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Single-cell technologies have revolutionized our ability to study cellular heterogeneity and dynamics 
at unprecedented resolutions. In this fast-growing field, it becomes increasingly challenging to 
navigate the vast number of tools and steps for analysis. It is particularly difficult to integrate and 
analyze large datasets that require extensive collaborations and customized pipelines to obtain robust 
results. We present CytoAnalyst, a web-based platform that offers a number of important advantages 
over existing tools for single-cell analysis. First, the platform enables custom pipeline configuration 
using an efficient study management system and a broad range of analysis modules. Second, the 
platform supports parallel analysis instances, facilitating the comprehensive comparison of different 
methods or parameter settings available at each analysis step. Third, the advanced sharing system 
facilitates real-time synchronization among team members and seamless analysis continuation 
across different devices. Finally, the grid-layout visualization system supports simultaneous displays 
of different data aspects, allowing for the comparison of multiple labels and plots side-by-side for 
comprehensive data insights, with the ability to save and reload visualization settings at any analysis 
step. The platform incorporates multiple blending modes, allowing users to combine plots in various 
ways for comprehensive data exploration. CytoAnalyst supports a high level of analytical rigor while 
providing user-friendly and flexible operations through its carefully designed interface and extensive 
documentation. The platform supports all major web browsers and is freely available at  h t t p s : / / c y t o a n a 
l y s t . t i n n g u y e n - l a b . c o m     .  
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Background
Single-cell RNA sequencing (scRNA-Seq) has emerged as a transformative technology in biomedical research, 
enabling unprecedented insights into cellular heterogeneity, rare cell populations, and dynamic biological 
processes1. Single-cell analysis often follows a complex workflow that involves multiple steps such as quality 
control, normalization, feature selection, dimensionality reduction, clustering, differential expression (DE) 
analysis, cell annotation, and trajectory inference. While numerous methods and tools are available for each 
analysis step, integrating them into a cohesive workflow remains a challenge2.

Current single-cell analysis tools are available as command-line packages and/or web-based platforms. 
Command-line packages offer extensive analytical capabilities but require coding and bioinformatics skills3–6. 
Web-based platforms make single-cell analysis more accessible to life scientists by providing an intuitive 
graphical user interface. These tools can be installed on local computers7–18, or are available as public servers19–22. 
The analysis capabilities of these platforms vary substantially. Some platforms focus solely on data visualization 
(e.g., iSEE, ShinyCell, SCope, UCSC Cell Browser) or cluster and DE analysis (Loupe Browser, CellxGene, 
SPRING). Others offer more comprehensive workflows, from data pre-processing to clustering, DE analysis, 
and other analytical steps (Cellenics, Asc-Seurat, SCTK2, ASAP, Cellar, ezSingleCell, ICARUS, SingleCAnalyzer, 
Granatum). Despite the extensive functionalities provided by these platforms, important challenges persist. It 
is particularly challenging to integrate and analyze large datasets that require coordinated efforts/collaborations 
and customized analysis workflows to obtain robust results and valid conclusions.
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Here, we introduce CytoAnalyst, a new web-based platform that advances workflow flexibility, parallel 
processing, and team collaboration in single-cell data analysis. We systematically compare CytoAnalyst’s features 
with available single-cell analysis tools (Supplementary Section 1 and Supplementary Figure S1). While some 
platforms offer broader data modality support or specialized analytical modules, CytoAnalyst’s strength lies in 
its integrated approach to workflow flexibility, parallel processing, and team collaboration.

CytoAnalyst offers a number of advantages over existing tools. First, instead of imposing a rigid workflow, 
CytoAnalyst enables custom pipeline configuration using an efficient study management system and seven 
analysis modules (embedding, clustering, DE analysis, gene set management, enrichment, annotation, and 
trajectory inference). Researchers can navigate between analysis modules and start/resume any analysis steps 
without losing results or visualization configuration. Second, the platform supports parallel analysis instances, 
facilitating the comparison of methods or parameter settings available at each step. Third, the advanced sharing 
system facilitates real-time interaction among team members and seamless analysis continuation across different 
devices. Access permissions for a shared study can be controlled at granular levels, allowing collaborators to 
view or alter parameter settings and analysis pipelines. Finally, the grid-layout visualization system supports 
simultaneous displays of different data aspects, allowing for the comparison of multiple labels and plots side-by-
side for comprehensive data insights, with the ability to save and reload visualization settings at any analysis step.

To make CytoAnalyst accessible to all researchers, we host it on a high-performance infrastructure with 
optimized networking and storage capabilities (Dual AMD EPYC 9654 96-Core Processor, 192 cores and 384 
threads, 3TB DDR5 RAM, 112TB usable NVMe SSD storage, 4 NVIDIA H100 GPUs). The platform supports all 
major web browsers without installation or registration requirements.

Implementation
Functional overview
Figure  1 shows the overall structure of CytoAnalyst. The platform consists of three main systems: 1) study 
management and data sharing, 2) grid-layout visualization system, and 3) core analysis system with seven 
analytical modules. CytoAnalyst supports a typical single-cell RNA sequencing analysis workflow that guides 
users from data upload to biological interpretation. Here we summarize each system and the typical user 
workflow, then describe them in detail in the following sections.

A typical analysis workflow in CytoAnalyst begins with data uploading, where users can import 10X Genomics 
Cell Ranger9 output (.tar.gz or .h5 format) or AnnData23 objects (.h5ad format), along with additional metadata 
(.csv/.tsv format). Following data upload, users perform quality control and preprocessing steps, including cell 
and gene filtering based on UMI counts, gene counts, and mitochondrial/ribosomal gene percentages. The 
next step involves normalization (log-normalization or SCTransform) and data integration across multiple 
samples using methods such as RPCA24, Harmony25, or CCA26 when analyzing multiple datasets. Users then 
proceed to dimensionality reduction and visualization using PCA27, UMAP28, or t-SNE29 for transcriptome 
landscape visualization. The workflow continues with clustering analysis using Leiden30 or Louvain31 algorithms 
to identify distinct cell populations, followed by cell annotation using marker genes, reference databases, or 
AI-powered inference tools. Differential expression (DE) analysis identifies marker genes and investigates 
expression differences between cell groups using statistical methods such as the Wilcoxon rank-sum test32. For 
deeper biological insights, users can perform gene set enrichment analysis using curated pathways and marker 
sets, and conclude with pseudo-time trajectory analysis using Slingshot to investigate cellular development and 
differentiation processes.

This interconnected workflow is supported by the study management and data-sharing system that allows 
users to create and manage their projects. The system maintains detailed analysis logs and enables collaboration 
through secure sharing capabilities, allowing researchers to distribute both data and analysis outcomes with 
colleagues while all analysis parameters are automatically documented. The platform provides extensive 
documentation and tutorials at each analytical step.

The grid-layout visualization system enables dynamic exploration of single-cell data through multiple 
complementary approaches. The system supports flexible and simultaneous display of multiple plot types: scatter 
plots, violin plots, dot plots, heatmaps, histograms, volcano plots, and trajectory plots. A distinctive feature of 
CytoAnalyst lies in its emphasis on interactive visualization and real-time analysis. The platform implements 
a flexible visualization framework that facilitates the creation of customized plots with adjustable parameters, 
overlay of multiple data types, and interactive cell selection for focused examination.

Finally, the core analysis system consists of independent modules for embedding analysis, clustering, DE 
analysis, gene set management, cell enrichment, cell annotation, and pseudo-time trajectory inference. The 
modules are interconnected, enabling users to seamlessly transition between different steps while maintaining 
complete control over parameter settings. Advanced users can skip any steps and begin with any process based 
on their research needs and dataset characteristics. For computationally demanding tasks, CytoAnalyst employs 
an advanced job queuing system that efficiently manages server resources while delivering real-time progress 
updates. Users can initiate multiple analyses without waiting for previous tasks to complete. This functionality 
allows researchers to explore different parameter configurations simultaneously. All analytical results are securely 
stored on the server and remain accessible through the platform’s interface.

All analysis results can be exported for downstream publication and sharing. Clustering results, DE analysis 
outputs, cell type annotations, and pseudo-time trajectory inference results can be exported as CSV files. All 
visualizations, including scatter plots, violin plots, dot plots, heatmaps, histograms, volcano plots, and trajectory 
plots, can be exported in multiple high-quality formats (PNG, JPEG, SVG) with customizable dimensions. 
Additionally, complete analysis workflows including all embeddings (PCA27, t-SNE29, UMAP28), clustering 
assignments, cell enrichment statistics, annotation labels, trajectory inference outputs, and associated metadata 
can be exported as comprehensive AnnData objects23 (.h5ad format) for seamless integration with other single-
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Fig. 1. Overview of the CytoAnalyst’s capabilities and core analytical components. The platform consists of 
three main modules: 1) study management and sharing system, 2) grid-layout visualization system, and 3) 
core analysis system of seven analytical modules. The management system allows users to create and manage 
projects and data. The system supports 10X Genomics Cell Ranger in .tar.gz or .h5 format, and AnnData 
objects in .h5ad format, as well as additional metadata in .csv/.tsv format. Following data upload, users can 
perform quality control and preprocessing before performing downstream analyses. All analysis parameters 
and results are automatically logged and can be shared with collaborators through a secure sharing system. The 
grid-layout visualization system supports flexible and simultaneous display of multiple plot types: scatter plots, 
violin plots, dot plots, heatmaps, histograms, volcano plots, and trajectory plots. The platform’s blending modes 
allow users to combine plots in various ways for comprehensive data exploration. The core system consists 
of seven analysis modules: embedding analysis, clustering, differential expression (DE) analysis, gene set 
management, cell enrichment, cell annotation, and pseudo-time trajectory inference. These analysis modules 
are interconnected, enabling users to seamlessly transition between different steps while maintaining complete 
control over parameter settings. Advanced users can skip any steps and begin with any process based on their 
research needs and dataset characteristics.
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cell analysis platforms such as Scanpy4 and Seurat33, enabling collaborative research and extended downstream 
analysis.

Study management and sharing
Study management
The study management system allows users to efficiently manage, share, and monitor their analyses. Researchers 
can create multiple studies within the platform to organize their data, which can be from different experiments 
or conditions. Each study maintains an independent analysis workflow, allowing focused investigation of related 
datasets. Users can transition among studies seamlessly through a user-friendly interface, with all analysis results 
and parameters preserved within their respective contexts.

The platform also provides a secure sharing system for efficient collaborations. Individual studies can be 
shared through protected links, enabling real-time interaction among team members. Access permissions for a 
shared study can be controlled at granular levels, allowing collaborators to view or alter parameter settings and 
the analysis pipeline. The owner of a study can grant or revoke access to the study at any time, ensuring data 
security and privacy. The sharing system also facilitates seamless analysis continuity across different devices.

To ensure reproducibility and accountability, CytoAnalyst maintains a comprehensive log of all analytical 
operations. Users can review the analysis history for each study, encompassing data upload details, preprocessing 
steps, parameter settings, analysis workflow, and visualization. This logging mechanism guarantees that all 
analytical decisions are documented and retrievable if necessary.

Data upload and pre-processing
CytoAnalyst accepts two standardized formats for single-cell data: output from 10X Genomics Cell Ranger34 
in .tar.gz or .h5 format, and AnnData23 objects in .h5ad format. Researchers can supplement each dataset with 
metadata (sample information, experimental conditions, etc.). Multiple files can be uploaded for the same study, 
enabling integrated analysis across samples or conditions. Upon data selection, CytoAnalyst performs automatic 
format detection and validation to ensure data consistency. The platform generates an interactive preview of 
uploaded data, allowing verification of gene identifiers, cell barcodes, and metadata fields.

Following data upload, users can perform quality control and pre-processing before other downstream 
analyses. The platform computes and visualizes key quality metrics, including unique gene counts per cell, 
unique molecular identifier (UMI) counts per cell, percentage of mitochondrial genes, and/or ribosomal genes. 
These metrics are displayed as interactive violin plots showing value distributions across all cells. Users can 
dynamically adjust filtering thresholds while observing effects on cell populations in real time through violin 
plots and dimensional reduction visualizations.

For multi-sample experiments, quality metrics are computed and displayed independently for each sample, 
enabling sample-specific quality control thresholds. Sample identity information is preserved throughout the 
analysis to facilitate downstream data integration and comparative analyses. After initial data processing, users 
retain the flexibility to incorporate additional samples into the study or supplement existing samples with new 
metadata. This adaptive approach allows seamless progression to subsequent analysis steps, including data 
integration, dimensionality reduction, clustering, cell type annotation, differential expression analysis, and 
trajectory inference.

Grid-layout visualization
Figure 2 illustrates the visualization capabilities of CytoAnalyst that enable dynamic exploration of single-cell 
data through multiple complementary approaches. The visualization architecture centers around a grid-layout 
system for the simultaneous display of different data aspects (Fig.  2A1–8). The framework supports diverse 
visualization types, including scatter plots, violin plots, dot plots, heatmaps, trajectory plots, histograms, and 
volcano plots. Each plot is optimized for specific analysis contexts and data types.

Scatter plots facilitate visualization of both continuous and categorical variables using two-dimensional spaces 
from t-SNE29 and UMAP28. These variables encompass metadata, gene expression levels, cluster assignment, 
cell type annotation, enrichment results, and trajectory information (Fig.  2A1–2). Trajectory plots visualize 
inferred cellular paths and associated gene expression dynamics. These plots can overlay gene expression levels, 
pseudotime ordering, or cluster assignments to provide comprehensive views of biological processes (Fig. 2A3). 
Violin plots represent gene expression distributions across cell populations. Users can examine individual genes 
or gene sets, with options to group cells by categorical variables or their combinations (Fig. 2A4). Dot plots 
and heatmaps are best for the visualization of expression patterns across multiple genes and cell populations. 
Heatmaps provide detailed expression patterns, while dot plots offer concise representations highlighting 
informative genes with their expression levels and percentages (Fig. 2A5–6). Histograms display the distribution 
of individual variables across all cells. Users can adjust bin sizes and range to focus on specific distribution 
aspects (Fig. 2A7). Volcano plots illustrate differential expression results with adjustable significance thresholds 
and effect size cutoffs (Fig. 2A8).

The platform incorporates multiple plot-blending modes, allowing users to combine plots in various ways 
for comprehensive data exploration. Figure  2B1–3 shows three examples: 1) two categorical variables are 
aggregated to create a new plot with hierarchical labels, 2) a categorical and a continuous variable are aggregated 
to create a new plot with a gradient color mapping for each category, allowing for adjusting filtering on each 
category independently, and 3) an overlay mode for transparent overlaying of two plots for comparison. Overall, 
supported blending modes include replace, separate, aggregate, overlay, and concatenate. Replace mode enables 
straightforward feature visualization by substituting plots in the grid layout. Separate mode facilitates side-by-
side comparison through the addition of new plots. Aggregate mode combines multiple variables into unified 
visualizations. For categorical variables, the system generates plots with combined variable coloring. For 
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Fig. 2. Interactive visualization in CytoAnalyst. (A) Chart types supported by the platform, including 1) 
scatter plot for categorical data (e.g., metadata, clustering, annotation labels), 2) scatter plot for continuous data 
(e.g., UMI counts, gene expression, enrichment scores, pseudotime), 3) graph plot overlaying scatter plot (i.e., 
trajectory inference), 4) violin plot (i.e., distribution of gene expression), 5) dot plot (i.e., expression of genes 
across cell groups), 6) heatmap (i.e., expression of genes across individual cells), 7) histogram (e.g., distribution 
of gene expression, UMI counts), and 8) volcano plot (i.e., differential expression analysis results). With violin 
plots, dot plots, and heatmaps, users can group cells by any categorical variables or their combinations. (B) 
Blending modes in CytoAnalyst, including 1) aggregate mode for combining two categorical variables, 2) 
aggregate mode for combining a categorical and a continuous variable, resulting in a new plot with a gradient 
color mapping for each category, and 3) overlay mode for transparent overlaying of two plots for comparison. 
C) Cell selection across multiple plots using the grid layout, enabling focused examination of specific cell 
populations. In this example, there are 3 sets of cells selected in 3 different plots. Red solid-lined boxes indicate 
the selected area/cells in each plot. Red dashed-line boxes indicate the corresponding selected area/cells in 
other plots.
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continuous variables, it calculates and displays average values. When variable types are mixed, i.e., continuous 
and categorical, the system separates data points by categories and colors them using a gradient scale to allow 
users to compare values across categories. Overlay mode enables transparent plot overlaying to examine 
relationships between variables. Concatenate mode stacks multiple features in heatmaps and dot plots for direct 
comparison.

All visualizations support interactive features, including zooming, panning, cell selection, and data point 
tooltips. Data filtering can be applied to any categorical or continuous variable, affecting individual plots or 
the entire grid layout. Figure 2C demonstrates the cell selection across multiple plots using the grid layout in 
CytoAnalyst. When there are multiple plots in the grid layout, users can select cells in one plot and see the 
corresponding selection in other plots. In this example, there are three different plots with a selected region 
indicated by a red solid-line box in each plot. Two red dashed-line boxes in each plot indicate the corresponding 
selected cells in other plots. This feature is particularly useful for examining feature expression patterns across 
multiple visualizations or selecting cells for annotation using complex criteria, such as the union or intersection 
of multiple regions.

Plot arrangements can be modified through drag-and-drop interactions with real-time updates. Users can 
synchronize zoom levels across plots for direct feature comparison and modify individual plot parameters 
without altering source data. Color mapping in CytoAnalyst supports both categorical and continuous variables 
through predefined color presets and custom color palettes, and gradients. For categorical variables like cluster 
assignments, users can define custom colors for each category. For continuous variables, adjustable color 
gradients for min and max values are available. Users can export any figure in PNG, JPEG, or SVG formats with 
user-defined dimensions and resolution. They can save and load visualization settings as profiles for future use 
or collaboration, with all parameters and configurations preserved. Users can load saved visualization profiles 
with only a few clicks.

Core analysis modules
At the core of its capabilities, CytoAnalyst consists of seven analysis modules: embedding analysis, clustering, 
DE analysis, gene set management, cell enrichment, cell annotation, and pseudo-time trajectory inference. These 
modules are interconnected, allowing for flexible analyses and collaborations. Depending on data and research 
goals, advanced users can start the analysis using any module and subsequently refine the results based on their 
preferred analysis pipelines.

Embedding analysis
Figure  3 shows CytoAnalyst’s embedding analysis workflow for one or multiple samples. The workflow is 
compatible with that of Seurat for data integration and dimensionality reduction. Users start the embedding 
analysis by selecting the cells of interest using sample information, metadata variables, cluster labels, existing 
cell annotations, and manual selection. Users can filter cells based on any categorical or continuous variable, 

Fig. 3. Embedding analysis for one or multiple samples. Users start by selecting the cells of interest using 
sample information, metadata, cluster labels, existing annotations, and different visualization plots. They 
can also choose to focus on a pre-defined set of genes using custom gene sets or cell type markers. After cell 
and gene selection, the next step is to scale/normalize the data (using LogNormalize or scTransform) and 
to identify highly variable features/genes (using variance stabilizing transformation, mean variability plot, 
or highest dispersion). The platform includes three integration methods (anchor-based CCA, anchor-based 
RPCA, and Harmony) for integration and batch correction of single-cell data and samples obtained from 
different experiments or sources. Users can also regress out unwanted sources of biological variation related 
to mitochondrial, ribosomal, or cell cycle genes. Finally, users can perform dimensionality reduction and 
transcriptome landscape visualization using PCA, t-SNE, or UMAP. The platform also facilitates the rapid 
creation of multiple embedding analyses for categorical variables, such as generating separate embeddings for 
each cluster. This capability proves particularly valuable for sub-clustering analysis, as global embeddings may 
not capture the hierarchical data structure.
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or directly select the cells from the visualization interface. In parallel, the gene filtering option offers additional 
analytical flexibility by allowing users to focus their analyses on pre-defined gene sets. This is particularly useful 
when focusing on specific cell types using known marker genes.

After selecting cells and genes of interest, users can normalize the data using LogNormalize26 or 
SCTransform35. They can perform feature selection to identify highly variable genes using Variance Stabilizing 
Transformation36, Mean Variability Plot37, or Highest Dispersion38. When analyzing samples and data from 
multiple sources, users can perform data integration and batch correction using three established approaches: 
Anchor-based CCA Integration26, Anchor-based RPCA Integration24, or Harmony25. Users can also regress out 
unwanted sources of biological variation related to mitochondrial, ribosomal, or cell cycle genes. Finally, users 
can perform dimensionality reduction and visualize the embedding results using truncated SVD PCA (tSVD 
PCA)39,40, vanilla PCA27, t-SNE29, or UMAP28. The interactive interfaces enable customization of advanced 
parameters, allowing users to maintain complete control over the analysis.

To extend embedding functionalities, the platform also facilitates the rapid creation of multiple embedding 
analyses for categorical variables, such as generating separate embeddings for each cluster. This capability proves 
particularly valuable for sub-clustering analysis, as global embeddings may not capture the hierarchical data 
structure. With the built-in grid-layout visualization ability, generated embeddings can be visualized with any 
existing labels. These embeddings serve as foundations for downstream analyses, including clustering, cell type 
annotation, and trajectory inference.

Cluster analysis
CytoAnalyst implements a flexible cluster analysis framework with multiple algorithms to identify distinct cell 
populations. The platform includes Louvain31, Leiden30, and K-means41 as clustering methods to accommodate 
diverse data structures. Louvain and Leiden utilize adjustable resolution parameters to control cluster granularity, 
while K-means requires the specification of cluster numbers. The graph-based Louvain and Leiden methods 
excel at global-level clustering analysis for identifying cellular populations across complete datasets, while 
K-means is more suitable for sub-clustering where the number of clusters is known42.

To perform clustering, users can choose one or multiple embeddings from the embedding analysis and specify 
the clustering algorithms with corresponding parameters. The platform enables the simultaneous creation of 
multiple clustering analyses, facilitating the comparison of different parameter settings and algorithms. This 
capability proves essential for identifying optimal parameters and cluster numbers. The grid-layout visualization 
system enables direct comparison of clustering results across different embeddings and parameters.

For investigating finer population structures, CytoAnalyst supports hierarchical sub-clustering analysis. 
Users can perform embedding analysis on specific clusters from initial clustering results, followed by subsequent 
clustering analysis on these focused embeddings. This approach reveals heterogeneity within major cell types 
that may be obscured in global embedding spaces.

Once the cluster analysis is done, the cluster labels can be transferred to other embeddings for visualization. 
In other words, one can use a specific embedding for clustering and then choose any other embeddings to display 
the cell labels. This flexibility enables visualization of sub-clustering results within global embedding spaces 
alongside primary cluster labels. The platform’s aggregation blend mode facilitates the visualization of multiple 
clustering levels in unified plots, providing comprehensive views of cellular hierarchies. This visualization 
approach extends to combining clustering results with metadata labels, enabling the exploration of relationships 
between cell populations and experimental conditions.

Differential expression (DE) analysis
Figure  4 shows an example of DE analysis using the user interface implemented in CytoAnalyst. Figure  4A 
shows an example DE analysis configuration in which users can choose to compare cells from different clusters 
(by cluster), cell groups separated by conditions or other variables (by metadata), annotated cell types (by 
annotation), or customized groups (custom). Via comparison mode, users can choose to compare each cell 
group against all other groups (with others) or compare cells from different conditions (within cluster). The cell 
filtering setting allows users to refine the comparative analysis by choosing samples, metadata, cluster labels, 
and annotated cell types in each of the two groups involved. The method configuration setting allows users 
to choose the method (Wilcoxon, MAST) and other important parameters (max cell, min percent, log fold-
change). Figure 4B shows the preview table with details of the cell groups involved (cell count, selected samples, 
and clusters) and the total number of cells. Figure 4C shows DE analysis results for a comparison, in which the 
results can be sorted and/or filtered using any of the computed statistics of the genes (p-value, log fold-change, 
average expression, percentage of cells with positive expression, and percentage difference). Figure 4D displays 
the volcano plots in which genes with adjusted p-values less than 5% and absolute log fold-change higher than 
2 are highlighted in red.

Overall, we implement a comprehensive framework for comparative analysis among different types/clusters, 
conditions, and time points. Users can perform DE analysis on any cell subset using an advanced selection 
system that combines interactive visualization and filtering based on both categorical and continuous variables. 
The DE analysis workflow supports three distinct comparison modes: between groups, within groups, and user-
defined group comparisons. Between-group analysis identifies genes differentially expressed between clusters 
or categorical variables, such as comparing a cluster against all other cells. Within-group analysis examines 
condition-specific effects in defined populations, enabling comparison of identical clusters across different 
conditions. Custom analysis refers to a customized grouping defined by users. The platform facilitates the 
creation of multiple DE analyses simultaneously, providing a preview interface that displays comparison groups 
with their respective cell counts and gene numbers.
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For hypothesis testing, users can choose between the Wilcoxon rank-sum test32 and the Model-based 
Analysis of Single-cell Transcriptomics (MAST)43 to compute the p-values for the genes, followed by a correction 
for false discovery rate using Benjamini-Hochberg44. After hypothesis testing, users can refine the list of DE 
genes using p-value, log fold-change, average expression, and minimum expressing cell percentage (in each 
group or between groups). Result exploration for DE analysis utilizes interactive volcano plots arranged in grid 
layouts, accompanied by comprehensive statistical tables. The interface enables gene searching, filtering, and 
highlighting across plots. Selected genes can also be incorporated into existing gene set collections for other 
downstream analyses.

Gene set management
A gene set is a collection of unique genes grouped together based on a shared characteristic or function. A gene 
set can represent a cellular process or functional module, a signaling pathway, a set of markers of a specific cell 
type, a set of markers for a condition or disease, or simply a set of DE genes obtained from a comparative analysis. 

Fig. 4. User interface for DE analysis. A) DE analysis configuration. Users can choose to compare cells from 
different clusters (by cluster), cell groups separated by conditions or other variables (by metadata), annotated 
cell types (by annotation), or groups manually selected by users (custom). In this example, we perform DE 
analysis by comparing cell groups obtained from cluster analysis. Via comparison mode, users can choose 
to compare each cluster against all other clusters (with others) or compare cells from different conditions 
(within cluster). The cell filtering setting allows users to choose specific samples, metadata, cluster labels, and 
annotated cell types. The method configuration setting allows users to choose the hypothesis testing method 
(Wilcoxon, MAST) and important parameters: 1) total number of cells involved (max cell), 2) minimum 
expression percentage for genes (min percent), and 3) minimum log fold-change for genes. B) Preview table 
before performing the DE analysis. In this example, users are comparing each of the three clusters against 
all other clusters. The table displays the name for each comparison, details of the cell groups involved (cell 
count, selected samples, and clusters), and the total number of cells. C) DE analysis results for one of the three 
comparisons. The results can be sorted and/or filtered using any of the computed statistics of the genes: 1) 
p-value and adjusted p-value, 2) log fold-change, 3) average expression in each group, 4) percentage of cells in 
which the genes are expressed, and 5) percentage difference. D) Volcano plots of all comparisons that show the 
adjusted p-values and log fold-change. In this example, genes with adjusted p-values less than 5% and absolute 
log fold-change higher than 2 are highlighted in red, while the rest of the genes are highlighted in blue.
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There are multiple applications of gene sets in CytoAnalyst, including: 1) gene filtering in embedding analysis, 
2) cell enrichment and annotation, 3) artificial intelligence (AI)-based cell type inference using Large Language 
Models (LLMs), and 4) visualization and identifying patterns of gene expression associated with specific cellular 
processes or phenotypes.

CytoAnalyst implements a hierarchical system for creating, importing, and managing gene sets. The platform 
organizes gene sets into collections, enabling logical grouping of closely related gene sets. This hierarchical 
structure facilitates the management of different biological contexts, such as varying cell type granularity levels 
or pathway-specific gene groups. Users can create distinct collections for broad cell types, cell subtypes, or 
biological pathways to explore enriched processes in specific cell populations. The platform supports multiple 
methods for gene set creation and management. Users can create new collections, import gene sets from external 
sources in tabular or GMT formats, or choose from curated pre-defined collections. Within each collection, 
users maintain full control over gene set composition, including renaming, deletion, and modifying the gene set 
(adding and removing genes).

By default, CytoAnalyst embeds a comprehensive collection of cell type markers available from CellMarker 
2.045. The database contains a curated compilation of experimentally validated markers for known cell types in 
human and mouse tissues. For Homo sapiens, users can select from more than 400 tissues, 1,500 cell types, and 
15,000 markers. Similarly, the Mus musculus reference collection offers users approximately 300 tissues, 1,400 
cell types, and 12,000 markers. Users can easily search for these reference gene sets (by tissue or cell type) and 
incorporate them into their analysis pipelines with minimal effort.

The gene set management interface also provides a cell-type inference tool that leverages AI to infer potential 
cell types associated with a gene set. Given the tissue and the gene set (marker genes), the tool returns a list of 
cell types most likely present in the sample, structured in a cell ontology hierarchy. The inference tool is based 
on Meta’s llama 3.346, a recent 70B parameter model, using the Ollama framework to create a responsive API 
system that enables efficient LLM communication. To ensure an accurate inference with a consistent output 
format, we design a prompt template that directs the LLM with specific guidance and context. This AI-based 
inference feature is a proof-of-concept tool that demonstrates the potential of integrating large language models 
into single-cell analysis workflows.

Cell enrichment analysis
CytoAnalyst supports both cell-level and group-level enrichment analyses. Cell-level enrichment basically 
performs enrichment analysis of pre-defined gene sets for each individual cell. Given a cell, CytoAnalyst first 
calculates the z-score of each gene and then compares the z-scores of genes in a gene set against genes in all other 
gene sets using one-sided Welch’s t-test47. In addition to the p-value for each gene set, the software also returns a 
score (average z-score of genes in the gene set) and score difference (by subtracting the average z-score of genes 
in the gene set from the average z-scores of genes in other gene sets). Users can visualize the p-values, scores, and 
score differences across cells and gene sets for cell annotation or developmental stages.

In addition to cell-level enrichment, CytoAnalyst also supports enrichment analysis for a group of cells 
(group-level enrichment). Using the DE analysis results, the platform computes the p-values and statistics of 
pre-defined gene sets for the cell group. The platform first ranks the genes using log2FC and p-values and then 
applies FGSEA48 to compute enrichment scores and statistical significance for each gene set. The platform also 
calculates the enrichment score difference as the difference between the enrichment score of the target gene 
set and the average enrichment score of all other gene sets. The obtained enrichment score, enrichment score 
difference, and statistical significance are then assigned to all cells of the underlying group.

Cell enrichment primarily facilitates cell type annotation and cell state identification. For example, users 
can enrich cells with known cell type markers to assign labels to distinct populations, or enrich DE genes with 
biological pathways to characterize cellular states. In both cases, the platform calculates enrichment scores for 
the target gene set, enrichment score differences between the target gene set and other genes, and the statistical 
significance for individual cells or cell groups.

The sets of DE genes identified through the differential analysis between the chosen groups can be exported 
to be subsequently analyzed through a comprehensive omics analysis platform such as iPathwayGuide49, or 
others. Furthermore, the DE genes identified by the differential analysis can also be used as annotations/markers 
for the identification of cell types in subsequent experiments (see below).

Cell annotation
Cell annotation is a critical step in scRNA-Seq analysis, enabling researchers to assign meaningful labels to 
distinct cell populations. CytoAnalyst implements a flexible annotation system combining manual curation, 
marker-based enrichment, and AI-based inference for cell type assignment.

Users can create a new annotation instance through three available options: 1) default label assignment 
(Fig. 5A), 2) label assignment using metadata, clustering, and former annotations (Fig. 5B), and 3) assignment 
using cell enrichment results (Fig. 5C). In the first option (default), users can assign an unknown label to all cells 
in the dataset and then gradually refine the annotation through manual examination and analysis. In the second 
option (label aggregation), users can combine variables from metadata, clustering, and former annotations to 
generate new cell labels. In the third option (enrichment analysis), users can assign initial cell labels based on 
enrichment statistics, metadata, clustering, and other variables.

The annotation feature is not an isolated module but is supplemented by other modules, including Gene 
Set Management and Cell Enrichment Analysis, so that users can create accurate and informative annotations 
(see sections above). Users can switch between the annotation interface and other interfaces while editing the 
annotation. Figure 5D shows the interface for annotation editing. The interface allows users to flexibly filter 
cells using metadata, clustering, or any other labels (Fig. 5D1). The platform displays cells in a tabular format 
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with current annotations, metadata variables, and cluster information. This table supports additional filtering 
operations and cell export capabilities. The annotation interface also integrates with the grid-layout visualization 
system, allowing users to select cells from multiple plots (Fig.  5D2 and D4). For complex selections across 
multiple plots, users can define how to combine these regions using union, intersection, or custom queries that 

Fig. 5. Cell annotation interface. (A) Default annotation initialization. Users can create a default annotation 
in which all cells are unknown, and then gradually refine the annotation. (B) Annotation initialization using 
clustering results, metadata, and/or former annotations. (C) Annotation initialization using enrichment 
analysis results. Using enrichment results, users can assign labels to a group of cells by either selecting a gene 
set with satisfying statistics in the group or assigning a custom label to cells in a group. (D) Annotation editing 
interface. CytoAnalyst allows users to flexibly choose and assign new labels to cells (D1). They can view all 
cell labels in the annotation table. In addition, users can choose to display specific information from metadata 
(show metadata) or clustering results (show clustering) as columns. In this example, we select 11,371 cells (out 
of 31,040) from clusters 1, 3, and 15, and then assign them as Mesenchymal (new value). Moreover, users can 
select the cells from different plots (D2, D4). They can also use the AI-based tool to infer the cell type based on 
the markers of the cells (D3, D5).
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support AND, OR, and NOT operators. CytoAnalyst also provides users with a way to infer potential cell types 
for each group of cells based on their marker genes and tissue information (Fig. 5D3 and D5). By switching to 
the Genes Collection interface, users can utilize an AI model to infer the cell type based on the marker genes of 
a cell group. Finally, users can assign new labels to the selected cells, and the platform will update the annotation 
results immediately. For each session, the platform maintains the annotation history, allowing users to review 
and revert to previous assignments.

Trajectory inference
Trajectory inference in single-cell analysis is a computational approach that aims to infer dynamic biological 
processes, such as cellular differentiation, developmental pathways, or disease mechanisms, by mapping the 
gene expression changes cells undergo on a pseudo-timeline5. Even though all cells are usually part of the same 
sample taken at the same time, the main assumption behind the trajectory inference is that various cells are 
caught in different stages of a process. By grouping the cells with similar expression profiles and analyzing 
the differences between these groups, one can presumably establish an order for the changes that the cells go 
through, and thus create a trajectory in this pseudo-time. CytoAnalyst utilizes Slingshot to infer cell lineage 
trajectories and pseudo-temporal ordering from single-cell RNA-seq data50. The method has been shown to 
perform robustly across diverse datasets, balancing accuracy and flexibility in identifying branching lineages51. 
Slingshot treats cell clusters as nodes in a graph and constructs a minimum spanning tree (MST) connecting 
these nodes, thereby identifying the global lineage structure (e.g., the number of lineages and branching points). 
Next, it assigns pseudo-times to individual cells by fitting principal curves52 to the data along each lineage, 
starting from a user-specified or algorithm-determined root cluster. These curves model smooth trajectories 
through the cells’ expression space, capturing their presumed progression along divergent differentiation paths.

CytoAnalyst enhances trajectory inference by letting researchers group cells in multiple ways, using clusters, 
annotated cell types, or metadata (like treatment groups or patient cohorts). This flexibility allows researchers to 
focus on specific populations, such as tracking differentiation in cells from a particular experiment or comparing 
trajectories between healthy and diseased samples. Additionally, CytoAnalyst offers customizable settings for 
Slingshot, including the ability to choose how cluster distances are measured, modify the convergence threshold 
to control the precision of principal curve fitting, and so on. These customizations help researchers reproduce or 
apply them to their specific case studies.

After inferring trajectories, CytoAnalyst provides an intuitive visualization for users to explore and interpret 
the results. Researchers can visualize trajectories and gene expression in overlay mode to observe how a marker 
gene peaks at a branching point, and in aggregate mode to visualize multiple lineages on a single plot or in 
separate mode to examine individual lineages in detail.

Technical implementation
Figure 6 shows the overall architecture of CytoAnalyst. The web-based platform utilizes modern web technologies 
to provide a seamless user experience across different devices and browsers. At the user interface level, we use the 
React framework to enable the creation of dynamic, responsive components that are updated in real time as users 
interact with the platform. To enable real-time collaboration features (analysis sharing, result updating, etc.), 
we built the back end using WebSocket along with Meteor, a full-stack JavaScript platform that simplifies the 
development of real-time web applications. It provides a scalable, reactive architecture that enables efficient data 
synchronization between clients and servers. With this back-end architecture, CytoAnalyst provides real-time 
updates during data processing and synchronizes both individual and shared analyses across all clients, sessions, 
and devices. This enables users to monitor and alter analysis progress, intermediate results, and visualization. In 

Fig. 6. CytoAnalyst software architecture. The platform is built on a modern web stack with React for the 
front-end interface, Echarts and D3 for interactive visualization, JetBrains WriterSide for documentation, 
Meteor for the back-end server, MongoDB for database management, and R and Python for data processing 
and analysis. CytoAnalyst implements a high-performance job queuing system to manage computational tasks 
and resource allocation, synchronizing real-time progress updates across sessions and devices. The platform 
is deployed using Docker containerized technologies to ensure portability and scalability, and is hosted on an 
enterprise-grade server infrastructure with optimized networking, storage, and computational capabilities to 
handle large-scale single-cell datasets.
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addition, data management is one of the key components of CytoAnalyst’s architecture. CytoAnalyst leverages 
MongoDB, a scalable NoSQL database for efficient storage and retrieval of large datasets. This robust database 
infrastructure supports CytoAnalyst’s data management system, including automatic archiving of unused 
projects to optimize server resources.

The core sharing system in CytoAnalyst utilizes a flexible permission management framework. Project 
owners can share analyses as read-only, read-write, or full ownership. This granular permission system 
enables team leaders to maintain appropriate control while facilitating collaborative analysis. For each shared 
project, CytoAnalyst maintains complete version control. All analytical steps, including parameter settings and 
computations, are automatically logged and preserved. We implement a token-based authentication system 
tied to each study, ensuring only authorized users can view or modify analysis results. The platform maintains 
detailed access logs and enables project owners to revoke sharing permissions when needed. All analytical steps, 
including parameter settings and computations, are automatically logged and preserved.

CytoAnalyst uses corresponding modules from Seurat33 for the majority of analytical functions. For data 
upload and preprocessing, we use Seurat’s CreateSeuratObject and standard quality control functions. For 
normalization, we implement Seurat’s NormalizeData with log-normalization. For data integration across 
samples, we use Seurat’s integration workflow, including FindIntegrationAnchors and IntegrateData. For 
dimensionality reduction, we use Seurat’s RunPCA, RunUMAP, and RunTSNE functions. For clustering analysis, 
we use Seurat’s FindNeighbors and FindClusters functions, implementing the Louvain and Leiden algorithms. 
For k-means clustering, we use MiniBatchKmeans from the ClusterR53 package to handle large datasets 
efficiently. For differential expression analysis, we use Seurat’s FindMarkers and FindAllMarkers functions. For 
gene set enrichment analysis, we use the FGSEA48 package for fast gene set enrichment analysis. For trajectory 
inference, we use Slingshot50 for pseudo-time analysis and lineage reconstruction.

For the computational backend, we use a custom job queuing system to manage and distribute analytical 
tasks across multiple worker processes. This system enables parallel processing of multiple analyses while 
maintaining system responsiveness. The platform architecture is designed with extensibility as a core principle to 
accommodate the rapidly evolving landscape of single-cell analysis methodologies. The modular structure of our 
seven core analysis modules allows new functionalities to be added as independent modules without disrupting 
existing workflows. Our containerized job processing system, using Docker and Conda environments, enables 
seamless integration of new R packages, Python libraries, or different computational frameworks. The flexible 
parameter management system accommodates new method-specific parameters and configurations. The job 
queuing system dynamically allocates computational resources based on the specific requirements of each 
analysis module, ensuring optimal performance across different analytical workflows.

The platform is optimized for datasets ranging from thousands to hundreds of thousands of cells. Performance 
benchmarks (Supplementary Section 2) demonstrate excellent responsiveness for datasets up to 50K cells 
(analysis completion in under 10 minutes), good performance for datasets up to 200K cells (10-60 minutes), 
and full support for datasets up to 1M cells with longer computation times (1-24 hours depending on analysis 
complexity) (Supplementary Figure S2).

CytoAnalyst’s extensible architecture ensures the platform can evolve to support emerging methodologies 
and data types. The data management infrastructure can accommodate different data types beyond single-cell 
RNA-seq, enabling support for technologies like spatial transcriptomics and single-cell proteomics, similar to 
how tools like Cellar17 have expanded to handle spatial transcriptomics and proteomics data. Other platforms 
have successfully demonstrated such extensibility, including ezSingleCell18, which supports multiple modalities, 
including spatial transcriptomics, and ASAP16, which has extended beyond RNA-seq to include scATAC-Seq 
analysis. New analytical methods can be integrated through our modular framework by implementing the 
computational backend, defining parameter interfaces, and developing visualization components. The flexible 
parameter management system accommodates method-specific configurations, while our job queuing system 
handles computational demands with varied resource requirements. The platform’s comprehensive logging 
systems ensure that new methods maintain the same level of reproducibility and traceability as existing modules.

Results
To demonstrate the capabilities of CytoAnalyst, we analyze three single-cell datasets obtained from previous 
studies54–58 to showcase the platform’s features and functionalities. The first dataset consists of 31,040 cells in bone 
marrow organoids54. The second dataset comprises 15,457 cells collected from the sun-protected inguinoiliac 
region of whole-skin samples from five male donors55. The third dataset consists of 5,828 bone marrow cells that 
were collected from three experimental studies56–58.

Case Study 1: Annotation of bone marrow organoids
Here, we analyze the single-cell dataset (31,040 cells) from Frenz-Wiessner et al.54, in which bone marrow 
organoids were generated from human induced pluripotent stem cells. Through manual examination of both 
scRNA-Seq and matched flow cytometry data, the authors identified five major cell types. However, for the 
purpose of illustrating the capabilities of CytoAnalyst, we assume that we do not know the number or cell types, 
nor the true annotation of the single-cell data. We aim to identify potential cell types based on the unbiased 
analysis of the single-cell data alone, without using external data from the matched flow cytometry. We will do 
so following a logical order of analysis steps: transcriptome landscape visualization, cluster analysis, DE analysis, 
and cell type annotation.

Transcriptome landscape visualization and louvain clustering: To initiate the analysis, we upload the file 
Bone_Marrow_Organoids.h5ad obtained from Frenz-Wiessner et al.54. Note that the authors have already filtered 
barcodes with fewer than 400 detected genes, more than 40,000 counts in total, and mitochondrial genes that 
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exceeded 10% of the total number of gene counts. They also employed Scrublet v.0.2.359 with default parameters, 
filtering transcriptomic profiles with a predicted doublet score exceeding 0.2 for the removal of doublets.

Figure 7A shows the transcriptome landscape of the updated data using UMAP. The visualization clearly 
shows that the transcriptome landscape consists of three major cell populations (marked as I, II, and III). To 
determine potential cell groups, we perform Louvain clustering31 with the default resolution of 0.3 (Fig. 7B). 

Fig. 7. Visualization, Louvain clustering, and differential expression (DE) analysis. (A) Transcriptome 
landscape visualization using UMAP. The landscape can be separated into three populations (I, II, and III) 
that are highlighted by the three dashed lines. (B) Louvain clustering using the default resolution of 0.3. (C) 
Louvain clustering results using resolutions of 0.1, 0.2, 0.4, and 0.5. The next step is to perform DE analysis and 
visualize the expression of the marker genes across the transcriptome landscape. (D-F) Expression of marker 
genes for populations I, II, and III, respectively. (G) Expression of marker genes for clusters 4, 11, 12, and 14 of 
population III. H) Final cell grouping based on visualization, Louvain clustering, and DE analysis.
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Acknowledging that Louvain clustering has the potential to produce a large number of clusters, we execute the 
algorithm with different resolutions to explore cluster granularity and to identify robust boundaries (Fig. 7C).

Figures 7B and C show that, regardless of resolution settings, Louvain is able to separate the cells into three 
major populations, which is consistent with what we observe from the transcriptome landscape. Louvain with a 
resolution of 0.3 identifies 15 clusters, in which clusters 1, 3, and 15 correspond to population I; clusters 2, 5, 6, 
7, 8, 9, 10, and 13 correspond to population II; clusters 4, 11, 12, and 14 correspond to population III. Similarly, 
Louvain with resolution 0.1 (panel C) identifies 8 clusters, in which cluster 1 corresponds to population I; 
clusters 2, 4, 5, and 6 correspond to population II; clusters 3, 7, and 8 correspond to population III. In summary, 
Louvain analysis results with different resolutions all separate the transcriptome landscape into three major cell 
populations, as we observed in Fig. 7A–C. For the next step of the analysis, we proceed with Louvain results 
using the default resolution of 0.3 (Fig. 7B), but all other resolutions are likely to lead to similar annotation 
results, as we will show in the following text.

DE analysis and cluster verification: We proceed with the Louvain clustering results using the default 
resolution of 0.3 (Fig. 7B). There are three major cell populations (I, II, and III). Next, we perform DE analysis 
to identify the marker genes of each population and visualize their expression. The goal is to verify whether we 
should further divide each population into smaller cell groups. We conduct three DE analyses: population I 
(clusters 1, 3, 15) versus others; population II (clusters 2, 5, 6, 7, 8, 9, 10, 13) versus others; population III (clusters 
4, 11, 12, 14) versus others. We use the Wilcoxon rank sum test to calculate the p-values of the genes and then 
adjust the p-values using Benjamini-Hochberg44. We then use the following criteria to identify the marker genes 
of each population: 1) log fold change of 3 or higher, 2) FDR p-value less than 5%, 3) average expression more 
than 1, and 4) the difference in the percentage of cells expressing the gene between groups is at least 50%. We 
then visualize the expression of the marker genes.

Figures 7D–F show the average expression of the marker genes for each of the three cell populations. The 
marker genes of population I have high expression in the population and have negligible expression in any other 
populations (Fig. 7D). Therefore, we are confident that the first population consists of a single cell type. Similarly, 
the marker genes of population II have high expression in the population and have negligible expression in any 
other populations (Fig. 7E). Therefore, it is most likely that population II consists of a single cell type as well. 
However, the markers of the third population (clusters 4, 11, 12, and 14) have high expression only in cluster 4 
and not in clusters 11, 12, and 14. This suggests that cluster 4 represents a distinct cell type from clusters 11, 12, 
and 14.

Consequently, we perform additional DE analyses for each cluster in population III. These are smaller groups 
of cells, and we could not find the markers for clusters 11 and 12 using the stringent criteria used above. Therefore, 
we relax the log2FC threshold to 2 or higher for cluster 11, and reduce the percentage of cells expressing the 
genes between groups to 40% or higher for cluster 12. Figure 7G shows the expression of marker genes in each 
of the four clusters. The top two panels show the expression of marker genes in clusters 4 and 11. Interestingly, 
the expression of marker genes in these two clusters shares very similar patterns. Therefore, we merge these two 
clusters together. The bottom two panels show the expression of marker genes in clusters 12 and 14, in which 
marker genes of each cluster are highly expressed in their respective cluster but not in other clusters. At the 
end, we divide the population III into three cell groups: clusters 4 and 11 together, cluster 12, and cluster 14. In 
summary, through visualization, Louvain clustering, and DE analysis, we identify five cell groups. Figure 7H and 
Table 1 show the final clusters and their respective markers.

Cell type annotation using built-in AI-based Inference: Through visualization, clustering, and DE analysis, 
we identify five groups of cells. Here, we aim to assign the cell groups to known cell type labels. For each of the 
five groups and their associated markers (Fig. 7H and Table 1), we use the built-in inference tool to search for 
potential cell types. Given the tissue and associated markers, the inference tool returns a list of cell types most 

Group Cluster Marker genes

I 1, 3, 15
KIF26B, GULP1, COL5A2, COL3A1, ANTXR1, COL6A3, PDZRN3, LSAMP, SLIT2, TSPAN5, PALLD, TENM3, EDNRA, UNC5C, SEMA5A, ITGA1, 
VCAN, PRR16, PDGFRB, SLIT3, SPARC, PEG10, CALD1, MEST, PCOLCE, COL1A2, DLC1, SULF1, SDC2, FAM110B, COL5A1, FREM1, PTPRD, 
ARHGAP42, ANK3, HPSE2, BAMBI, EPS8, CSRP2, LUM, DCN, POSTN, GPC6, LRFN5, FLRT2, NID2, CDH11, COL1A1, CCDC102B, TSHZ2, FBLN1, 
COL6A2, COL6A1

II 2, 5, 6, 7, 8, 
9, 10, 13

LAPTM5, PTPRC, CD52, S100A4, STK17B, ARHGAP15, FYB1, MCTP1, DOCK2, LST1, PIM1, IKZF1, RAB11FIP1, SYK, DOCK8, SPI1, MAP3K8, 
SRGN, CELF2, CHST11, ARHGDIB, CD69, LCP1, ATP8B4, PRKCB, CORO1A, GMFG, TYROBP, NCF4, RAC2, RUNX1, SAMSN1

III 4, 11
GJA4, TIE1, ADGRL4, ARHGAP29, CD34, CHRM3, HSPG2, CRIM1, CALCRL, DYSF, SCN9A, RASGRP3, MECOM, WWTR1, LDB2, LIMCH1, 
EMCN, VEGFC, KDR, CCSER1, AFAP1L1, LIFR, PLK2, FILIP1, GJA1, ADGRF5, PTCHD4, MYCT1, PLEKHG1, RAPGEF5, DOCK4, KLHL4, STC1, 
DEPTOR, PREX2, CSGALNACT1, NFIB, RGS3, GALNT18, TSPAN18, ESAM, JAM3, MMRN2, ZEB1, ABLIM1, BICD1, PTPRB, FLT1, EFNB2, DOCK9, 
RHOJ, CLEC14A, PPP1R13B, RNASE1, PRKCH, DLL4, CDH5, IGFBP4, PECAM1, ICAM2, PTPRM, CD93, SOX18, PLVAP, CLDN5, SHANK3, CYYR1

IV 12
L1TD1, KANK4, SLC2A1, PATJ, VTCN1, EPCAM, FIGN, ITGB6, LYPD6B, VIT, DOCK3, THRB, NDNF, TENM3, ANXA3, FRAS1, CCSER1, GABRP, 
EFNA5, ADAMTS19, CTNND2, ADAMTS6, PERP, KHDRBS2, COL12A1, DSP, GCNT2, SEMA3C, MET, SEMA3D, SDK1, NRK, GPC3, GRHL2, 
PCSK5, KANK1, SLN, SESN3, FAT3, SHANK2, KCNMA1, KIAA1217, TMTC2, KRT18, KRT8, FREM2, GPC5, MTUS2, SAMD4A, PRTG, ADAMTS18, 
CLDN6, CDH3, EMP2, KRT19, EPB41L3, CCBE1, GREB1L, PCDH11Y

V 14
L1TD1, SPATA6, FMN2, PDPN, ALPL, ITGA6, CACNA2D3, HERC5, COL23A1, INSYN2B, PRDM1, GMPR, RMND1, POU5F1, SLC16A10, GALNT17, 
SUGCT, NRCAM, EDA, FGF13, GABRA3, DMD, PCSK1N, TRPC5, RTL4, GNA14, CFAP95, CACNA1B, ASRGL1, USP28, SLC25A16, UTF1, CTNNA3, 
PLCE1, TMTC1, PPM1H, TMEM132D, PLBD1, TCL1A, WDHD1, FRMD6, NPAS3, HS3ST4, NETO2, ZNF66, NANOS3

Table 1. Marker genes obtained from the DE analysis. We use the following criteria to identify the genes that 
are differentially expressed: 1) Log2FC ≥ 3, 2) FDR p-value ≤ 0.05, 3) expression ≥ 1, and 4) percentage of 
cells expressing the genes between groups ≥ 50%.
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likely present in the sample, structured in a cell ontology hierarchy. Table 2 displays the top predictions for each 
cell group, sorted in descending order of likelihood.

Our strategy for cell type assignment is to search for the label that appears most frequently in the top 
predictions. If there are multiple labels with the same frequency, we choose the cell type with the lowest order 
(more fine-grained) in the cell ontology hierarchy. The goal is to reduce the assignment error since a more 
fine-grained label needs more evidence. Based on this strategy, we label Group I as Mesenchymal cells because 
Mesenchymal appears in most predictions. Similarly, we classify Group II as Hematopoietic stem cells because 
the top three predictions all point to this cell type. Group III is classified as Endothelial cells, as the cell type 
appears four times in the five predictions. Interestingly, the AI suggests that Group IV should be assigned to 
Mesenchymal cells (similar to Group I). Therefore, we merge Group I and Group IV together and label them as 
Mesenchymal cells. Finally, group V is assigned to Mesodermal cells.

Figure 8 summarizes the complete analysis for this case study. Data visualization shows that there are three 
major cell populations in the transcriptome landscape (Fig. 8A). Following the analysis of Louvain clustering 
and expression patterns of the marker genes of each population, we determine that the dataset consists of five 
cell groups (Fig. 8B). Using the AI cell-type inference tool, we assign each cell group to a known cell type label 
with the highest likelihood (Fig. 8C). The final annotation determined by CytoAnalyst is highly similar to the 
annotation provided by the authors (Fig. 8D). The two annotations share 99% similarity, with the difference 
being that CytoAnalyst assigns cells in group IV (blue cells in Fig. 8B) to Mesenchymal instead of Epithelial cells. 
Endothelial cells can undergo a process called endothelial-to-mesenchymal transition (EndMT), where they 
acquire mesenchymal characteristics. We hypothesize that the authors of the dataset were able to distinguish 
between the two cell types using external evidence from flow cytometry data (e.g, cell size, morphology, etc.)54, 
evidence that may not be present or visible in the gene expression data.

Case study 2: Cell type markers of skin samples
We analyze the single-cell data from Solé-Boldo et al.55. The data has a total of 15,457 cells from whole-skin 
samples of five male donors: two young donors (25 and 27 years old) and three old donors (53, 69, and 70 years 
old). The authors performed standard data processing, data integration, and dimension reduction using Seurat3. 
They performed cluster analysis and cell type annotation, resulting in 17 clusters (using Louvain) and 9 main 
cell types using known cell markers: keratinocytes, fibroblasts, macrophages/dendritic cells, T cells, vascular 
and lymphatic endothelial cells, pericytes, erythrocytes, and melanocytes. Next, they isolated 5,948 fibroblasts 
and performed functional enrichment to identify four fibroblast subtypes: secretory-reticular fibroblasts, 
pro-inflammatory fibroblasts, secretory-papillary fibroblasts, and mesenchymal fibroblasts. The authors also 
performed DE analysis to identify the markers for the clusters, cell types, and subtypes. As before, we analyzed 
the data in an unbiased way, ignoring the clusters and cell types reported by the original authors.

In this case study, we use the DE analysis module from CytoAnalyst to conduct four distinct DE analyses: 
(1) identification of cluster markers, (2) identification of fibroblast-specific markers in young samples, (3) 
identification of fibroblast-specific markers in old samples, and (4) comparison of fibroblast subpopulations in 
young samples. In the first analysis, cluster markers are identified by comparing each cluster against all other 

Group Prediction

I 1. Pericyte →Mesenchymal Cell→ Connective Tissue Cell → Somatic Cell → Eukaryotic Cell → Cells: PDGFRB, COL1A1, COL1A2, ANTXR1, PDZRN3

2. Smooth Muscle Cell →Mesenchymal Cell→ Connective Tissue Cell → Somatic Cell → Eukaryotic Cell → Cells: CALD1, COL1A1, COL1A2, COL3A1, 
COL5A1, COL5A2

3. Fibroblast →Mesenchymal Cell→ Connective Tissue Cell → Somatic Cell → Eukaryotic Cell → Cells: COL1A1, COL1A2, COL3A1, COL5A1, COL5A2, 
COL6A1, COL6A2, COL6A3

4. Mesenchymal Stem Cell →Mesenchymal Cell→ Connective Tissue Cell → Somatic Cell → Eukaryotic Cell → Cells: COL1A1, COL1A2, PDGFRB, VCAN, 
CDH11, DCN

5. Osteoblast →Mesenchymal Cell→ Connective Tissue Cell → Somatic Cell → Eukaryotic Cell → Cells: COL1A1, COL1A2, SPARC, POSTN, DCN

II 1. Myeloid Cell →Hematopoietic Cell→ Immune System Cell → Nucleated Cell → Eukaryotic Cell → Cells: CD52, SYK, SPI1, DOCK2, RAB11FIP1

2. Dendritic Cell → Myeloid Cell →Hematopoietic Cell→ Immune System Cell → Nucleated Cell → Cells: CD52, DOCK2, SYK, SPI1, FYB1

3. Neutrophil → Myeloid Cell →Hematopoietic Cell→ Immune System Cell → Nucleated Cell → Cells: LAPTM5, PTPRC, S100A4, RAC2, NCF4

4. Macrophage → Myeloid Cell →Hematopoietic Cell→ Immune System Cell → Nucleated Cell → Cells: CD52, SYK, SPI1, DOCK2, TYROBP

5. Monocyte → Myeloid Cell →Hematopoietic Cell→ Immune System Cell → Nucleated Cell → Cells: LAPTM5, PTPRC, S100A4, STK17B, ARHGAP15

III 1. Endothelial Cell→ Angioblast → Vascular Progenitor Cell → Mesodermal Cell → Ectoderm Or Mesoderm Derived Cell → Cells: KDR, VEGFC, PECAM1

2. Lymphatic Endothelial Cell →Endothelial Cell→ Angioblast → Vascular Progenitor Cell → Mesodermal Cell → Cells: FLT1

3. Venous Endothelial Cell →Endothelial Cell→ Angioblast → Vascular Progenitor Cell → Mesodermal Cell → Cells: KDR, EFNB2

IV 1. Osteoblast →Mesenchymal Cell→ Connective Tissue Cell → Somatic Cell → Eukaryotic Cell → Cells: MET, SEMA3C

2. Adipocyte →Mesenchymal Cell→ Connective Tissue Cell → Somatic Cell → Eukaryotic Cell → Cells: NRK

3. Hematopoietic Stem Cell → Hematopoietic Progenitor Cell → Hematopoietic Cell → Immune System Cell → Eukaryotic Cell → Cells: EMP2, KRT18, KRT19

V 1. Mesenchymal Stem Cell →Mesodermal Cell→ Ectoderm And Mesoderm Derived Cell → Somatic Cell → Eukaryotic Cell → Cells: ALPL

2. Osteoblast → Mesenchymal Cell →Mesodermal Cell→ Ectoderm And Mesoderm Derived Cell → Somatic Cell → Cells: COL23A1

3. Mesenchymal Cell →Mesodermal Cell→ Ectoderm And Mesoderm Derived Cell → Somatic Cell → Eukaryotic Cell → Cells: ITGA6

Table 2. Predicted cell types using the AI-based inference tool.
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clusters. With 17 clusters in total, this results in 17 DE analyses. In the second and third analyses, we compare 
each fibroblast cluster against all other cells in young and old samples, respectively. With four clusters within 
the fibroblast population, this results in a total of 8 DE analyses. In the final analysis, we compare each fibroblast 
subpopulation against other fibroblast subpopulations in young samples, resulting in 4 DE analyses. For all 
comparisons, we use the Wilcoxon rank-sum test to calculate the p-values.

The parameter settings used for all analyses are shown in Supplementary Figures S3 and S8. The volcano plots 
are shown in Supplementary Figures S4–S7, and S9. The DE genes for each of the four analyses are reported in 
Supplementary Tables S1–S4, respectively. Overall, the results from CytoAnalyst are consistent with the published 
results. In the first analysis (17 DE analyses for 17 clusters), most of the markers identified by CytoAnalyst 
for each cluster are also confirmed by the authors (88.4%). In the second analysis, fibroblast-specific markers 
identified by CytoAnalyst in young samples share high similarity (91.9%) with the list of markers provided by the 
authors. In the third analysis, fibroblast-specific markers identified by CytoAnalyst in old samples have 91.1% 
similarity with the markers identified by the authors. In the fourth analysis, markers identified by CytoAnalyst 
have 84.7% similarity with the markers identified by the authors. Detailed analysis workflow and results are 
reported in Supplementary Section 3.

Case study 3: Trajectory inference of bone marrow cells
We analyze the bone marrow dataset obtained from Björklund et al.60 in which the authors integrated the 
data from three different experiments56–58. The authors processed the data using standard Seurat protocol, 
including cell filtering, normalization, feature selection, dimensionality reduction, and clustering. The authors 
performed trajectory inference using Slingshot to identify developmental trajectories of bone marrow cells. 
They also used tradeSeq61 to identify genes that change during the developmental trajectories of each lineage: 
Cd34 (Hematopoietic stem/progenitor cells, or HSPC), Ms4a1 (B cells), Ltf (Granulocyte cells), and Siglech 
(Dendritic cells). The authors published the lineages obtained for only HSPC, which can serve as a reference for 
our analysis. Here, we aim to reproduce the reported HSPC lineages using the same data. In addition, we also 
infer lineages for B cells, Granulocyte cells, and Dendritic cells.

The dataset contains integrated embeddings, clustering results, and cell type annotations provided by the 
authors. Here, we use CytoAnalyst to infer developmental trajectories given the provided embeddings and clusters. 
Specifically, we use the expression of four genes corresponding to four cell type lineages to infer the trajectories: 
Cd34 (HSPC), Ms4a1 (B cells), Ltf (Granulocyte), Siglech (Dendritic cells). Supplementary Figures S10, S13, 
S14, and S15 show the expression of these genes in the dataset, side-by-side with the clustering results. For each 
gene, we examine the expression pattern across clusters and manually select the start and end points for the 
trajectory inference. Supplementary Figure S11 shows the parameter settings we use for trajectory inference, 

Fig. 8. Final cell type annotation results. A) Transcriptome landscape visualization. B) Final grouping using 
clustering and DE analysis. C) Cell types annotated by CytoAnalyst using the built-in AI-based inference 
tool. D) Cell types annotated by Frenz-Wiessner et al. using single-cell and flow cytometry data. The two 
annotations share high similarity, with the only difference being that the AI assigns group IV to Mesenchymal 
instead of Epithelial.
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including embeddings, start groups, end groups, distance method, convergence threshold, etc. Supplementary 
Figures S12, S16, S17, and S18 show the inferred trajectories using CytoAnalyst. We also compare our results 
against the results reported by the authors. Supplementary Figure S19 shows that the results from CytoAnalyst 
match the published results, demonstrating the platform’s ability to reproduce complex trajectory inference 
analyses. Supplementary Section 4 provides details for the complete analysis workflow and results.

Conclusions
In this article, we present CytoAnalyst, a web-based platform for single-cell data analysis that is both powerful 
and easily accessible. By combining state-of-the-art analytical methods with advanced visualization techniques 
and an intuitive user interface, the platform enables researchers of all backgrounds to perform rigorous and 
comprehensive single-cell analysis. CytoAnalyst’s comprehensive analysis workflow includes data filtering, 
quality control, multi-sample integration, dimensionality reduction, cluster analysis, marker identification 
through DE analysis, cell type annotation, and pseudo-time trajectory inference. These analytical modules are 
interconnected with interactive visualization and systematic study management, enabling seamless transitions 
between steps while maintaining full parameter customization capabilities.

Several aspects distinguish CytoAnalyst from existing tools for single-cell analysis. First, its advanced 
visualization framework with multiple blending modes and interactive selection capabilities facilitates deep 
exploration of cellular heterogeneity. Second, the platform’s robust annotation system, powered by extensive 
reference databases and machine learning approaches, enables reliable cell type identification. Third, the 
implementation of real-time collaboration features and comprehensive project sharing capabilities promotes 
team-based analysis and reproducible research. CytoAnalyst’s scalable architecture and high-performance 
computing capabilities ensure it can handle the growing scale and complexity of single-cell datasets. Finally, to 
our knowledge, CytoAnalyst is the first single-cell analysis platform to incorporate an AI module for cell type 
inference.

While CytoAnalyst provides a comprehensive platform for single-cell analysis, several limitations should be 
acknowledged to help users make informed decisions about its applicability to their research needs. CytoAnalyst 
currently focuses exclusively on scRNA-Seq data and does not support scATAC-Seq, spatial transcriptomics, or 
single-cell proteomics. The platform accepts data in standardized formats (10X Genomics Cell Ranger9 output 
and AnnData23 objects) and assumes that basic quality control steps such as ambient RNA removal62,63 or 
doublet detection64,65 have been performed using external tools.

Regarding annotation approaches, CytoAnalyst employs a marker-based annotation workflow similar 
to established cell type annotation pipelines used throughout the field. Like standard manual annotation 
approaches in Seurat3, SingleR66, and other widely-used tools67, CytoAnalyst relies on users to make informed 
decisions about marker gene selection, cell type assignment, and validation of annotations based on their 
biological expertise. The platform provides several annotation modes, including manual assignment, marker 
gene enrichment analysis, and AI-assisted inference, but all require user interpretation and validation. This 
approach is consistent with established annotation pipelines where the accuracy ultimately depends on the 
quality of marker genes, the researcher’s domain knowledge, and careful validation rather than fully automated 
classification. For novel cell types or complex populations, we recommend the same validation practices used 
in standard workflows: literature review, additional marker analysis, and comparison with reference datasets.

CytoAnalyst’s current implementation prioritizes ease of use and accessibility over computational flexibility. 
Advanced users who require custom algorithm implementations or non-standard analysis approaches may 
prefer command-line tools or programming environments like R or Python. However, our modular architecture 
and containerized infrastructure position the platform well for future expansion to address these limitations as 
the field continues to evolve.

As single-cell technologies continue advancing, CytoAnalyst will evolve to incorporate new analytical 
methods while maintaining its core mission of democratizing single-cell transcriptomics analysis.

Data availability
The datasets analysed during the current study are available at:  h t t p s :  / / c e l l  x g e n e .  c z i s c  i e n c e . c o m / c o l l e c t i o n s / 5 
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0 - c b 7 4 1 e 5 7 e 5 f 0 . https://zenodo.org/records/15319627.
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