Although both algorithms perform exceptionally 
well, we find that the Greedy algorithm exhibits a slightly superior specificity compared to the Bidirectional 
Greedy algorithm, showcasing its ability to minimize cross-family sequence identifications more effectively.

We emphasize that the size of the representative set produced by these algorithms was not our primary 
focus in this application. We configure the Greedy algorithm to terminate based on a predefined threshold of 
sequence similarity, ensuring that the selected sequences adequately represent the diversity within each family. 
In contrast, we allow the Bidirectional Greedy algorithm to continue until it successfully identifies all sequences 
in the ground set via BLAST, potentially resulting in larger representative sets. Since the Bidirectional Greedy 
algorithm builds upon the Greedy algorithm, their sensitivity and specificity outcomes are generally comparable. 
This consistency in performance underscores the reliability of both algorithms in accurately identifying and 
representing sequences from their respective TE families.

Coverage analysis for carboxylesterase and peptidase families
Here we demonstrate that submodular functions can be applied to identify representative sequences of other 
protein families. Results show the potential of greedy algorithms in finding representative protein sequences of 
enzymes families with high sequence similarity; however, results are not complete without a thorough validation 

Fig. 5. Distributions of sequence identity between the benchmark representative sequences of each family 
and the sets returned by four optimization methods: two submodular optimization algorithms (Greedy and 
Bidirectional), CD-HIT, and MMseqs2. Each family is represented by four box plots showing the results for 
the Greedy algorithm, Bidirectional Greedy algorithm, CD-HIT, and MMseqs2, arranged from left (high 
transparency) to right (low transparency). A box plot with a single dot indicates that the algorithm returned a 
set containing only one sequence; otherwise, the returned set contains multiple sequences. Overall, the Greedy 
algorithm demonstrates the best performance, producing a tight set with high similarity to the ground truth. 
CD-HIT also performs well, though its representative sets generally contain more sequences than those from 
the Greedy algorithm. The Bidirectional Greedy algorithm and MMseqs2 show similar performance, often 
returning larger sets of representative sequences for each family.
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that greedy algorithms can identify representative sequences for any protein family. We applied the approach to 
two additional protein families, carboxylesterase (CE) enzyme family and the peptidase family A1 (A1A). We 
also compared the four methods (Greedy, Bidirectional Greedy, CD-HIT, MMseqs2) using the same data from 
CE and A1A families. For these two families, MMseqs2 returned many representative sequences. Specifically, 
MMseqs2 returned 2,323 representative sequences for the CE family and 1,701 for the A1A family. On the 
other hand, CD-HIT generated 10,564 representative sequences for the CE family and 8,774 for the A1A family. 
Note that CD-HIT and MMseqs2 are based on clustering, i.e., the methods group the sequences based on their 
similarity and then returns a representative sequence for each cluster50. There are two potential drawbacks of 
such approach: (1) it might return many clusters with many representative sequences, as shown above, and (2) it 
does not necessary provide high coverage because a cluster of sequences might not be covered 100% by a single 
representative sequence.

In contrast, the submodular optimization approaches offer more flexibility, allowing us to control the number 
of representative sequences returned Fig. 8 shows the coverage against on the number of representative sequences 
chosen by the two submodular algorithms. For CE family, both algorithms achieve 100% coverage with less than 
10 representative sequences. For the A1A family, both algorithms achieve over 90% coverage with less than 10 
representative sequences. The two algorithms achieve a 100% coverage with approximately 600 sequences, in 
which the Greedy algorithm has a slightly tighter set.

Discussion
In this study, we employed submodular optimization techniques to select representative sequences within 
thioesterase protein families in the ThYme database. This approach was motivated by the inherent redundancy 
in biological sequence datasets, which can obscure meaningful patterns and complicate genetic analysis. 
Our goal was to demonstrate the effectiveness of the facility location function, a widely used submodular 
function, in conjunction with optimization algorithms to enhance the selection of representative sequences. 
We specifically selected these algorithms because they minimize redundancy while ensuring high coverage of 
the protein family. Facility location functions have proven effective in modeling problems that involve selecting 
a representative subset from a larger set, particularly in clustering and summarization tasks. These functions 
balance the need to maximize coverage while minimizing redundancy, making them an ideal choice for selecting 
representative sequences from biological datasets. In contrast, information-theoretic functions like entropy or 
mutual information-though powerful-focus primarily on maximizing information gain. They are more suited to 
scenarios where capturing diverse information is essential, such as in cases involving uncertainty51,52, rather than 
focusing on physical proximity or sequence similarity. Since our primary objective was to select a set of sequences 

Fig. 6. Comparison of the sensitivity of two algorithms, Greedy and Bidirectional Greedy, in optimizing 
submodular functions for identifying representative protein sequences. The sensitivity values are plotted 
against the number of selected representative sequences across protein families in the TE group. Both 
algorithm demonstrates high sensitivity, but Greedy algorithm performs better in reducing the redundancy 
than Bidirectional Greedy algorithm does.
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Fig. 8. Comparison of the coverage of two algorithms, Greedy and Bidirectional Greedy, in optimizing 
submodular functions for identifying representative protein sequences. The coverage values are plotted 
against the number of selected representative sequences across protein families in the two protein families: 
the carboxylesterase (CE) enzyme family and the peptidase family A1 (A1A). Both algorithm demonstrates 
to return the representative set with high coverage, but Greedy algorithm performs better in reducing the 
redundancy than Bidirectional Greedy algorithm does.

 

Fig. 7. Comparison of the specificity of two algorithms, Greedy and Bidirectional Greedy, in optimizing 
submodular functions for identifying representative protein sequences. The specificity values are plotted 
against the number of selected representative sequences across various protein families (TE1 to TE35). Both 
algorithms exhibit high specificity, with the maximum error rate is around 0.02%.
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based on similarity and redundancy reduction, facility location functions were more directly applicable to our 
problem. However, information-theoretic approaches could be valuable for future extensions of this work.

Accordingly, we applied the approaches to real-world datasets to evaluate their performance. The results of 
our study highlight several key findings. Firstly, the submodular optimization approach consistently produced 
representative sets that effectively captured the entire spectrum of sequences within their respective families, 
achieving high sensitivity. This capability is crucial in ensuring that no significant sequence variations or genetic 
traits are overlooked during analysis. Furthermore, we meticulously evaluated the specificity of our approach. 
This involved assessing the extent to which sequences from unrelated families were mistakenly identified 
when using the representative sequences of a specific family as query sequences Our findings indicate that the 
representative sets generated through submodular optimization exhibited commendable specificity, minimizing 
the occurrence of false positive identifications and maintaining accurate family-level distinctions. In terms 
of optimization algorithm performance, the Greedy algorithm emerged as particularly effective in enhancing 
specificity and reducing redundancy compared to the Bidirectional Greedy algorithm. The Greedy algorithm 
systematically adds sequences based on their marginal contributions to the overall representation, thereby 
optimizing the balance between coverage and specificity, which explains its superior performance.

When applied to protein families with significant sequence similarity, our approach enables the selection of 
smaller, yet highly informative set of representative sequences compared to traditional clustering algorithms. It 
is important to note that representative subset selection differs fundamentally from clustering. While clustering 
results in groups of similar sequences, representative subset selection focuses on choosing individual sequences 
that best represent the entire dataset. Applying clustering methods to representative selection requires an 
additional step to identify an exemplar sequence for each cluster. In practice, clustering algorithms are rarely 
used for the purpose of selecting representative sequences from large datasets20. We note that when dealing with 
large datasets, unverified sequences are often present, and submodular optimization algorithms may frequently 
select these unverified sequences based solely on amino acid sequences, which can lead to inaccuracies. This 
means that these algorithms are not necessarily robust to errors occurring in generic-purpose databases, and are 
to be used for carefully curated datasets.

In summary, our study underscores the significant advantages of employing submodular optimization in the 
selection of representative sequences within protein families with significant sequence similarity in specialized, 
curated databases. By addressing redundancy and enhancing specificity, this methodology not only improves 
the accuracy of biological analyses but also contributes to a deeper understanding of genetic diversity and 
evolutionary relationships. These insights are pivotal for advancing research in various biological disciplines and 
informing strategies for precision medicine and biotechnological applications.

Data availability
The protein sequences data are available at ThYme database https://thyme.engr.unr.edu/v2.0/, MEROPS  d a t a b a 
s e https://www.ebi.ac.uk/merops/, and ESTHER database https://bioweb.supagro.inrae.fr/ ESTHER/. The code 
and data for reproducing the results are available at https://doi.org/10.5281/zenodo.14063070.
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