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Fast and precise single-cell data analysis using a
hierarchical autoencoder
Duc Tran 1, Hung Nguyen1, Bang Tran1, Carlo La Vecchia 2, Hung N. Luu 3,4 & Tin Nguyen 1✉

A primary challenge in single-cell RNA sequencing (scRNA-seq) studies comes from the

massive amount of data and the excess noise level. To address this challenge, we introduce

an analysis framework, named single-cell Decomposition using Hierarchical Autoencoder

(scDHA), that reliably extracts representative information of each cell. The scDHA pipeline

consists of two core modules. The first module is a non-negative kernel autoencoder able to

remove genes or components that have insignificant contributions to the part-based repre-

sentation of the data. The second module is a stacked Bayesian autoencoder that projects the

data onto a low-dimensional space (compressed). To diminish the tendency to overfit of

neural networks, we repeatedly perturb the compressed space to learn a more generalized

representation of the data. In an extensive analysis, we demonstrate that scDHA outperforms

state-of-the-art techniques in many research sub-fields of scRNA-seq analysis, including cell

segregation through unsupervised learning, visualization of transcriptome landscape, cell

classification, and pseudo-time inference.
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Advances in microfluidics and sequencing technologies
have allowed us to monitor biological systems at single-
cell resolution1,2. This comprehensive decomposition of

complex tissues holds enormous potential in both developmental
biology and clinical research3–5. Many computational methods
have been developed to extract valuable information available in
massive single-cell RNA sequencing data. These include methods
for cell segregation, transcriptome landscape visualization, cell
classification, and pseudo-time inference.

Defining cell types through unsupervised learning, also known
as cell segregation or clustering, is considered the most powerful
application of scRNA-seq data6. This has led to the creation of a
number of atlas projects7,8, which aim to build the references of
all cell types in model organisms at various developmental stages.
Widely-used methods in this category include SC39, SEURAT10,
SINCERA11, CIDR12, and SCANPY13. Another fundamental
application of scRNA-seq is the visualization of transcriptome
landscape. Computational methods in this category aim at
representing the high-dimensional scRNA-seq data in a low-
dimensional space while preserving the relevant structure of the
data. Non-linear methods14, including Isomap15, Diffusion
Map16, t-SNE17, and UMAP18, have been recognized as efficient
techniques to avoid overcrowding due to the large number of
cells, while preserving the local data structure. Among these, t-
SNE is the most commonly used technique while UMAP and
SCANPY are recent methods.

Visualizing transcriptome landscape and building compre-
hensive atlases are problems of unsupervised learning. Once the
cellular subpopulations have been determined and validated,
classification techniques can be used to determine the composi-
tion of new data sets by classifying cells into discrete types.
Dominant classification methods include XGBoost19, Random
Forest (RF)20, Deep Learning (DL)21, and Gradient Boosting
Machine (GBM)22. Another important downstream analysis is
pseudo-time inference. Cellular processes, such as cell cycle,
proliferation, differentiation, and activation23,24, can be modeled
computationally using trajectory inference methods. These
methods aim at ordering the cells along developmental trajec-
tories. Among a number of trajectory inference tools, Monocle25,
TSCAN26, Slingshot27, and SCANPY13 are considered state-of-
the-art and are widely used for pseudo-temporal ordering.

As the volume of scRNA-seq data increases exponentially each
year28, the above-mentioned methods have become primary
investigation tools in many research fields, including cancer29,
immunology30, or virology31. However, the ever-increasing
number of cells, technical noise, and high dropout rate pose
significant computational challenges in scRNA-seq analysis6,32,33.
These challenges affect both analysis accuracy and scalability, and
greatly hinder our capability to extract the wealth of information
available in single-cell data.

In this work, we develop a new analysis framework, called
single-cell Decomposition using Hierarchical Autoencoder
(scDHA), that can efficiently detach noise from informative
biological signals. The scDHA pipeline consists of two core
modules (Fig. 1a). The first module is a non-negative kernel
autoencoder that provides a non-negative, part-based repre-
sentation of the data. Based on the weight distribution of the
encoder, scDHA removes genes or components that have insig-
nificant contributions to the representation. The second module
is a Stacked Bayesian Self-learning Network that is built upon the
Variational Autoencoder (VAE)34 to project the data onto a low-
dimensional space (see Methods section). Using this informative
and compact representation, many analyses can be performed
with high accuracy and tractable time complexity (mostly linear
or lower complexity). In one joint framework, the scDHA soft-
ware package conducts cell segregation through unsupervised

learning, dimension reduction and visualization, cell classifica-
tion, and time-trajectory inference. We will show that scDHA
outperforms state-of-the-art methods in all four sub-fields: cell
segregation through unsupervised learning, transcriptome land-
scape visualization, cell classification, and pseudo-time inference.

Results
Cell segregation. We assess the performance of scDHA in clus-
tering using 34 scRNA-seq data sets with known cell types (see
Methods section for details of each data set). The true class
information of these data sets is only used a posteriori to assess
the results. We compare scDHA with five methods that are widely
used for single-cell clustering: SC39, SEURAT10, SINCERA11,
CIDR12, and SCANPY13. Note that SCANPY is also an all-in-one
pipeline that is able to perform three types of analysis: clustering,
visualization, and pseudo-time inference. We include k-means as
the reference method in cluster analysis.

As the true cell types are known in these data sets, we use
adjusted Rand index (ARI)35 to assess the performance of the six
clustering methods. Figure 1b shows the ARI values obtained for
each data set, as well as the average ARIs and their variances.
scDHA outperforms all other methods by not only having the
highest average ARI, but also being the most consistent method.
The average ARI of scDHA across all 34 data sets is 0.81 with very
low variability. The second best method, CIDR, has an average
ARI of only 0.5. The one-sided Wilcoxon test also indicates that
the ARI values of scDHA are significantly higher than the rest
with a p-value of 2.2 × 10−16.

To perform a more comprehensive analysis, we calculate the
normalized mutual information (NMI) and Jaccard index (JI) for
each method (Supplementary Section 1 and Tables 2–4). We also
compare the methods across different data platforms: plate-based,
flow-cell-based, Smart-Seq1/2, SMARTer, inDrop, and 10X
Genomics (see Supplementary Fig. 23). Regardless of the
assessment metrics, scDHA consistently outperforms all other
methods. At the same time, scDHA and SCANPY are the fastest
among the seven methods (Fig. 1c and Supplementary Table 5).
For the Macosko data set with 44 thousand cells, scDHA finishes
the analysis in less than five minutes. On the contrary, it takes
CIDR >2 days (3312 minutes) to finish the analysis of this data
set. In summary, scDHA outperforms other clustering methods in
terms of both accuracy and scalability.

We also assess the performance of the clustering methods using
simulation. We use Splatter36 to generate 25 data sets with 10,000
genes and varying number of cells (5000, 10,000, 25,000, 50,000,
and 100,000) and sparsity levels (28%, 32%, 37%, 44%, 51%).
Supplementary Fig. 1 shows the ARI values obtained from
comparing the discovered groups against the ground truth.
Overall, scDHA has the highest ARI values in our analysis.
Similar to the analysis of real data sets, scDHA and SCANPY are
the fastest among the seven methods (see Supplementary
Section 1.4 for more details).

Note that the 34 single-cell data sets were normalized using
different techniques by the data providers: raw counts (12 data
sets), counts per million mapped reads (CPM, six data sets), reads
per kilobase million (RPKM, eight data sets), and transcript per
million (TPM, eight data sets). To understand the effect of
normalization on the performance of scDHA, we re-normalize
each data set using TPM, CPM, and RPKM, and then re-analyze
the data. Our analysis shows that TMP-normalized data has a
slight advantage over CPM- and RPKM-normalized data when
using scDHA (see Supplementary Section 1.5 and Fig. 2).

Dimension reduction and visualization. Here, we demonstrate
that scDHA is more efficient than t-SNE, UMAP, and SCANPY,
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Fig. 1 Overview of scDHA architecture and analysis performance on 34 scRNA-seq data sets. a Schematic overview of scDHA and applications: cell
segregation through unsupervised learning, visualization, pseudo-temporal ordering, and cell classification. b Clustering performance of scDHA, SC3,
SEURAT, SINCERA, CIDR, SCANPY, and k-means measured by adjusted Rand index (ARI). The first 34 panels show the ARI values obtained for individual
data sets whereas the last panel shows the average ARIs and their variance (vertical segments). scDHA significantly outperforms other clustering methods
by having the highest ARI values (p= 2.2 × 10−16 using one-sided Wilcoxon test). c Running time of the clustering methods, each using 10 cores. scDHA is
the fastest among the six methods. d Color-coded representation of the Kolodziejczyk and Segerstolpe data sets using scDHA, PCA, t-SNE, UMAP, and
SCANPY (from left to right). For each representation, we report the silhouette index, which measures the cohesion among cells of the same type, as well as
the separation between different cell types. e Average silhouette values (bar plot) and their variance (vertical lines). scDHA significantly outperforms other
dimension reduction methods by having the highest silhouette values (p= 1.7 × 10−6 using one-sided Wilcoxon test).
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as well as the classical principal component analysis (PCA) in
visualizing single-cell data. We test the five techniques on the
same 34 single-cell data sets described above. Again, cell type
information is not given as input to any algorithm.

The top row of Fig. 1d shows the color-coded representations
of the Kolodziejczyk data set, which consists of three types
of mouse embryo stem cells: 2i, a2i, and lif. The classical PCA
simply rotates the orthogonal coordinates to place dissimilar data
points far apart in the two-dimensional (2D) space. In contrast,
t-SNE focuses on representing similar cells together in order to
preserve the local structure. In this analysis, t-SNE splits each of
the two classes 2i and a2i into two smaller groups, and lif class
into three groups. The transcriptome landscape represented by
UMAP is similar to that of t-SNE, in which UMAP also splits
cells of the same type into smaller groups. According to the
authors of this data set37, embryonic stem cells were cultured in
three different conditions: lif (serum media that has leukemia
inhibitory factor), 2i (basal media that has GSK3β and Mek1/2
inhibitor), and a2i (alternative 2i that has GSK3β and Src
inhibitor). The lif cells were measured in two batches and both t-
SNE and UMAP split this cell type according to batches.
Similarly, the a2i cells were measured by two batches and the cells
were separated according to batches. The 2i cells were measured
by four batches (chip1–2 cells, chip2–59 cells, chip3–72 cells, and
chip4 - 82 cells). Both t-SNE and UMAP split the cells into two
groups: the first group consists of cells from chip1 and the second
group consists of cells from chip2, chip3, and chip4 (see
Supplementary Section 2.2 and Fig. 18 for more details).
SCANPY is able to mitigate batch effects in the lif cells but still
splits 2i and a2i cells. In contrast, scDHA provides a clear
representation of the data, in which cells of the same type are
grouped together and cells of different types are well separated.

The lower row of Fig. 1d shows the visualization of the
Sergerstolpe data set (human pancreas). The landscapes of
SCANPY, UMAP, and t-SNE are better than that of PCA. In
these representations, the cell types are separable. However, the
cells are overcrowded and many cells from different classes
overlap. Also, the alpha, beta, and gamma cells are split into
smaller groups. According to the authors of this data set38, the
data were collected from different donors, which is potentially the
source of heterogeneity. For this data set, scDHA better
represents the data by clearly showing the transcriptome
landscape with separable cell types.

To quantify the performance of each method, we calculate the
silhouette index (SI)39 of each representation using true cell
labels. This metric measures the cohesion among the cells of the
same type and the separation among different cell types. For both
data sets shown in Fig. 1d, the SI values of scDHA are much
higher than those obtained for PCA, t-SNE, UMAP, and
SCANPY. The visualization, SI values, and running time of all
data sets are shown in Supplementary Fig. 9–17 and Tables 6 and
7. The average SI values obtained across the 34 data sets are
shown in Fig. 1e. We also compare the methods across different
data platforms: plate-based, flow-cell-based, Smart-Seq1/2,
SMARTer, inDrop, and 10X Genomics (Supplementary Fig. 24).
Overall, scDHA consistently and significantly outperforms other
methods (p= 1.7 × 10−6).

Cell classification. We assess scDHA’s classification capability by
comparing it with four methods that are dominant in machine
learning: XGBoost (XGB)19, Random Forest (RF)20, Deep
Learning (DL)21, and Gradient Boosted Machine (GBM)22.

We test these methods using five data sets: Baron (8569 cells),
Segerstolpe (2209 cells), Muraro (2126 cells), Xin (1600 cells), and
Wang (457 cells). All five data sets are related to human pancreas

and thus have similar cell types. In each analysis scenario, we use
one data set as training and then classify the cells in the
remaining four data sets. For example, we first train the models
on Baron and then test them on Segerstolpe, Muraro, Xin, and
Wang. Next, we train the models on Segerstolpe and test on the
rest, etc. The accuracy of each method is shown in Fig. 2 and
Supplementary Table 8.

Overall, scDHA is accurate across all 20 combinations with
accuracy ranging from 0.88 to 1. scDHA outperforms other
methods by having the highest accuracy. The average accuracy of
scDHA is 0.96, compared with 0.77, 0.69, 0.43, and 0.72 for XGB,
RF, DL, and GBM, respectively. In addition, scDHA is very
consistent, while the performance of existing methods fluctuates
from one analysis to another, especially when the testing data set
is much larger than the training data set. For example, when the
testing set (Baron) is 20 times larger than the training set (Wang),
the accuracy of existing methods is close to 30%, whereas scDHA
achieves an accuracy of 0.93. The one-sided Wilcoxon test also
confirms that the accuracy values of scDHA are significantly
higher than the rest (p= 2.1 × 10−8). Regarding time complexity,
scDHA is the fastest with an average running time of two minutes
per analysis (Supplementary Fig. 20).

Time-trajectory inference. Here we compare the performance of
scDHA with state-of-the-art methods for time-trajectory infer-
ence: Monocle25, TSCAN26, Slingshot27, and SCANPY13. We test
scDHA and these methods using three mouse embryo develop-
ment data sets: Yan, Goolam, and Deng. The true developmental
stages of these data sets are only used a posteriori to assess the
performance of the methods.

Figure 3a shows the Yan data set in the first two t-SNE
components. The smoothed lines shown in each panel indicate
the time-trajectory of scDHA (left) and Monocle (right). The
trajectory inferred by scDHA accurately follows the true
developmental stages: it starts from zygote, going through 2cell,
4cell, 8cell, 16cell, and then stops at the blast class. On the
contrary, the trajectory of Monocle goes directly from zygote to
8cell before coming back to 2cell. Figure 3b shows the cells
ordered by pseudo-time. The time inferred by scDHA is strongly
correlated with the true developmental stages. On the other hand,
Monocle fails to differentiate between zygote, 2cell, and 4cell. To
quantify how well the inferred trajectory explains the develop-
mental stages, we also calculate the R-squared value. scDHA
outperforms Monocle by having a higher R-squared value (0.93
compared with 0.84).

Figure 3c, d show the results of the Goolam data set. scDHA
correctly reconstructs the time-trajectory whereas Monocle fails
to estimate pseudo-time for 8cell, 16cell, and blast cells (colored
in gray). Monocle assigns an "infinity” value for these cell classes.
Figure 3e, f show the results obtained for the Deng data set.
Similarly, the time-trajectory inferred by scDHA accurately
follows the developmental stages, whereas Monocle cannot
estimate the time for half of the cells. The results of TSCAN,
Slingshot, and SCANPY are shown in Supplementary Fig. 21, 22.
scDHA outperforms all three methods by having the highest R-
squared values in every single analysis.

Discussion
The ever-increasing number of cells, technical noise, and high
dropout rate pose significant computational challenges in scRNA-
seq analysis. These challenges affect both analysis accuracy and
scalability, and greatly hinder our capability to extract the wealth
of information available in single-cell data. To detach noise from
informative biological signals, we have introduced scDHA, a
powerful framework for scRNA-seq data analysis. We have
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shown that the framework can be utilized for both upstream and
downstream analyses, including de novo clustering of cells,
visualizing the transcriptome landscape, classifying cells, and
inferring pseudo-time. We demonstrate that scDHA outperforms
state-of-the-art techniques in each research sub-field. Although
we focus on single-cell as an example, scDHA is flexible enough
to be adopted in a range of research areas, from cancer to obesity
to aging to any other area that employs high-throughput data.

In contrast to existing autoencoders, such as scVI40 that was
developed for data imputation, scDHA provides a complete
analysis pipeline from feature selection (first module) to dimen-
sion reduction (second module) and downstream analyses
(visualization, clustering, classification, and pseudo-time infer-
ence). The scVI package itself is not capable of clustering,
visualization, classification, and pseudo-time inference. Even for
the implementation of autoencoder, there are two key differences
between scDHA and scVI. First, scDHA implements a hier-
archical autoencoder that consists of two modules: the first
autoencoder to remove noise (denoising), and the second auto-
encoder to compress data. The added denoising module (first
module) filters out the noisy features and thus improves the
quality of the data. Second, we modify the standard VAE (second
module) to generate multiple realizations of the input. This step
makes the VAE more robust. Indeed, our analysis results show
that scDHA and its second module consistently outperform scVI
when scVI is used in conjunction with downstream analysis
methods implemented in scDHA and other packages (see Sup-
plementary Section 6 and Fig. 25–32).

In summary, scDHA is user-friendly and is expected to be
more accurate than existing autoencoders. Users can apply
scDHA to perform downstream analyses without installing
additional packages for the four analysis applications (clustering,
visualization, classification, and pseudo-time-trajectory infer-
ence). At the same time, the hierarchical autoencoder and the

modified VAE (second module of scDHA) are expected to be
more efficient than other autoencoders in single-cell data analysis.

Methods
Data and pre-processing. The 34 single-cell data sets used in our data analysis are
described in Table 1. The data sets Montoro, Sanderson, Slyper, Zilionis, Kar-
agiannis, Orozco, and Kozareva were downloaded from Broad Institute Single Cell
Portal. The data sets Puram, Hrvatin, and Darrah were downloaded from Gene
Expression Omnibus. Tabula Muris was downloaded from Figshare. The remaining
23 data sets were downloaded from Hemberg Group’s website (see Supplementary
Table 1 for link to each data set). We removed samples with ambiguous labels from
these data sets. Specifically, we removed cells with label “zothers” from Chen,
“Unknown” from Camp (Brain), “dropped” from Wang, and “not applicable” from
Segerstolpe. The only processing step we did was to perform log transformation
(base 2) to rescale the data if the range of the data is larger than 100.

Software package and setting. In our analysis, we followed the instruction and
tutorials provided by the authors of each software package. We used the default
parameters of each tool to perform the analysis. The memory limit for all analysis
methods is set to 200GB of RAM.

For clustering, we compared scDHA with SC3, SEURAT, SINCERA, CIDR,
SCANPY and k-means. We used the following packages: (i) SC3 version 1.10.1
from Bioconductor, (ii) SEURAT version 2.3.4 from CRAN, (iii) CIDR version
0.1.5 from GitHub (github.com/VCCRI/CIDR), (iv) scanpy version 1.4.4 from
Anaconda, (v) SINCERA script provided by Hemberg group (scrnaseq-course.cog.
sanger.ac.uk/website/biological-analysis.html), and (vi) stats for k-means in
conjunction with PCA implementation available in the package irlba version 2.3.3
from CRAN. For k-means, we used the first 100 principal components for
clustering purpose. In contrast to the other five methods, k-means cannot
determine the number of clusters. Therefore, we also provided the true number of
cell types for k-means. In addition, since k-means often converges to local optima,
we ran k-means using 1000 different sets of starting points and then chose the
partitioning with the smallest squared error.

For dimension reduction and visualization, we used the following packages: (i)
irlba version 2.3.3 from CRAN for PCA, (ii) Rtsne version 0.15 from CRAN for
t-SNE, (iii) scanpy version 1.4.4, and (iv) python package umap-learn version 0.3.9
from Anaconda python distribution for UMAP. This python package is run
through a wrapper in R package umap version 0.2.2.

For classification, we compared scDHA with XGBoost, RF, DL, and GBM. We
used the R package H2O version 3.24.0.5 from CRAN. This package provides the
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Fig. 2 Classification accuracy of scDHA, XGBoost (XGB), Random Forest (RF), Deep Learning (DL), Gradient Boosted Machine (GBM) using five
human pancreatic data sets. In each scenario (row), we use one data set as training and the rest as testing, resulting in 20 train-predict pairs. The overall
panel shows the average accuracy values and their variance (vertical segment). The accuracy values of scDHA are significantly higher than those of other
methods (p= 2.1 × 10−8 using Wilcoxon one-tailed test).
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implementation of XGBoost, RF, DL, and GBM. All models were run with fivefold
cross-validation for better accuracy.

For time-trajectory inference, we compared scDHA with Monocle, TSCAN,
Slingshot, and SCANPY. We used the following packages: (i) R package Monocle3
version 0.1.1 from GitHub (github.com/cole-trapnell-lab/monocle3), (ii) TSCAN
version 1.20.0 from Bioconductor, (iii) Slingshot version 1.3.1 from Bioconductor,
and (iv) scanpy version 1.4.4.

scDHA pipeline. scDHA requires an expression matrix M as input, in which rows
represent cells and columns represent genes or transcripts. Given the input M,
scDHA automatically performs a log transformation (base 2) to rescale the data if
the range of M is higher than 100. The goal is to prevent the domination of genes
or features with high expression.

scDHA pipeline for scRNA sequencing data analysis consists of two core
modules (Figure 1a). The first module is a non-negative kernel autoencoder that
provides a non-negative, part-based representation of the data. Based on the weight
distribution of the encoder, scDHA removes genes or components that have
insignificant contributions to the part-based representation. The second module is
a Stacked Bayesian Self-learning Network that is built upon the VAE34 to project
the data onto a low-dimensional space. For example, for clustering application, the
first module automatically rescales the data and removes genes with insignificant
contribution to the part-based representation. The second module then projects the
clean data to a low-dimensional latent space using VAE before separating the cells
using k-nearest neighbor spectral clustering. The details of each step are
described below.

Non-negative kernel autoencoder. To reduce the technical variability and het-
erogeneous calibration from sequencing technologies, the expression data are
rescaled to a range of 0 to 1 for each cell as follow:

Xij ¼
Mij �minðMi:Þ

maxðMi:Þ �minðMi:Þ
ð1Þ

where M is the input matrix and X is the normalized matrix. This min-max scaling
step is to reduce standard deviation and to suppress the effect of outliers, which is
frequently used in DL models41,42 (see Supplementary Section 1.6 and Fig. 3 for
more details).

After normalization, the data are then passed through a one-layer autoencoder
to filter out insignificant genes/features. In short, autoencoder consists of two
components: encoder and decoder. The formulation of autoencoder can be written
as follows:

e ¼ f EðxÞ
�x ¼ f DðeÞ

ð2Þ

where x 2 Rn
þ is the input of the model (x is simply a row/sample, i.e., x= Xi.), fE

and fD represent the transformation by encoder and decoder layers, �x is the
reconstruction of x. The encoder and decoder transformations can be represented
as fE(x)= xWE+ bE and fD(e)= eWD+ bD, where W-s are the weight matrices and
b-s are the bias vectors. Encoder aims at representing the data in a much lower
dimensional space (compression) whereas decoder tries to reconstruct the original
input from the compressed data. Optimizing this process can theoretically result in

Fig. 3 Pseudo-time inference of three mouse embryo development data sets (Yan, Goolam, and Deng) using scDHA and Monocle. a Visualized time-
trajectory of the Yan data set in the first two t-SNE dimensions using scDHA (left) and Monocle (right). b Pseudo-temporal ordering of the cells in the Yan
data set. The horizontal axis shows the inferred time for each cell while the vertical axis shows the true developmental stages. c, d Time-trajectory of the
Goolam data set. Monocle is unable to estimate the time for most cells in 8cell, 16cell, and blast (colored in gray). e, f Time-trajectory of the Deng data set.
Monocle is unable to estimate the pseudo-time for most blast cells.
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a compact representation of the original, high-dimensional data. The size of the
bottleneck layer is set to 50 nodes (not user-provided parameter). Changing this
number of nodes has no significant impact on the results of scDHA (see
Supplementary Fig. 5).

In our model, the weights of the encoder (WE in fE(⋅)) are forced to be non-
negative so that each latent variable is an additive combination of the original
features. By doing so, the non-negative coefficients of the less important
features will be shrunk toward zero (see Supplementary Section 1.7 and Fig. 4 for

more discussion). Based on the computed weights, the method only keeps genes or
components with high weight variances. In principle, the set of these genes can be
considered a “sufficient and necessary” set to represent the original data. These
genes are necessary because removing them would greatly damage the reversibility
of the decoder, i.e., decoder cannot accurately reconstruct the original data. At the
same time, they are sufficient because the encoder automatically shrinks the
weights of genes or gene groups that have similar but lesser impacts in the
compression procedure. By default, scDHA selects 5000 genes but users can choose
a different number based on the weight distribution (see Supplementary Section 1.8
and Fig. 6)

Stacked Bayesian autoencoder. After the gene filtering step using non-negative
kernel autoencoder, we obtain a data matrix in which each gene is considered
critical to preserve cell heterogeneity. However, although the step has greatly
reduced the number of features, the number of genes is still in the scale of hundreds
or thousands. Therefore, it is necessary to perform dimension reduction before
conducting any analysis or visualization. For this purpose, we developed a modified
version of VAE (theorized by Kingma et al.34). We name it stacked Bayesian
autoencoder (Figure 4) since the model is designed with multiple latent spaces,
instead of only one latent space used in the original VAE or any other autoencoder
model.

VAE has the same basic structure as a standard autoencoder, which is a self-
learning model consisting of two components: encoder and decoder. Given the
input matrix (the filtered matrix obtained from Non-negative kernel autoencoder),
VAE’s encoder constructs a low-dimensional representation of the input matrix
while the decoder aims at inferring the original data. By minimizing the difference
between the inferred and the input data, the middle bottleneck layer is considered
as the “near lossless” projection of the input onto a latent space with a low number
of dimensions (m= 15 by default). We keep the model size small to avoid
overfitting and force the neuron network to be as compressed as possible. Also,
restricting the size of the latent layer will converge cells from the same group into
similar latent space manifold. At the same time, the size of the latent layer needs to

Table 1 Description of the 34 single-cell data sets used to assess the performance of computational methods.

Data set Tissue Size Class Protocol Accession ID Reference

1. Yan Human embryo 90 6 Tang GSE36552 Yan et al., 201350

2. Goolam Mouse embryo 124 5 Smart-Seq2 E-MTAB-3321 Goolam et al., 201651

3. Deng Mouse embryo 268 6 Smart-Seq2 GSE45719 Deng et al., 201452

4. Pollen Human tissues 301 11 SMARTer SRP041736 Pollen et al., 201453

5. Patel Human tissues 430 5 Smart-Seq GSE57872 Patel et al., 20144

6. Wang Human pancreas 457 7 SMARTer GSE83139 Wang et al., 201654

7. Darmanis Human brain 466 9 SMARTer GSE67835 Darmanis et al., 201555

8. Camp (Brain) Human brain 553 5 SMARTer GSE75140 Camp et al., 201556

9. Usoskin Mouse brain 622 4 STRT-Seq GSE59739 Usoskin et al., 201557

10. Kolodziejczyk Mouse embryo stem cells 704 3 SMARTer E-MTAB-2600 Kolodziejczyk et al., 201537

11. Camp (Liver) Human liver 777 7 SMARTer GSE81252 Camp et al., 201758

12. Xin Human pancreas 1,600 8 SMARTer GSE81608 Xin et al., 201659

13. Baron (Mouse) Mouse pancreas 1,886 13 inDrop GSE84133 Baron et al., 201660

14. Muraro Human pancreas 2,126 10 CEL-Seq2 GSE85241 Muraro et al., 201661

15. Segerstolpe Human pancreas 2,209 14 Smart-Seq2 E-MTAB-5061 Segerstolpe et al., 201638

16. Klein Mouse embryo stem cells 2,717 4 inDrop GSE65525 Klein et al., 201562

17. Romanov Mouse brain 2,881 7 SMARTer GSE74672 Romanov et al., 201763

18. Zeisel Mouse brain 3,005 9 STRT-Seq GSE60361 Zeisel et al., 20153

19. Lake Human brain 3,042 16 Fluidigm C1 phs000833.v3.p1 Lake et al., 201664

20. Puram Human tissues 5,902 10 Smart-Seq2 GSE103322 Puram et al., 201765

21. Montoro Human pancreas 7,193 7 Smart-Seq2 GSE103354 Montoro et al., 201866

22. Baron (Human) Human pancreas 8,569 14 inDrop GSE84133 Baron et al., 201660

23. Chen Mouse brain 12,089 46 Drop-seq GSE87544 Chen et al., 201767

24. Sanderson Mouse tissues 12,648 11 10X Genomics SCP916 Sanderson et al., 202068

25. Slyper Human blood 13,316 8 10X Genomics SCP345
26. Campbell Mouse brain 21,086 21 Drop-seq GSE93374 Campbell et al., 201769

27. Zilionis Human lung 34,558 9 inDrop GSE127465 Zilionis et al., 201970

28. Macosko Mouse retina 44,808 12 Drop-seq GSE63473 Macosko et al., 201571

29. Hrvatin Mouse visual cortex 48,266 8 inDrop GSE102827 Hrvatin et al., 201872

30. Tabula Muris Mouse tissues 54,439 40 10X Genomics GSE109774 Schaum et al., 201873

31. Karagiannis Human blood 72,914 12 10X Genomics GSE128879 Karagiannis et al., 202074

32. Orozco Human eye 100,055 11 10X Genomics GSE135133 Orozco et al., 202075

33. Darrah Human blood 162,490 14 Drop-seq GSE139598 Darrah et al., 202076

34. Kozareva Mouse cerebellum 611,034 18 10X Genomics SCP795 Kozareva et al., 202077

The first two columns describe the name and tissue while the next five columns show the number of cells, number of cell types, protocol, accession ID, and reference.

Fig. 4 High-level representation of stacked Bayesian autoencoder. The
encoder projects input data to multiple low-dimensional latent spaces
(outputs of z1 to zn layers). The decoders infer original data from these
latent data. Minimizing the difference between inferred data and original
one leads to a high quality representation of the original data at bottleneck
layer (outputs of μ layer).
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be sufficient (15 dimensions) to keep the latent variables disentangled. Per our
experience, varying m between 10 and 20 does not alter the analysis results.

Given an expression profile of a cell x, the formulation of this architecture can
be formulated as follows:

e ¼ f EðxÞ
μ ¼ f μðeÞ
σ ¼ f σðeÞ
z � Nðμ; σ2Þ
�x ¼ f DðzÞ

ð3Þ

where x 2 Rn
þ is the input of the network, fE and fD represent the transformation by

encoder and decoder layers. In addition to the standard autoencoder, two
transformations fμ and fσ are added on the output e of encoder to generate the
parameters μ and σ (μ, σ∈ Rm). The compressed data z is now sampled from
the distribution N(μ, σ2). In contrast to the standard autoencoder, VAE uses z as
the input of the decoder instead of e. By adding randomness in generating z, VAE
prevents overfitting by avoiding mapping the original data to the compressed space
without learning a generalized representation of data. The perturbation process was
shown to be an effective method to increase data stability43.

In our stacked model, to further diminish overfitting and increase the
robustness, we generate multiple compressed spaces with multiple realizations of z.
For that purpose, we use a re-parameterization trick to generate multiple
realizations of z as follows: z= μ+ σ∗N(0, 1). This re-parameterization trick is
introduced to ensure that the model can backpropagate34.

To train our model, we use AdamW44 as optimizer while adopting a two-stage
training scheme45: (i) a warm-up process, which uses only reconstruction loss, and
(ii) the VAE stage, in which the Kullback–Leibler loss is also considered to ensure
the normal distribution of latent variables z. The warm-up process prevents the
model from ignoring reconstruction loss and only focuses on Kullback–Leibler loss.
By doing this, we avoid the pitfall of making the model fail to learn generalized
representations of the data. This process also makes the model less sensitive to the
weight initialization. For faster convergence and better accuracy, scaled exponential
linear unit46 is used as the activation function.

After finishing the training stage, the input data are processed through the
encoder to generate representative latent variables of original data. This
compressed representation of the data will be used for single-cell applications: (1)
cell segregation through unsupervised learning, (2) transcriptome landscape
visualization, (3) pseudo-time-trajectory inference, and (4) cell classification.

Cell segregation via clustering
Predicting the number of cell types. The number of cell types is determined using
two indices: (i) the ratio of between sum of squares over the total sum of squares,
and (ii) the increase of the within sum of squares when the number of clusters
increases. The indices are formulated as follows:

Index 1 ¼ SSbetween;j
SStotal;j

ð4Þ

Index 2 ¼ SSwithin;jþ1 � SSwithin;j
SSwithin;j

ð5Þ

where j is the number of clusters.
Larger Index 1 means that members of one group are far from other groups, i.e.,

the clusters are well separated. Index 2 is affected by the number of eigenvectors
generated by spectral decomposition, which is also the number of clusters. We
assume that the addition of an eigenvector that leads to the highest spike in

the within sum of squares (which is undesirable) would be the correct number
of clusters. These indices are calculated by performing k-nearest neighbor spectral
clustering on a subset of samples over a range of cluster numbers. Mean of the
predictions from these two indices is set to be the final number of clusters (see
Supplementary Fig.

Basic clustering algorithm. In order to improve the accuracy when clustering non-
spherical data while ensuring the fast running time, we apply a k-nearest neighbor
adaption of spectral clustering (k-nn SC) as the clustering method embedded in our
package. Instead of using Euclidean distance to determine the similarity between
two samples, Pearson correlation is used to improve the stability of cluster
assignment. The difference between k-nn SC and normal SC is that the constructed
affinity matrix of data points is sparse. For each data point, the distance is cal-
culated for only its k-nearest neighbors while the distance to the rest is left at zero.
The clustering process of k-nn SC consists of four steps: (i) constructing affinity
matrix A for all data points to use as input graph, (ii) generating a symmetric and
normalized Laplacian matrix Lsym ¼ I � D�1

2AD�1
2 where D is the degree matrix of

the graph, A is the constructed affinity matrix and I is the identity matrix, (iii)
calculating eigenvalues for Laplacian matrix and select those with smallest values,
generating eigenvectors corresponding to selected eigenvalues, (iv) performing final
clustering using k-means on the obtained eigenvectors.

Consensus clustering. We use the basic clustering algorithm described above to cluster
the compressed data. To achieve higher accuracy and to avoid local minima, an
ensemble of data projection models is used. We first repeat the data projection and
clustering process multiple times. We then combine the clustering results using the
Weighted-based meta-clustering (wMetaC) implemented in SHARP47. wMetaC is
conducted through five steps: (i) calculating cell–cell weighted similarity matrixW, wi,

j= si,j(1− si,j) where si,j is the chance that cell i and j are in the same cluster, (ii)
calculating cell weight, which is the sum of all cell–cell weights related to this cell, (iii)
generating cluster-cluster similarity matrix ∣C∣x∣C∣, where C is the union of all the
clusters obtained in each replicate, (iv) performing hierarchical clustering on cluster-
cluster similarity matrix, and (v) determining final results by a voting scheme.

Voting procedure. For large data sets, we also provide an additional option in our
package to reduce the time complexity without compromising the performance.
Instead of clustering the whole data set, which requires a large amount of memory
and heavy computation, we can perform the clustering on a subset of the data
points and then apply a vote-counting procedure to assign the rest of the data to
each cluster. The voting process is based on the k-nearest neighbor classification.
This approach still ensures the high clustering quality without compromising the
speed of the method, as shown in Figure 5.

Dimension reduction and visualization. Given the compressed data (10–15
dimensions), we compute the distance matrix for the cells and then perform log
and z transformations as follows:

Dij ¼
log ðDijÞ � μlog ðDi:Þ

σ log ðDi:Þ
ð6Þ

where D is a distance matrix. The rationale of this transformation is to make the
distribution of distances from one point to its neighbors more uniform. Next, we
calculate the probabilities pij that are proportional to the similarity between sample

Fig. 5 Accuracy and running time of scDHA on large data sets with and without using the voting procedure. The voting procedure significantly reduces
the running time without compromising the accuracy. Each point represents the result of a single run, while the bar shows the average of 10 runs.
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i and j as follows:

pjji ¼
expðDijÞ

P
k≠i expðDikÞ

ð7Þ
At the same time, using the compressed data, we build a neural network to

project the data to two-dimensional space. Using two formulas described above, we
re-calculate the probabilities qij that are proportional to the similarity between
sample i and j in the two-dimensional space. Our goal is to learn a two-dimensional
projection of the data that retains the probabilities p as well as possible. We achieve
this by minimizing the distance between Q and P. Here, we use the
Kullback–Leibler divergence to represent the distance between the two probability
distributions, which can be formulated as:

KLðPjjQÞ ¼
X

i≠j
pijlog

pij
qij

ð8Þ
By minimizing Kullback–Leibler divergence, we obtain the optimal

representation of the data in the two-dimensional space. The algorithm can be
generalized to three or higher number of dimensions.

Classification. The problem can be described as follows. We are given two data sets of
the same tissue: the training data set and the testing data set. For the training data set,
we have the cell labels. The goal is to determine the cell labels of the testing data set.

Our classification procedure consists of the following steps: (i) concatenate the
two matrices into a single matrix, in which the rows consist of all cells from the two
data sets and columns are the common genes; (ii) normalize and compress the
merged data using the hierarchical autoencoder described above; (iii) compute the
similarity matrix for the cells using Pearson correlation; and finally (iv) determine
the label of cells from testing data using k-nearest neighbor algorithm (k-nn).

The rationale for concatenating the two data sets is to exploit the robust
denoising and dimension reduction procedure offered by the hierarchical
autoencoder. Since we normalize the data per each cell, different scaling of the two
data sets (training or testing) would not pose as a problem. At the same time, the
hierarchical autoencoder efficiently diminishes batch effect and noise, moving cells
of the same type closer to one another. We demonstrated that even with an
unsophisticated classification technique as k-nn, scDHA is proven to be better than
current state-of-the-art methods, including XGBoost, RF, DL, and GBM.

Time-trajectory inference. We implement a pseudo-time inference method that
allows users to infer non-branching trajectory that is correlated with the devel-
opmental stages of cells. This method requires a starting point as part of the input.
We note that users can easily apply any other methods on the compressed data
provided by scDHA (see Saelens et al.48 for a comprehensive list of pseudo-time
inference methods). Given the compressed data, our method computes the simi-
larity distance for the cells using Pearson correlation. Using this similarity matrix
as the affinity matrix, we construct a graph in which nodes represent cells and
edges represent the distance between the cells. In order to construct the pseudo-
time trajectory, we apply the minimum spanning tree (MST) algorithm on the
graph to find the shortest path that goes through all cells. From the MST, pseudo-
time is determined by distance from one point to the designated starting point.

Statistics and reproducibility. The scDHA package is installed in the docker
image that is available at http://scdha.tinnguyen-lab.com/, which has all tools,
dependencies, and scripts so that readers can reproduce all results. All analyses are
performed with fixed random seed to ensure reproducibility.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The details of 34 single-cell data sets analyzed in the article can be found in Table 1. The
links to publicly available sources are reported in Supplementary Table 1. The processed
data can also be found at http://scdha.tinnguyen-lab.com/.

Code availability
The scDHA package49 is available as an independent software at https://github.com/
duct317/scDHA.
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