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Abstract 

Single-cell RNA sequencing (scRNA-Seq) is a recent technology that allows for the measurement of the expression of all genes in each individual 
cell contained in a sample. Information at the single-cell le v el has been shown to be extremely useful in many areas. However, performing single- 
cell experiments is expensive. Although cellular deconvolution cannot provide the same comprehensive information as single-cell experiments, 
it can extract cell-type information from bulk RNA data, and therefore it allows researchers to conduct studies at cell-type resolution from 

existing bulk datasets. For these reasons, a great effort has been made to develop such methods for cellular deconvolution. The large number 
of methods a v ailable, the requirement of coding skills, inadequate documentation, and lack of performance assessment all make it extremely 
difficult for life scientists to choose a suitable method for their e xperiment. T his paper aims to fill this gap b y pro viding a comprehensiv e re vie w 

of 53 decon v olution methods regarding their methodology, applications, perf ormance, and outstanding challenges. More importantly, the article 
presents a benchmarking of all these 53 methods using 283 cell types from 30 tissues of 63 individuals. We also provide an R package named 
DeconBenchmark that allows readers to execute and benchmark the reviewed methods ( https:// github.com/ tinnlab/ DeconBenchmark ). 
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ntroduction 

n traditional bulk RNA sequencing (RNA-Seq) experiments,
 tissue sample, often containing hundreds to thousands of
ells, is ground up and sequenced to measure the expression
evel of each gene. However, due to the fact that the RNA
rom all cells have been mixed together, the levels measured
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constitute only an average of the expression level of each gene
across all cells. In reality, the sample is likely to contain several
different types of cells, and each type of cell can have differ-
ent levels of expression of various genes. Thus, bulk exper-
iments provide information about averages, whereas single-
cell assays allow us to study individual cells which can be
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of many different types that are vastly different from each
other. 

In some situations, a cell type that is very scarce, and would
have its measurements normally be washed out by more abun-
dant cell types in a bulk RNA-Seq experiment, can be cru-
cially important. For instance, a typical solid tumor may con-
tain tens of thousands of cancer cells but only very few cancer
stem cells. Drugs and various treatments may kill most of the
tumor cells. However, if a single cancer stem cell survives, it
can re-generate a new tumor either in the same location, or as
a distant metastasis if it travels to a different part of the body.
Thus, being able to detect the presence of scarce cell types and
accurately measure the expression levels in these cells alone
can hold the key to discovering better cancer treatments ( 1–5 ).
Accurate quantification of cell type composition is also criti-
cal in understanding the intra-tumor heterogeneity as shown
in colorectal cancer ( 6 ), primary glioblastoma ( 7 ), and head
and neck cancer ( 8 ), among others. 

Single-cell experiments can go well beyond cancer research
applications. Cell-type-level analyses have significantly im-
pacted many other areas, including epigenomics ( 9 ,10 ), diag-
nostics ( 11 ), drug discovery, microbiology ( 12 ,13 ), neurobiol-
ogy ( 14–16 ), embryogenesis ( 17–19 ), organogenesis and de-
velopment ( 20 ,21 ), immunology ( 22–24 ), etc. The spectacular
opportunities offered by single-cell data were recognized by
Nature which selected single-cell sequencing as the Technol-
ogy of the Year in 2013 ( 25 ), and then again in 2020 with its
multi-omics variation ( 26 ). 

In recent years, single-cell experiments are becoming more
affordable, and scRNA-Seq has been applied to large cohorts
with hundreds to thousands of samples ( 27–29 ). However, it
still comes at a substantial cost for researchers (see cost analy-
sis in Supplementary Section S2 ). A more affordable approach
is to extract cell type knowledge from existing bulk data. The
process used to do this is referred to as cellular deconvolution.
Extracting cell type information from a bulk RNA experiment
can be seen as a particular case of the blind source separation
problem. The classical example is the cocktail party problem.
At a cocktail party, there are many people in the room, all talk-
ing at the same time. A listener has to be able to follow one of
the discussions, even though she hears many people involved
in parallel discussions. The human brain can easily handle this
sort of source separation problem. The deconvolution process
does essentially the same thing: identifies specific types of cells
and separates their gene expression behavior from the others,
allowing us to follow their evolution separately. However, the
cocktail party problem is a bit of an oversimplification be-
cause in reality the cell types to be deconvolved can influence
and can alter the transcriptional profile of each other. 

The ability to perform cellular deconvolution brings two
very significant benefits. First, it allows researchers to extract
cell type level information from bulk data, thus gaining some
of the benefits of single-cell experiments at the much-reduced
cost of a bulk experiment. Second, it allows researchers to po-
tentially extract some information at the cell-type level from
the huge amounts of data already collected and available
in research laboratories and public repositories such as The
Cancer Genome Atlas (TCGA) ( 30 ), Sequence Read Archive
(SRA) ( 31 ), Gene Expression Omnibus (GEO) ( 32 ,33 ) and Ar-
rayExpress ( 34 ,35 ). The data stored in these repositories rep-
resent billions of dollars of experiments and deconvolution
has the potential to allow the extraction of new knowledge
without repeating these very costly experiments. 
Because of its recognized importance, many cellular decon- 
volution methods have been developed to estimate cell type 
proportions not only from bulk RNA-Seq data, but also from 

DNA methylation data, and spatial genomics data. Each of 
them has limitations and specialized applications. In spite of 
this overwhelming abundance of cellular deconvolution ap- 
proaches, there is no resource to guide researchers regard- 
ing the strengths and weaknesses of each method, what types 
of method to use for what application, how accurate each 

method can be, etc. There are several review papers but they 
are limited in terms of scope, depth, potential application 

and assessment. For example, Mohammadi et al. ( 36 ) dis- 
cuss the mathematical aspects of only six methods while Tran 

et al. ( 37 ) evaluate nine methods for tumor microenvironment 
deconvolution. Recent benchmarking articles assess the per- 
formance of deconvolution methods in the context of spatial 
transcriptome analysis using brain and embryo data ( 38–40 ).
However, a spatial spot is a mixture of several cells whereas a 
bulk RNA-Seq tissue is a mixture of thousands to millions 
of cells from many cell types. Other review articles bench- 
mark deconvolution techniques developed for specific tissues 
or applications ( 41–47 ). For these reasons, researchers and 

practitioners may find it challenging to access sufficient guid- 
ance and information when selecting the most suitable tool 
among the vast amount of existing methods and potential 
applications. 

In order to address these acute needs, we provide a com- 
prehensive review and in-depth discussion of 53 deconvolu- 
tion methods. The article discusses the key methodologies of 
these methods, their current and future applications, valida- 
tion strategies, and outstanding challenges that need to be re- 
solved. More importantly, the article presents a technical eval- 
uation of all these 53 methods, using 283 cell types from 30 

tissues of 63 individuals. Accompanying the article, we pro- 
vide an R package named DeconBenchmark that includes the 
complete implementation of all reviewed deconvolution meth- 
ods. This gives the readers instant access to all these methods 
in a convenient and readily available manner. As part of the 
article, we also provide practical guidelines to help scientists 
choose the most suitable methods for their data. To the best 
of our knowledge, this marks the initial effort to offer a thor- 
ough review of the vast number of deconvolution methods,
along with practical guidance and software for researchers. 

Overview of cellular deconvolution: 
methodology, applications and validation 

str at egies 

This section aims to provide a quick overview of cellular de- 
convolution methods developed in the past 14 years. Here, we 
first provide the overall workflow of deconvolution methods 
regarding their input, output, and main elements. Next, we 
describe the practical applications of cellular deconvolution.
Finally, we recapitulate the validation techniques each method 

paper uses to evaluate the performance of respective method.

High-level description of cellular deconvolution 

Cellular deconvolution methods aim to infer the cell type com- 
position in a tissue using bulk data, including gene expression,
DNA methylation, and spatial transcriptome data. Because a 
tissue is a mixture of all of its cell types, deconvolution meth- 
ods typically model the bulk expression as a linear combina- 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae267#supplementary-data
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ion of the expression of constituent cell types, in which the
oefficients of the linear model are referred to as cell type pro-
ortions. More specifically: 
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(1)

r b = S × p , where b is a vector of n genes that represents
he expression of the bulk sample, S is a matrix of n genes
y k cell types in which a row represents a gene, a column
epresents the expression of a cell type, and p is a vector that
epresents the cell type proportions: p 1 cells of type 1,..., p k
ells of type k . S is often called the signature matrix. Natu-
ally, the elements of b , S , and p are non-negative, and the cell
ype proportions sum up to one, i.e. 

∑ k 
i =1 p i = 1 . This equa-

ion simply says that the amount of mRNA measured in the
ulk for a particular gene, b i , is the sum of the of the amount
f mRNA for that gene coming from each of the cell types 1,
.., k . Referring to this equation, the goal of the deconvolution
rocess is to retrieve the proportion of each cell type, p i , as
ell as the expression level of each gene in each cell type, s ij . 
Figure 1 captures the essential workflow of cellular decon-

olution methods and their potential applications. The in-
ut of all deconvolution methods must include a bulk dataset
ut different methods might require additional input. Meth-
ds that require reference expression data, such as single-
ell data or cell type expression, are referred to as reference-
ased methods (left side of Figure 1 ). In this case, the analysis
ipeline consists of three main steps (denoted by the colored
oxes on the left of Figure 1 ): (i) identifying the marker genes
f each cell type, (ii) computing the signature matrix that rep-
esents the expression profiles of constituent cell types and (iii)
uantifying cell type composition from bulk data samples us-
ng the signature matrix. The goal of the first step is to re-
ove irrelevant genes, reduce noise and computational com-
lexity, and enhance the accuracy of deconvolution process
y focusing on genes that are specific to the underlying cell
ypes. The second step focuses on computing the expression
f each cell type, especially for the marker genes. The third
tep is the main component of the deconvolution process, in
hich the cell type proportions of the tissues are quantified
sing statistical and machine learning techniques. 
There are methods that do not require any additional in-

ut which we refer to as reference-free methods (right side
f Figure 1 ). These include methods developed earlier, before
ctual single-cell data became available. Reference-free meth-
ds perform unsupervised learning of the bulk data to iden-
ify the marker genes and to infer both the cell-type signa-
ure matrix and cell type composition. Methods that only re-
uire the marker genes for the cell types are referred to as
emi-reference-free methods. After computation, deconvolu-
ion methods often produce the following: (i) the cell type pro-
ortions, (ii) the signature matrix of the cell types and (iii) the
xpression of each sample in each cell type. We provide the
echnical details of individual methods in section Technical
escription of deconvolution methods. 

ractical applications of cellular deconvolution 

iomarkers identification is an important application of cel-
ular deconvolution ( 48 ). Many studies reported that impor-
tant markers of cancer cells are highly correlated with im-
mune cell compositions ( 49–51 ). These markers play impor-
tant roles in regulating human immune response and could
be potential targets for drug development. To identify new
biomarkers, scientists usually look for the genes that have ex-
pression levels highly correlated with the CD8 T-cell tumor
infiltration levels. One example is that MAGEA3 has been
identified as a vaccine candidate for non-small cell lung car-
cinoma and melanoma ( 52 ). Cellular deconvolution analysis
using TCGA data shows that MAGEA3 expression level is
negatively correlated with CD8 T-cell infiltration level in non-
small cell lung carcinoma while there is a positive correla-
tion in melanoma ( 5 ). This is consistent with clinical trial re-
sults, in which MAGEA3 vaccine showed positive results in
melanoma trials, and failed to improve progression-free sur-
vival of non-small cell lung carcinoma patients ( 52 ). Similarly,
CTAG1B has been identified as a promising immuno-therapy
candidate for melanoma because its expression is strongly cor-
related with CD8 T-cell infiltration ( 5 ). This approach also
shows positive results for biomarkers identification in other
diseases such as atherosclerosis ( 53 ), inflammatory bowel dis-
eases ( 54 ), systemic lupus erythematosus ( 55 ), or discovery
of damage-related or absorbed dose-dependent radiation re-
search ( 56 ). In fact, cellular deconvolution can be applied to
all existing bulk data independently of the disease to identify
important biomarkers without the need of performing single-
cell sequencing or other expensive experiments. 

Cellular deconvolution can greatly impact the research field
of cancer subtyping. It has been demonstrated that different
subtypes of tumor samples showed distinct immune cell infil-
trating patterns, where macrophages account for the largest
proportion of immune cells in all five subtypes of breast can-
cer and bladder cancer samples ( 57 ). This is consistent with
previous experimental studies that high infiltration of tumor-
associated macrophages is a hallmark of inflammatory breast
cancers ( 58 ). Cell type proportions in tumor samples can be
of great assistance in identifying distinct cancer subtypes ( 59–
61 ) that have different survival profiles ( 62 ,63 ). By identi-
fying genes that are significantly correlated with changes in
immune cell composition among cancer subtypes, pathway
analysis can be used to identify the underlying mechanisms
driving such heterogeneity. One can also deconvolve the bulk
data expression profile into expression profiles for individual
cell types. This deconvolution allows the investigation of the
disease at cell type resolution using methods such as subtyp-
ing ( 64 ,65 ), regulatory network inference ( 66 ,67 ) or pathway
analysis ( 68 ,69 ), which would enable the discovery of insights
that could not be possible from bulk data. 

Another application of cellular deconvolution is to improve
the resolution of spatial transcriptome data, which has re-
cently emerged as a bridge between molecular and histology
data ( 70 ). Each spatial region or spot in spatial transcrip-
tome data usually measures the average expression of multi-
ple cells ( 71 ). The number of cells within each spot can range
from 30 in the popular Visium platform up to 200 for older
spatial transcriptomics platforms ( 72 ). Using cellular decon-
volution techniques, one can improve the resolution of spatial
data by deconvolving each spatial region into smaller regions
of cell types present in that area. This deconvolution is espe-
cially important for applications such as cell-to-cell / ligand–
receptor interaction inference, in which the spatial distance
among cells is taken into consideration by the method. The
emergence of newer spatial technologies such as ComMX,
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A B

Figure 1. The high-level description of computational deconvolution methods and their applications. The two columns of the figure represent two major 
classes: ( A ) reference-based and (b) reference-free methods. The rows of the figure (separated by dashed lines) represent the input, the three steps of 
the decon v olution process, the output, and potential applications. The input of reference-based methods (A) includes bulk expression data and reference 
single-cell data, while reference-free methods ( B ) only require bulk data (top row). The deconvolution process starts by identifying the marker genes of 
the cell types (second row). After removing non-marker genes, deconvolution methods estimate the expression of each cell type and construct the 
signature matrix in which each column represents the expression of a cell type (third row). Finally, deconvolution methods infer the cell type proportions 
using various statistical and machine learning techniques (f ourth ro w). T he output of the decon v olution methods often includes both the signature matrix 
and the cell type proportion matrix in which each column represents the cell type proportions of a bulk sample (fifth row). The last row shows the 
potential applications of cellular decon v olution, including biomarker identification, cancer subt yping , cell-t ype-specific sy stems-le v el analy sis, spatial 
transcriptome analysis, immunotherapy, and genetic and epigenetic association studies (GWAS and EWAS). 
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Xenium and Merscope partially addresses these issues and
may reduce the importance of deconvolution in these appli-
cations if they are widely adopted. Besides spatial transcrip-
tome, cellular deconvolution can also be applied to other data
types without abundant availability of single-cell resolution
data such as A T AC-seq ( 73 ) or methylation ( 74 ). 

Another potential application of cellular deconvolution is
cancer immunotherapy. It has been shown that the composi-
tion of immune cells in the tumor microenvironment is a ma-
jor contributor to the heterogeneity in cancer progression and 

treatment success ( 75 ). As immune cells infiltrate tumors to 

regulate their growth, their composition within the solid tu- 
mor is a strong predictor for a patient’s overall survival ( 3 ). It 
has been shown that the composition of immune cells in the 
tumor microenvironment is a major contributor to the het- 
erogeneity in cancer progression and treatment success ( 75 ).
As immune cells infiltrate tumors to regulate their growth,
their composition within the solid tumor is a strong predictor 
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or a patient’s overall survival ( 3 ). It has been demonstrated
hat a high level of macrophage infiltration is strongly as-
ociated with low survival of breast and bladder cancer pa-
ients ( 4 , 57 , 76 ). At the same time, higher levels of CD8 T-
ell correlates with better survivals of melanoma and head
nd neck cancer patients ( 5 ). Histologists and clinicians cur-
ently rely on immunohistochemistry to detect the infiltrating
ymphocytes and to determine the immune cell composition
f cancer tissues. Immunohistochemistry techniques, however,
ely on pre-selected markers, thus not ideal for detecting the
ne-grained lymphocyte subsets. Single-cell profiling is be-
oming more affordable but it still presents a substantial cost
 Supplementary Section S2 ). Flow sorting would be a much
etter approach that can be used to address this problem but
t would also involve additional costs. Since tumor sequencing
s done anyway for reasons related to treatment selection, de-
onvolution may be a suitable approach to determine the lev-
ls of infiltrating lymphocytes and to quantify the immune cell
omposition of cancer tissues. This allows for a comprehen-
ive monitoring of tumor micro-environment, cancer progres-
ion, and response to cancer immunotherapy and treatments.
n turn, this can lead to better strategies for cancer therapeu-
ics and drug development. 

Finally, cellular deconvolution can be applied to
pigenome-wide and transcriptome-wide association studies
EW AS and TW AS). The estimated cell type proportion can
e used as a fixed effect on EWAS and TWAS analysis ( 77 ).
or example, to assess the relevance of the estimated cell
ype proportions in Alzheimer’s disease, Patrick et al. ( 78 )
ncluded the estimated proportions as confounding factors to
europathology-related genes, namely amyloid beta and tau
roteins. The result shows a substantial reduction in the num-
er of genes associated with amyloid beta, suggesting that the
enes found without adjusting for cellular heterogeneity are
ikely to be false positives since their variance can be signifi-
antly explained away by variability in cell type proportions.
hese genes may be exclusively expressed in neurons and

herefore have lower expression levels in Alzheimer’s patients
ue to compositional changes of cell types during neurode-
eneration. Such genes are not actionable targets for the
reatment of Alzheimer’s since they are not causally involved
n the biological mechanism underlying Alzheimer’s disease,
ut are only brought up by the confounding effects of cell
ypes. 

urrent strategies for method validation 

igure 2 shows the high-level description of strategies that
ave been used to assess the performance of deconvolution
ethods. Overall, assessment approaches can be classified into
ve main categories: 

(1) simulating bulk data from scRNA-Seq data 
(2) using data from a mixture of cell lines 
(3) analyzing datasets that include both RNA-Seq and

scRNA-Seq data 
(4) using datasets that have both bulk transcriptome data

and flow cytometry counter data, and 

(5) performing enrichment analysis using clinical vari-
ables. 

For the first four approaches, the ground truth proportions
f the cell types are known and thus can be used to directly
ssess the accuracy of deconvolution methods. The fifth ap-
proach relies on domain experts to interpret the deconvolu-
tion results to indirectly assess the performance of deconvo-
lution methods. We also provide the available data for each
validation approach in Supplementary Table S1 . 

The first approach simulates bulk data from purified sam-
ples or single-cell data. For each simulated bulk dataset and
sample, the cell type composition is known and thus can be
used a posteriori to evaluate the performance of deconvo-
lution methods ( 74 ,79–93 ). To quantify the accuracy of a
method, this approach compares the cell type proportions es-
timated for each bulk sample against the ground truth using
either Pearson correlation, absolute error, or both. The perfor-
mance of each deconvolution method is measured by the av-
erage correlation (the higher the better) and / or average mean
absolute error (the lower the better) across all simulated bulk
samples. Although this approach has the ability to simulate a
large number of samples, it may not reflect real-world scenar-
ios. In addition, simulation is subjected to bias because simu-
lated data is generated based on some assumptions which are
usually identical with the assumptions made in designing the
approach. Presumably, any algorithm would be the best, when
applied to data that was simulated based on the same set of
assumptions. 

The second approach uses datasets that have both the ex-
pression profiles of pure cell lines and the in vitro mixture
of these cell lines ( 84 , 88 , 91 , 94–97 ). To generate this type of
data, biologists culture the pure cell lines independently and
then mix the cell lines with pre-defined ratios to generate bulk
samples. Then, they generate the gene expression profiles of
both bulk samples and the pure cell lines. In this evaluation
approach, the reference-based methods use the gene expres-
sion profiles of pure cell lines to construct the signature matrix
and then estimate the cell type proportions in the bulk sam-
ples. The accuracy of these methods is evaluated by comparing
the estimated proportions against the pre-defined ratios. This
approach is more realistic than using simulation but the dis-
advantage of this approach is the low throughput of the mix-
ture generation step. Datasets generated in vitro usually have
a low number of samples and cell types, which often leads to
overfitting. 

The third approach uses datasets that have both bulk RNA-
Seq and scRNA-Seq data generated from the same tissue sam-
ples ( 81 , 84 , 98 , 99 ). The single-cell data are often used for
two purposes. First, the cell type proportions calculated from
single-cell data can be treated as ground truth to assess the ac-
curacy of deconvolution methods. Second, a subset of single-
cell data can be used to construct the signature matrix for
reference-based methods. Although the matched RNA-Seq
and scRNA-Seq could theoretically provide a reasonable sce-
nario to evaluate the performance of the deconvolution meth-
ods, the availability of such data is limited. In addition, be-
cause the same single-cell data are used as ground truth and
as the input of reference-based methods, this approach can
potentially lead to data leakage and overfitting. Furthermore,
there are limitations with this approach due to biases in the
single-cell data since some cell types are inherently more sen-
sitive to dissociation than others. 

The fourth approach uses datasets that have both bulk data
and flow cytometry ( 57 , 81 , 83 , 95 , 100–106 ). Flow cytometry
data measures the counts of each cell type in the bulk samples
and thus can provide an approximation of true cell type com-
position in the bulk samples. Cell type proportions calculated
from the flow cytometry can be used as ground truth to assess

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae267#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae267#supplementary-data
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A B

C

D E

Figure 2. Common e v aluation strategies used by current deconvolution methods. Overall, assessment approaches can be classified into five main 
categories: ( A ) simulating bulk data from scRNA-Seq data, ( B ) using data from a mixture of cell lines, ( C ) analyzing datasets that include both RNA-Seq 
and scRNA-Seq data, ( D ) using datasets that ha v e both bulk transcriptome data and flow cytometry counter data and ( E ) performing enrichment analysis 
using clinical variables. For the first four scenarios, the ground truth proportions of the cell types are known and thus can be used to directly assess the 
accuracy of decon v olution methods. In the fifth scenario, decon v olution methods are indirectly assessed using expert knowledge and / or enrichment 
analysis. 
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he accuracy of deconvolution methods. In this approach, the
eference-based methods usually need to construct the signa-
ure matrix using another dataset if the pure cell type samples
re not available. The disadvantage of this approach is that the
ytometry data is generally available only for blood samples.
sing this validation approach alone could introduce bias to

he deconvolution methods, where they often overfit to blood
ata and thus might provide inaccurate results for samples
oming from other tissues. 

The last approach is used when the bulk data does not
ave matched single-cell or flow cytometry data. In those
ases, other information such as clinical variables, survival
nformation, and treatment / disease status can be used to in-
irectly assess the performance of the deconvolution meth-
ds ( 57 , 86 , 96 , 100 , 106–109 ). This can be done by associat-
ng the estimated cell type proportions with important clini-
al variables and / or reported discoveries from the literature.
s such, one can use the inferred cell type proportions to de-

ermine the subtype of patients and then validate that the dis-
overed subtypes have significantly different survival profiles.
nother indirect validation approach is to confirm previously

eported results, such as the association of treatments’ effi-
acy with known shifts in tissue composition. For example,
he group treated with an immunotherapy agent should have
n elevation in immune cell proportions ( 89 ,110 ), or type 2
iabetes patients are expected to show a decrease in the pro-
ortion of beta cells ( 79 ,111 ). Due to its complexity, this ap-
roach is often considered as the last resort to be used only
hen there is no available data for a direct quantitative as-

essment. 

echnical description of deconvolution 

ethods 

igure 3 A shows the key characteristics of the 53 decon-
olution methods including method category, implementa-
ion platform, required input, output, and underlying infer-
nce algorithm. We provide a description of individual meth-
ds, including their input, output, and data transformations
nd pre-processing steps in the Supplementary Note and
upplementary Table S6 . Most of the reviewed methods (41
ut of 53) require users to provide raw read counts (dis-
rete integers). One method (quanTIseq) asks users to pro-
ide the sequencing file (.fastq) while the remaining methods
llow users to provide normalized data (TPM-normalized or
icroarray). 
In total, we review 39 reference-based methods (Mu-

iC ( 79 ), DWLS ( 80 ), AdRoit ( 112 ), spatialDWLS ( 113 ), Sca-
en ( 81 ), LinDeconSeq ( 109 ), DigitalDLSorter ( 82 ), Auto-
eneS ( 114 ), RNA-Sieve ( 83 ), DecOT ( 111 ), BayICE ( 94 ), De-

onPeaker ( 73 ), SCDC ( 84 ), DAISM-DNN ( 115 ), CPM ( 85 ),
OMF ( 86 ), BisqueRef ( 116 ), deconvSeq ( 101 ), DeCom-

ress ( 87 ), DeMixT ( 117 ), CIBER SOR T ( 107 ,108 ), Methyl-
esolver ( 104 ), MIXTURE ( 105 ), FARDEEP ( 118 ), NITU-
ID ( 110 ), MySort ( 119 ), PREDE ( 57 ), quanTIseq ( 106 ),
econRNASeq ( 120 ), DCQ ( 88 ), dtangle ( 102 ), DESeq2’s
nmix ( 121 ), ARIC ( 100 ), EMeth ( 122 ), ImmuCellAI ( 89 ),
PIC ( 103 ), TICPE ( 90 ), BayesPrism ( 98 ), Bseq-SC ( 99 )),
0 reference-free approaches (Linseed ( 123 ), TOAST ( 91 ,92 ),
ebCAM ( 124 ), CellDistinguisher ( 125 ), deconf ( 126 ), Bay-
ount ( 127 ), BayesCCE ( 74 ), ReFACTor ( 93 ), Decon-

CA ( 128 ), SMC ( 97 )) and 4 semi-reference-free techniques
(Deblender ( 95 ), MCP-counter ( 129 ), BisqueMarker ( 116 ),
DSA ( 96 )). 

Three main steps of cellular deconvolution 

The workflow of a deconvolution method usually consists of
three main steps: (i) cell-type markers identification, (ii) signa-
ture matrix construction and (iii) cellular deconvolution. The
input of deconvolution methods includes the bulk expression
data to be deconvolved, reference single-cell data and marker
genes of each cell type. 

In the first step, deconvolution methods aim at determining
the marker genes for the available cell types of the tissue. If a
reference single-cell dataset is available, the marker genes can
be determined by performing a comparative analysis among
cell types. The marker genes can also be derived from the lit-
erature and / or from single-cell databases. If neither reference
data nor prior knowledge are available, deconvolution meth-
ods can use unsupervised learning and pattern recognition to
determine both cell types and marker genes from the bulk
data. 

The second step focuses on computing the expression of
each cell type. The expression of the cell types is often rep-
resented by a signature matrix S in which columns represent
cell types and rows represent marker genes. When the refer-
ence single-cell data and the cell type label are available, the
expression of each cell type (each column of S ) is typically
computed by averaging the expression values of all cells be-
longing to the underlying cell type. When the reference data is
available without cell type label, unsupervised clustering can
be performed to determine the cell groups. When the refer-
ence single-cell data is not available, reference-free and semi-
reference-free methods estimate the signature matrix directly
from the bulk data using unsupervised learning. 

In the third step, the expression of each bulk sample is de-
composed into a linear combination of the expression of all
cell types in the tissue, in which the coefficients are considered
cell type proportions. Specifically, b = S × p , as described by
Equation ( 1 ). When users input a bulk dataset that has m sam-
ples, the formula becomes as follows: 

⎡ 

⎢ ⎣ 

b 11 . . . b 1 m 

. . . 
. . . 

. . . 
b n 1 . . . b nm 

⎤ 

⎥ ⎦ 

= 

⎡ 

⎢ ⎣ 

s 11 . . . s 1 k 
. . . 

. . . 
. . . 

s n 1 . . . s nk 

⎤ 

⎥ ⎦ 

×

⎡ 

⎢ ⎣ 

p 11 . . . p 1 m 

. . . 
. . . 

. . . 
p k 1 . . . p km 

⎤ 

⎥ ⎦ 

(2)

or B = S × P in which B is a matrix of n genes by m bulk sam-
ples that represents the input bulk dataset and P is a matrix
of k cell types by m samples that represents the cell type pro-
portions of the samples. For reference-free methods, where the
signature matrix S is pre-computed from reference single-cell
data, P can be estimated by minimizing the difference between
B and S × P . For reference-free techniques, where the reference
single-cell data is not available, both S and P are iteratively and
simultaneously estimated from the bulk data. The output of
the deconvolution methods often includes both the signature
matrix S and the cell type proportion matrix P . 

Identification of cell type mark er s 

Among the reference-based methods listed in Figure 3 ,
10 methods, MuSiC, Scaden, DigitalDLSorter, RNA-Sieve,
BayesPrism, DecOT, DAISM-DNN, MOMF, DESeq2’s un-
mix and EMeth, use all genes for their deconvolution pro-
cess and thus omit the step of marker identification. The other

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae267#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae267#supplementary-data
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A B

Figure 3. K e y c haracteristics and tec hnical e v aluation of cellular decon v olution methods. ( A ) Method characterization according to implementation, 
input, output, embedded reference and the underlying algorithm. ( B ) Performance assessment based on five criteria: the accuracy of the predicted cell 
type proportions, the scalability in analyzing large input sizes, the stability (opposite of crash rate and other errors), the consistency of the predicted cell 
type proportions using different initializations, and the usability as code quality and ease of use. *Abbreviations: S: signature matrix; F: full cell-type 
expression matrix; PCA: principal component analysis; NMF: non-negative matrix factorization; CLS: constrained least squares; SVR: support vector 
regression; MLE: maximum likelihood estimation; DNN: deep neural network; ensemble: combination of multiple methods; scoring: enrichment using 
marker sets. W prefix: weighted. R prefix: regularized. ***BisqueRef requires scRNA data of at least two subjects as input. TICPE requires cancer cell 
expression, normal cell expression, immune cell expression and marker gene sets as input. 
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6 methods, spatialDWLS, CIBER SOR T, CIBER SOR Tx,
ethylResolver, MIXTURE, F ARDEEP, NITUMID , MySort,

uanTIseq, DeconRNASeq, DCQ, dtangle, PREDE, Immu-
ellAI, EPIC and TICPE, require users to provide the marker
enes. The remaining reference-based methods identify the
arker genes by comparing cells of the underlying cell type

gainst all remaining cells using common comparative anal-
sis: t -test, likelihood-ratio, Wilcoxon Rank Sum, ANOVA,
old change, signal-to-noise ratio, co-linearity score, multi-
bjective genetic algorithm and Wald test. 
Reference-free methods perform unsupervised learning on

he bulk data to identify the cell types and their markers.
inseed and debCAM project the gene data onto a low-
imensional space and then identify the genes close to the
orner of the smallest simplex as marker genes. CellDistin-
uisher computes the gene-gene conditional expression ma-
rix from the bulk data input and identifies the marker genes
s ones that correspond to the most extreme vectors in this
atrix. BayesCCE and ReFACTor perform gene filtering to

emove irrelevant genes. The remaining reference-free meth-
ds, TOAST, deconf, BayCount, DeconICA and SMC, use all
enes provided in the bulk data for their deconvolution. 

Semi-reference-free methods (Deblender , MCP-counter ,
isqueMarker and DSA) allow users to provide the marker
enes for the cell types. If users do not provide the markers,
hen MCP-counter will use the embedded markers for 10 stro-
al cell types whereas Deblender performs unsupervised clus-

ering to partition the genes into different groups that repre-
ent different cell types. Genes that are closest to each cluster
enter are considered marker genes. 

ignature matrix construction 

ethods that include a signature matrix in the deconvolu-
ion process either compute and fix the signature matrix prior
o calculating the cell type proportions, or simultaneously es-
imate both the signature matrix and cell type proportions.
here are a few exceptions in which deconvolution meth-
ds do not use the signature matrix for the process of es-
imating the proportions. These include Scaden, DigitalDL-
orter, DAISM-DNN, TICPE, Linseed, ReFACTor, Bisque-
arker and DSA. 
As we mentioned above, the deconvolution is formulated as

 = S × P where B is the bulk data, S is the signature matrix,
nd P is the proportion matrix. Many reference-based meth-
ds construct the signature matrix from the reference single-
ell data (those with checkmark symbol in the scRNA-Seq
olumn in Figure 3 ). They calculate the signature matrix by
veraging the expression of cells belonging to the same cell
ypes. The rest of the reference-based methods require users
o provide the signature matrix (those without the checkmark
ymbol in the scRNA-Seq but with F and S in the CT Expr).
 and S matrices are both cell type expression matrices but F
atrix includes the expression of all genes whereas S matrix
nly contains marker genes. The marker genes in the S matrix
re expected to be mutually exclusive, i.e., these marker genes
re expressed in one cell type but not in others. Although F
nd S matrices are conceptually interchangeable, providing a
ype of input different from what is specified in the software
anual can have unexpected effects on the software. For ex-

mple, some F methods (DESeq2, dtangle, PREDE, EMeth)
rash when we provide the S matrix. In contrast S methods
an take substantially longer time to run when we provided
them with F matrix. Therefore, we suggest users to provide
the input as specified in the manual of each software. 

As we mentioned above, the deconvolution is formulated as
B = S × P where B is the bulk data, S is the signature matrix,
and P is the proportion matrix. Among the reference-based
methods, many require users to provide the signature matrix
(those with F and S in the CT Expr in Figure 3 ). Some of them,
including CIBER SOR T, CIBER SOR Tx, MethlyResolver, NI-
TUMID, MySort, quanTIseq, Bseq-SC, DCQ and ImmuCel-
lAI, also have the signature matrix of certain cell types em-
bedded in their software. Otherwise, reference-based methods
construct the signature matrix from the reference single-cell
data. Most of them calculate the signature matrix by averag-
ing the expression of cells belonging to the same cell types. The
rows in this matrix can be all genes or just the biomarkers as
described in the previous section. When only the biomarkers
are used in the signature matrix, it is expected that they are
mutually exclusive. 

Without the reference single-cell data, reference-free and
semi-reference-free methods aim at simultaneously estimat-
ing both the signature matrix and cell type proportions from
the bulk data without using any external information. deb-
CAM uses the marker genes to construct a simplex, and then
projects the marker genes onto the axes and averages the pro-
jected values to create the expression of the cell type. De-
blender simply averages the expression of the marker genes
in the bulk data to estimate the expression of each cell type.
CellDistinguisher, after identifying marker genes, projects the
input matrix onto the space spanned by its row vectors cor-
responding to cell type-specific markers, resulting in the cell
type signature matrix. TOAST and deconf use non-negative
matrix factorization to iteratively optimize S and P until the
absolute errors or square errors reach a certain threshold.
The three Bayesian methods, BayCount, BayesCCE and SMC,
model the bulk data to follow a probabilistic distribution
whose parameters and then iteratively update both the sig-
nature and proportion matrices to maximize the likelihood
functions. 

Estimating cell type proportions 

Given the mathematical definition of the deconvolution, B =
S × P , many methods aim at minimizing the squared errors.
There are 16 deconvolution methods that are based on con-
strained least squares (CLS in Figure 3 ) with the constraints
that the values of cell type proportions are non-negative and
sum up to one. To obtain the cell type proportions, these meth-
ods apply classical quadratic programming algorithms. One
drawback of the CLS model is that it can be influenced by
outliers or genes with abnormally high expression. To address
this, five methods, MuSiC, DWLS, spatialDWLS, LinDecon-
Seq and EPIC, use the weighted constrained least squares (W-
CLS) model to put less weight on genes with high variance.
AdRoit and DCQ also apply the regularized constrained least
squares (R-CLS) model that automatically shrinks irrelevant
cell types using Ridge regression and elastic net, respectively. 

CLS, W-CLS and R-CLS models display a good perfor-
mance generally when S is well conditioned, i.e. its constituent
cell types are highly distinctive with mutually exclusive mark-
ers. To avoid relying on such assumptions, many methods
have introduced more sophisticated techniques to estimate
cell type proportions, including support vector regression
(S VR), deep neur al netw or ks (DNN), maximum lik elihood
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estimation (MLE), Bayesian modeling, ensemble , scoring and
matrix decomposition . 

Eight SVR methods include AutoGeneS, CPM, CIBER-
SOR T, CIBER SOR Tx, MIXTURE, MySort, Bseq-SC, and
ARIC. In comparison to the CLS models, the objective func-
tion of SVR aims to minimize the coefficients (cell type propor-
tions) instead of the squared errors. The SVR model regular-
izes the coefficients using Ridge regression (L2–norm), while
the error term is handled by an extra constraint such that the
error must lie within a specified margin. Compared to CLS, the
SVR model has the following advantages: (i) is robust against
noise, (ii) can automatically select important genes from the
signature matrix and (iii) can account for multicollinearity be-
tween cell types. 

The three DNN methods, Scaden, DigitalDLSorter and
DAISM-DNN, require users to provide the reference single-
cell data with known cell type labels. From the single-cell data,
these methods randomly select a subset of the single cells to
generate both the bulk expression and the cell type propor-
tions. The process is repeated millions of times to generate
sufficient training data for the model. These approaches do
not require a well-conditioned signature matrix to estimate
cell type proportions, but they do need a sufficiently large
single-cell dataset to simulate millions of bulk samples for
the neural network. Such requirement is specified in Scaden
method’s manuscript ( 81 ) and we also observe similar data
generation strategy in the source code of DigitalDLSorter ( 82 )
and DAISM-DNN ( 115 ). 

The four MLE methods, RNA-Sieve, deconvSeq,
DeMixT and EMeth, model the expression data using
probabilistic distributions and then compute cell type propor-
tions by maximizing the likelihood function. The estimation
can be done by solving a system of gradient equations or using
the classical Expectation Maximization (EM) algorithm. The
performance of these MLE-based methods depends on the
correctness of the underlying assumptions of the data ( 130 ).
In addition, the likelihood function with a large number of
parameters may be hard to optimize, making MLE methods
slow and computationally expensive ( 131 ). 

The five Bayesian methods, BayesPrism, BayICE, BayCount,
BayesCCE and SMC, combine the probabilistic models with
prior knowledge of cell type proportions. In addition to mod-
eling the observed expression data, the five Bayesian ap-
proaches also model the cell type proportions to follow a prior
distribution in each tissue. These approaches use sampling
techniques, such as Gibbs or Markov chain Monte Carlo, to
sample the cell type proportions from the prior distribution
and then calculate the likelihood of the observed expression
data. In the end, these approaches calculate the cell type pro-
portions that maximize the likelihood of the observed expres-
sion data. Bayesian approaches are not applicable to tissues in
which the distribution of cell type proportions (prior knowl-
edge) is not known. 

The three methods, SCDC, DecOT and Decompress, use
the ensemble strategy to estimate the cell type proportions.
SCDC and DecOT create multiple signature matrices from dif-
ferent single-cell datasets and then use each signature matrix
to deconvolve the bulk data. These approaches then combine
all estimated cell type proportions using a W-CLS model to
determine the final proportions. Decompress uses six differ-
ent methods, deconf, CellDistinguisher, TOAST, Linseed, De-
conICA, and DESeq2’s unmix, to estimate the cell type pro-
portions and then choose the estimation that has the small- 
est squared error. Choosing an appropriate ensemble tech- 
nique remains a challenge and it does not guarantee to pro- 
vide better results than those obtained from a single anal- 
ysis. For example, SCDC uses MuSiC as part of their en- 
semble strategy to estimate the cell type proportions, but 
SCDC does not perform as well as MuSiC in our experiments 
( Supplementary Figures S2 –S11 ). 

The five methods, dtangle, TICPE, Linseed, MCP- 
Counter and DSA, introduce a new strategy named scoring 
to estimate the cell type proportions. Given the markers, Lin- 
seed, MCP-Counter and DSA calculate the score for each cell 
type by taking the mean expression of its markers in the bulk 

sample. Linseed and DSA normalize these scores to represent 
the cell type proportions. In contrast, dtangle and TICPE 

compute a relative abundance ratio for each pair of cell types 
and then estimate the cell type proportions using multivariate 
logistic and Gauss-Newton method. Scoring-based methods 
might perform well on tissues with few cell types but are not 
ideal in deconvolving tissues with a more complex mixture of 
many cell types, especially when the cell types have overlap- 
ping markers. As shown in Supplementary Figures S5 - S10 ,
scoring-based methods have relatively lower accuracy in 

CELLxGENE tissues where the data have more cell types 
compared to Tabula Sapiens tissues. 

The remaining eleven methods use matrix decomposition 

to simultaneously estimate both the cell type proportions 
and the signature matrix. Among these, there are nine NMF 

and two PCA methods. The NMF methods typically initial- 
ize the matrices S and P and then iteratively update them 

by minimizing the discrepancy between B and S × P in 

Equation ( 2 ). The two PCA techniques, BisqueMarker and 

ReFACTor, decompose the bulk data to obtain a k-rank ap- 
proximation in which k represents the number of cell types.
The values of the first k PCs represent the cell type pro- 
portions of all samples. These matrix decomposition-based 

methods may fail to provide a unique optimal solution be- 
cause the N -dimensional polygon—as defined by the various 
constraints and objectives—is not convex. Six methods, de- 
bCAM, CellDistinguisher , deconf, ReFACTor , DeconICA and 

Deblender, return cell type proportions without cell type la- 
bels. In these cases, users need to perform additional steps 
to match the proportions with actual cell types in the bulk 

samples. 

P erfor mance assessment and analysis results 

Benchmarking workflow and implementation 

While researchers mainly seek to use the most accurate 
method, scalability, reproducibility (consistency), installation 

issues, crashes, poor documentation and fine-tuning many pa- 
rameters might prevent users from trying or effectively de- 
ploying a given method. In order to capture all the aspects 
mentioned above when comparing various methods, we de- 
fine five different metrics that quantitatively evaluate each 

method: (i) accuracy—how well the method can correctly es- 
timate the cell type proportions, (ii) scalability—how well the 
method can scale to an increasing number of bulk samples,
(iii) consistency—how robust the method is against noise and 

random factors, (iv) stability—how often the method crashes 
or returns errors and (v) usability—how easy it is to install the 
software and to analyze the data. These metrics aim to cap- 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae267#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae267#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae267#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae267#supplementary-data
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Figure 4. The evaluation procedure of cellular deconvolution methods using data from the Tabula Sapiens and CELLxGENE. The data has the single-cell 
expression data of 283 cell types from 30 tissues and 63 donors. For each tissue, we use the expression data of the donor that has all cell types to 
generate the single-cell data, and use the expression data of the remaining donors to generate bulk data. For each of the generated datasets, we have 
both reference single-cell data and bulk samples in which cell type proportions are known and thus can be used a posteriori to quantitatively evaluate the 
decon v olution methods. We also implement an R package, named DeconBenchmark (red box to the right of the figure), in which the implementation 
and dependencies of all methods are pre-installed and containerized using Docker and Singularity. 
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ure the usefulness of the methods from the perspectives of
oth computational scientists and medical practitioners / life
esearchers. 

Figure 4 shows the workflow of the evaluation procedure.
o perform a comprehensive assessment, we evaluate the
ethods using a total of 30 tissues from two data sources:
abula Sapiens ( 132 ) and CELLxGENE ( 133 ). Table 1 shows
he details of the data used in our analysis. For Tabula Sapiens
ata, we choose tissues that have at least two donors, result-
ng in a total of 20 tissues, 15 donors and 135 cell types. For
he CELLxGENE data, we choose tissues that have at least
ve donors and ten cell types. This results in 10 tissues, 48
uman donors and 148 cell types. For each tissue, we use the
ata from one donor to generate reference single-cell expres-
ion, and the data from the remaining donors to generate bulk
amples. To generate a bulk data sample, we first generate cell
ype proportions and then select cells from the single-cell data
f the first donor to match the pre-defined proportions. We
hen use the deconvolution methods to estimate the cell type
roportions of the generated bulk samples. We also provide
dditional information for methods that require extra input,
ncluding the number of cell types, single-cell data, signature
atrix, or cell-type-specific markers. After the deconvolution
ethods finish their analyses, we use the true cell type propor-

ions to quantitatively assess the performance of the deconvo-
ution methods. 

We also provide an R package, named DeconBenchmark,
hat includes the complete implementation of 50 deconvolu-
ion methods. We exclude three methods, DCQ, TICPE and
MC, from the package because they either are not available,
r the code does not execute. The package gives readers in-
tant access to all cellular deconvolution methods in a conve-
ient and readily available manner. The package can be eas-
ly expanded to include new methods in the future if users
ish to do so. The package is designed to allow researchers
to: (i) test and evaluate cellular deconvolution methods with-
out any installation steps regardless of their dependencies and
platform, (ii) use the same standardized input and output
formats for all methods, (iii) generate results from multiple
methods and (iv) containerize and benchmark a new decon-
volution method against all available methods. To standard-
ize the input and output of the deconvolution methods, we
provide a wrapper for each method in a containerized en-
vironment. This also allows users to avoid conflicts among
the methods’ environment and dependencies. More details
about the package can be found on the package’s GitHub page
( https:// github.com/ tinnlab/ DeconBenchmark ). 

Result summary 

Figure 3 shows the key characteristics of the 53 deconvolu-
tion methods. Figure 3 A shows the method category, imple-
mentation platform, required input, output, and underlying
inference algorithm. Figure 3 B shows a technical evaluation
of deconvolution methods. Figure 3 B shows the assessment
results using the five metrics: (i) accuracy , (ii) scalability , (iii)
consistency, (iv) stability and (v) usability. We assess the ac-
curacy of the methods using a total of 30 datasets of the 30
different tissues (Table 1 )—one per tissue. We also generate 20
more datasets from CELLxGENE tissues to investigate the im-
pact of incomplete reference data. To measure the scalability
of the methods, we generate 80 more datasets with different
numbers of bulk samples (100, 250, 500 and 1000 samples). 

The overall score is the weighted average of the five metrics:
Overall = 

1 
6 (3 × Accuracy + Scal abil ity + Consistency + 

St abilit y + Usabilit y 
2 ) . The Accuracy metric measures how accurate

the method is while the remaining four metrics measure its
reliability. Among the remaining four metrics, Scalability
measures whether the method can analyze large datasets
while Consistency measures its robustness against noise.

https://github.com/tinnlab/DeconBenchmark
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Table 1. Description of the 30 tissues from Tabula Sapiens and CELLxGENE included in the e v aluation 

Tissue #Donors #UMIs #Genes #Types Description 

Tabula Sapiens 

1. Bladder 3 13219 2739 9 T cell, macrophage, myofibroblast cell, bladder urothelial cell, 
smooth muscle cell, fibroblast, pericyte cell, mast cell, mature 
NK T cell 

2. Blood 6 9100 1866 6 erythrocyte, classical monocyte, neutrophil, memory B cell, 
plasma cell, platelet 

3. Bone Marrow 3 11848 2600 8 plasma cell, hematopoietic stem cell, erythroid progenitor cell, 
mature NK T cell, granulocyte, naive B cell, CD8 positive alpha 
beta T cell, CD4 positive alpha beta T cell 

4. Eye 3 17357 3286 7 conjunctival epithelial cell, eye photoreceptor cell, Muller cell, 
retinal blood vessel endothelial cell, keratocyte, corneal 
epithelial cell, melanocyte 

5. Fat 2 13353 3247 4 fibroblast, endothelial cell, macrophage, myofibroblast cell 
6. Large Intestine 2 16385 3764 5 CD8 positive alpha beta T cell, fibroblast, paneth cell of colon, 

B cell, gut endothelial cell 
7. Liver 2 10123 2729 2 endothelial cell of hepatic sinusoid, hepatocyte 
8. Lung 3 9102 1849 3 type II pneumocyte, mature NK T cell, adventitial cell 
9. Lymph Node 3 8458 2302 9 B cell, effector CD4 positive alpha beta T cell, regulatory T cell, 

plasma cell, neutrophil, macrophage, CD1c positive myeloid 
dendritic cell, intermediate monocyte, mast cell 

10. Muscle 3 15256 3282 11 mesenchymal stem cell, skeletal muscle satellite stem cell, 
capillary endothelial cell, pericyte cell, fast muscle cell, 
macrophage, endothelial cell of vascular tree, slow muscle cell, 
endothelial cell of artery, tendon cell, endothelial cell of 
lymphatic vessel 

11. Pancreas 2 7477 2024 7 pancreatic acinar cell, T cell, endothelial cell, myeloid cell, 
pancreatic stellate cell, B cell, pancreatic ductal cell 

12. Prostate 2 10319 2532 6 basal cell of prostate epithelium, epithelial cell, club cell, 
erythroid progenitor cell, luminal cell of prostate epithelium, 
endothelial cell 

13. Salivary Gland 2 9155 2564 10 acinar cell of salivary gland, pericyte cell, mature NK T cell, 
fibroblast, endothelial cell of lymphatic vessel, adventitial cell, 
endothelial cell, monocyte, duct epithelial cell, basal cell 

14. Skin 2 19725 3031 8 macrophage, stromal cell, mast cell, muscle cell, CD1c positive 
myeloid dendritic cell, endothelial cell, naive thymus derived 
CD8 positive alpha beta T cell, regulatory T cell 

15. Small Intestine 2 10034 2480 4 CD8 positive alpha beta T cell, B cell, paneth cell of epithelium 

of small intestine, fibroblast 
16. Spleen 3 13680 2475 13 macrophage, intermediate monocyte, endothelial cell, memory 

B cell, classical monocyte, neutrophil, naive B cell, plasma cell, 
type I NK T cell, mature NK T cell, innate lymphoid cell, 
regulatory T cell, hematopoietic stem cell 

17. Thymus 2 8746 2160 9 medullary thymic epithelial cell, fibroblast, macrophage, 
vascular associated smooth muscle cell, plasma cell, vein 
endothelial cell, capillary endothelial cell, endothelial cell of 
artery, monocyte 

18. Tongue 2 8706 1971 5 leukocyte, fibroblast, vein endothelial cell, pericyte cell, 
capillary endothelial cell 

19. Trachea 2 9850 2395 3 endothelial cell, ciliated cell, basal cell 
20. Vasculature 2 8794 2414 6 fibroblast, smooth muscle cell, macrophage, pericyte cell, mast 

cell, mature NK T cell 

CELLxGENE 

21. Anterior Cingulate 
Cortex 

5 15350 3360 18 lamp5 GABAergic cortical interneuron, sncg GABAergic 
cortical interneuron, caudal ganglionic eminence derived 
GABAergic cortical interneuron, vip GABAergic cortical 
interneuron, L5 extratelencephalic projecting glutamatergic 
cortical neuron, near projecting glutamatergic cortical neuron, 
corticothalamic projecting glutamatergic cortical neuron, L6b 
glutamatergic cortical neuron, astrocyte of the cerebral cortex, 
cerebral cortex endothelial cell, vascular leptomeningeal cell, 
microglial cell, oligodendrocyte, oligodendrocyte precursor cell, 
L2 / 3-6 intratelencephalic projecting glutamatergic cortical 
neuron, chandelier pvalb GABAergic cortical interneuron, 
pvalb GABAergic cortical interneuron, sst GABAergic cortical 
interneuron 

22. Basal Zone of Heart 6 5867 2028 16 native cell, fibroblast, smooth muscle cell, pericyte, myeloid 
cell, endocardial cell, endothelial cell of artery, vein endothelial 
cell, endothelial cell, fetal cardiomyocyte, cardiac muscle cell, 
neuron, cardiac mesenchymal cell, innate lymphoid cell, 
capillary endothelial cell, mesothelial cell of epicardium 
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Table 1. Continued 

Tissue #Donors #UMIs #Genes #Types Description 

23. Fimbria of Uterine 
Tube 

5 5400 1739 11 natural killer cell, endothelial cell, stromal cell, smooth muscle 
cell, pericyte, secretory cell, endothelial cell of lymphatic vessel, 
macrophage, B cell, mast cell, ciliated epithelial cell 

24. Heart Left Ventricle 12 3801 1624 10 native cell, cardiac muscle cell, mural cell, mast cell, cardiac 
neuron, endothelial cell, fibroblast of cardiac tissue, myeloid 
cell, lymphocyte, fat cell 

25. Liver 14 2101 1063 11 naive thymus derived CD4 positive alpha beta T cell, natural 
killer cell, CD8 positive alpha beta cytotoxic T cell, CD8 
positive alpha beta memory T cell, B cell, gamma delta T cell, T 

cell, memory T cell, plasma cell, plasmacytoid dendritic cell, 
regulatory T cell 

26. Middle Temporal 
Gyrus 

5 21303 5745 18 astrocyte of the cerebral cortex, oligodendrocyte, vascular 
leptomeningeal cell, microglial cell, oligodendrocyte precursor 
cell, cerebral cortex endothelial cell, near projecting 
glutamatergic cortical neuron, corticothalamic projecting 
glutamatergic cortical neuron, L6b glutamatergic cortical 
neuron, L5 extratelencephalic projecting glutamatergic cortical 
neuron, caudal ganglionic eminence derived gabaergic cortical 
interneuron, vip GABAergic cortical interneuron, sncg 
GABAergic cortical interneuron, lamp5 GABAergic cortical 
interneuron, sst GABAergic cortical interneuron, pvalb 
GABAergic cortical interneuron, chandelier pvalb GABAergic 
cortical interneuron, L2 / 3-6 intratelencephalic projecting 
glutamatergic cortical neuron 

27. Primary Auditory 
Cortex 

5 12219 2768 18 lamp5 GABAergic cortical interneuron, caudal ganglionic 
eminence derived GABAergic cortical interneuron, vip 
GABAergic cortical interneuron, sncg GABAergic cortical 
interneuron, L5 extratelencephalic projecting glutamatergic 
cortical neuron, near-projecting glutamatergic cortical neuron, 
corticothalamic-projecting glutamatergic cortical neuron, L6b 
glutamatergic cortical neuron, astrocyte of the cerebral cortex, 
vascular leptomeningeal cell, cerebral cortex endothelial cell, 
microglial cell, oligodendrocyte, oligodendrocyte precursor cell, 
L2 / 3-6 intratelencephalic projecting glutamatergic cortical 
neuron, chandelier pvalb GABAergic cortical interneuron, 
pvalb GABAergic cortical interneuron, sst GABAergic cortical 
interneuron 

28. Primary 
Somatosensory Cortex 

5 13427 2903 18 lamp5 GABAergic cortical interneuron, sncg GABAergic 
cortical interneuron, caudal ganglionic eminence derived 
gabaergic cortical interneuron, vip GABAergic cortical 
interneuron, L5 extratelencephalic projecting glutamatergic 
cortical neuron, near projecting glutamatergic cortical neuron, 
corticothalamic projecting glutamatergic cortical neuron, L6b 
glutamatergic cortical neuron, astrocyte of the cerebral cortex, 
vascular leptomeningeal cell, cerebral cortex endothelial cell, 
microglial cell, oligodendrocyte precursor cell, oligodendrocyte, 
L2 / 3-6 intratelencephalic projecting glutamatergic cortical 
neuron, chandelier pvalb GABAergic cortical interneuron, 
pvalb GABAergic cortical interneuron, sst GABAergic cortical 
interneuron 

29. Primary Visual Cortex 5 9811 2164 18 lamp5 GABAergic cortical interneuron, sncg GABAergic 
cortical interneuron, caudal ganglionic eminence derived 
GABAergic cortical interneuron, vip GABAergic cortical 
interneuron, L5 extratelencephalic projecting glutamatergic 
cortical neuron, near-projecting glutamatergic cortical neuron, 
corticothalamic-projecting glutamatergic cortical neuron, L6b 
glutamatergic cortical neuron, astrocyte of the cerebral cortex, 
cerebral cortex endothelial cell, oligodendrocyte precursor cell, 
vascular leptomeningeal cell, microglial cell, oligodendrocyte, 
L2 / 3-6 intratelencephalic projecting glutamatergic cortical 
neuron, chandelier pvalb GABAergic cortical interneuron, 
pvalb GABAergic cortical interneuron, sst GABAergic cortical 
interneuron 

30. Small Intestine 6 9953 2215 10 T cell, B cell, enterocyte, macrophage, dendritic cell, endothelial 
cell of lymphatic vessel, neuron, fibroblast, blood vessel 
endothelial cell, enteroendocrine cell 

The first column shows the data source while the first column the name of the tissue. The third column shows the number of donors from which a tissue was 
collected from. The remaining columns show the average number of unique molecular identifiers (UMIs) detected per cell, average number of genes detected 
per cell, number of cell types, and cell type description. 
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Stability and Usability both measure the reliability of the soft-
ware (crash and documentation, respectively). In principle,
a researcher who generally analyzes smaller datasets would
not care about scalability . Similarly , a computer scientist
who is used to debugging and working with command line
software would perhaps tolerate a lower usability than a life
scientist. However, all users would care about accuracy. For
this reason, we tuned the weights so that Accuracy accounts
for 50% of the Overall score and the other four metrics
account for the remaining 50%. Scalability, Consistency and
the sum (Stability + Usability) are weighted equally in our
formula. 

For methods that require the same type of input, we sort
them in descending order of the overall score. DWLS and
MuSiC have the highest overall scores among methods that
require single-cell data as reference. MuSiC and DWLS are
also reported as the top performers in a benchmarking study
for tumor microenvironment deconvolution ( 37 ). For meth-
ods that require the signature matrix (marked as S in CT
expr* column), CIBER SOR T has the highest score. For meth-
ods that require the full cell-type expression matrix (marked
as F in CT expr* column), DESeq2’s unmix has the highest
score. According to our results, Linseed and MCP-counter
have the highest overall scores among reference-free and semi-
reference-free methods, respectively. 

In general, reference-based methods outperform reference-
free, and semi-reference-free methods. This is because
reference-based methods can leverage the additional informa-
tion from high-quality single-cell data to refine their infer-
ence. Interestingly, among the reference-based methods, the
best methods are based on linear regression models. As shown
in Figure 3 , linear models dominate the list of top methods
that have the best scores. The most important factor affecting
method performance is how each method handles noise and
avoids overfitting. The top two methods, MuSiC and DWLS,
both use the Weighted Constrained Least Squares (W-CLS)
model for a gene weighting scheme to minimize the impact
of outliers. Data processing and hyperparameters also play
significant roles. For example, CPM and CIBER SOR T both
use Support Vector Regression (SVR) but they differ in two
aspects that lead to differences in performance. CIBER SOR T
uses ν-SVR (a variation of SVR), in which the added param-
eter ν to control the number of support vectors for optimiz-
ing the loss function. Another difference is that CIBER SOR T
pre-processes the reference data to keep only marker genes
of the cell types in the signature matrix. Finally, implementa-
tion also matters. Even when using the same machine learn-
ing technique, a better implementation can significantly influ-
ence the scalability , stability , and many other metrics of the
software. 

In the following sections, we provide the details of all met-
rics and discuss the technical evaluation of the methods. 

Accuracy 

We use four distinct metrics to measure the accuracy
of each method: (i) mean absolute error (MAE), (ii)
sample-wise Spearman correlation (SCorr), (iii) cell-type-wise
Spearman correlation (CCorr) and (iv) mean absolute er-
ror between the two sample-pairwise Pearson correlations
(MAECorr). The formulae of the metrics are provided in
Supplementary Section S3.2 . Note that the values of each met-
ric are very different. For example, SCorr and CCorr are cor- 
relations and thus their values range from -1 to 1 while MAR 

and MAECorr are absolute errors and thus take positive val- 
ues. In order to combine all four metrics, it is necessary to 

convert each metric to the same scale. Therefore, for each of 
the four accuracy metrics, we first rank the methods and then 

scale the ranking to the range of [1, 10]. The higher the score,
the better the method performs with respect to the underly- 
ing metric. We next average the four scores obtained from the 
four metrics and then round the average to obtain the overall 
accuracy. 

Figure 5 and Supplementary Table S2 report the overall ac- 
curacy and the four accuracy metrics. Supplementary Figures 
S2 and S3 separately show the accuracy scores for Tabula 
Sapiens and CELLxGENE data, respectively. Although the 
two data sources have distinctively different tissues (only two 

tissues in common), the accuracy scores are fairly consis- 
tent across the two figures. Linseed and Deblender consis- 
tently have the highest accuracy scores in their respective cat- 
egory (reference-free and semi-reference-free). For reference- 
based methods, there are as many as 11 methods that ap- 
pear in the top 15 methods of both figures (DWLS, DESeq2,
MuSiC, CIBER SOR T , MethylResolver , LinDeconSeq, ARIC,
FARDEEP, MIXTURE, RNA-Sieve and AutoGeneS). 

In general, reference-based methods outperform reference- 
free methods in all accuracy metrics. The scores of reference- 
based methods are more consistent across the metrics com- 
pared to those of reference-free methods. One important note 
is that the performance of each method varies greatly across 
tissues. It is also noticeable that in some tissues, including 
Liver, Lung, Small Intestine and Trachea, most methods con- 
sistently have larger MAE than other tissues. Note that these 
tissues also only have a few cell types (2–4, see Table 1 ). 

We observe that there is no method that has the best scores 
in all tissues. For the MAE metric, the best three methods are 
MuSiC, D WLS and DESeq2’ s unmix ( Supplementary Figure 
S4 ). The differences in MAE values of the 10 top methods are 
small, with the smallest MAE is 5 . 7% and the largest MAE 

is 7 . 0% ( Supplementary Figure S5 ). For the SCorr metric, the 
best three methods are DWLS, MuSiC and DESeq2’s unmix 

with average correlations of 81 . 4% , 79 . 5% and 77 . 4% , re-
spectively ( Supplementary Figures S6 and S7 ). There is a con- 
siderable gap among the top 10 methods with the highest cor- 
relation being 81 . 4% and the lowest correlation being 69 . 5% .
The small differences in MAE but large differences in SCorr 
of the top methods suggests that deconvolution methods are 
struggling to keep the order of the estimated cell type propor- 
tions for cell types that have similar proportions. 

The three best methods with CCorr metrics are DWLS, Mu- 
SiC and DESeq2’s unmix with average correlations of 78 . 7% ,
78 . 3% and 77 . 4% , respectively ( Supplementary Figures S8 

and S9 ). The top 10 methods for this metric have a correla- 
tion of at least 71 . 6% . For the MAECorr metric, the best three 
methods are D WLS, DESeq2’ s unmix, and MuSiC with aver- 
age MAECorr values of 12 . 1% , 12 . 8% and 14 . 6% , respec-
tively ( Supplementary Figures S10 and S11 ). Top 10 meth- 
ods for this metric have the MAECorr of at most 17 . 7% .
We observe that methods that perform well on the former 
metric can still have a relatively large error in the latter 
one. Also, the higher scores of MAE and SCorr compared 

to CCorr and MAECorr suggests that the deconvolution re- 
sults are more suitable for studying relationships between cell 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae267#supplementary-data
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Figure 5. The accuracy scores of the decon v olution methods obtained from the analysis of 30 tissues a v ailable on Tabula Sapiens and CELLxGENE. The 
accuracy is measured by four different metrics: (i) mean absolute error (MAE), (ii) sample-wise Spearman correlation (SCorr), (iii) cell-type-wise 
Spearman correlation (CCorr) and (iv) mean absolute error between the two sample-pairwise Pearson correlations (MAECorr). Each score ranges from 1 
to 10 (the higher the better). The methods are ordered by their overall score, which is the average of the four metrics. 
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ypes and phenotypes, rather than relationships among sub-
ects (such as patient segregation), or among cell types. Note
hat spatialD WLS (D WLS tailored for spatial data) fails to
chieve the same performance as DWLS. This is because spa-
ialDWLS is designed to work with fewer cells per sample.
upplementary Figures S4 –S9 show that this method works
ell with small numbers of cell types. This finding is con-

istent with other benchmarking articles ( 38 ,39 ) when spa-
ialDWLS is among the top performers for 2–6 cell types ( 38 ),
ut does poorly when there are more than ten cell types per
pot ( 39 ). 

Finally, we note that all methods are biased towards cer-
ain cell types, i.e. all of them consistently underestimate or
verestimate the proportion of specific cell types. To quan-
ify the bias of each method, for a pair of a method and a
ell type, we used a paired t -test to compute the significance
f the difference between the estimated proportions and the
round truth. For the cell types used in our benchmark, all
ethods significantly underestimate or overestimate the pro-
ortion of at least 10 cell types with absolute mean difference
 0.1 ( Supplementary Figure S12 ). The number of cell types
ith large absolute mean differences can be as high as 42 as

or BayesCCE. 
Scalability 

We measure the scalability of the methods by analyzing
datasets with an increasing number of bulk samples (100,
250, 500 and 1000 samples). We assess the scalability of each
method by measuring the running time (hours) and memory
usage (gigabytes). We first rank the methods based on their av-
erage running time and memory usage, assigning lower ranks
to methods that consume less computational resources. Simi-
lar to the accuracy metrics, we calculate the scalability score
by scaling the ranking into the range of [1, 10] to obtain a
quantitative score for each method, where lower ranks corre-
spond to higher scores. 

Most methods can analyze hundreds to thousands of sam-
ples in minutes. Overall, we found that scalability should not
be a major concern, as deconvolution methods have linear
time complexity with regard to the number of bulk samples,
and they use at most 3GB of memory in the process. Even the
slowest method, EMeth, can deconvolve 1000 samples in six
hours. This is to be expected since many methods spend most
time for processing the signature or training the model before
estimating the cell type proportions for each individual sam-
ple, which can be easily scaled to multiple cores or compute
nodes. Methods with high-time complexity are mostly those

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae267#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae267#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae267#supplementary-data
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that perform regression on all (ARIC, DESeq2 and EMeth)
use Bayesian methods (BayICE and BayCount), or repeatedly
subsampling to optimize the parameters (DWLS). 

Another reason that makes scalability to be less of a con-
cern is that the number of bulk samples for deconvolution is
limited to the number of subjects in the study cohort, which is
usually on the scale of hundreds to thousands of patients. For
instance, the majority of human datasets in the GEO database
have < 200 samples, and two tissues with the largest number
of samples in the GDC cancer portal, Lung and Breast, both
have only over 1000 samples. The running time and mem-
ory usage of each method with different settings of the num-
ber of samples are reported in Supplementary Figure S13 and
Supplementary Table S3 . 

Consistency 

There are many factors that can influence deconvolution
analysis including dropout in single-cell data, noise in bulk
and reference data, and random factors in computing the
cell type proportions. There are software packages such as
Splatter ( 134 ) and SymSim ( 135 ) that can be used to sim-
ulate single-cell data with various characteristics. However,
we preferred to generate datasets by sampling real single-cell
datasets that already have high dropout rates. Across our ex-
periments, the single-cell data are generated by sampling real
single-cell data has dropout rates ranging from 77% to 98%
( Supplementary Figure S1 ). To quantify the robustness of each
deconvolution method, we repeatedly add Gaussian noise to
the input (bulk and reference data) and measure the consis-
tency of the results. Specifically, for each gene g in both bulk
and reference data, we add a small amount of noise following
Gaussian distribution N (0 , σ 2 

n ) , where σ 2 
n = 0 . 01 × σ 2 

g where
σg is the standard deviation of gene g . For methods that re-
quire markers, we randomly remove 5% of the markers for
each cell type in each run. Finally, we calculate: (i) the coeffi-
cient of variation (standard deviation divided by mean) as the
dispersion of the estimated proportions and (ii) the deviation
of the correlation with ground truth. The dispersion and stan-
dard deviation of correlation for each method are reported in
Supplementary Figure S14 . 

In a similar manner to accuracy and scalability, we rank the
method’s consistency by averaging their their dispersion and
deviation of the correlation. A lower rank indicates a smaller
average dispersion and standard deviation of correlation, re-
flecting greater consistency in the method. Next, we concert
methods ranking into scores between 1 and 10, with higher
scores meaning that the methods achieve higher consistency. 

There are many factors that can influence deconvolution
analysis including noise in bulk and reference data, and ran-
dom factors in computing the cell type proportions. To quan-
tify the robustness of each deconvolution method, we repeat-
edly add artificial noise to the input and measure the consis-
tency of the results. Specifically, for each gene g in both bulk
and reference data, we add a small amount of noise following
Gaussian distribution N (0 , σ 2 

n ) , where σ 2 
n = 0 . 01 × σ 2 

g where
σg is the standard deviation of gene g . For methods that re-
quire markers, we randomly remove 5% of the markers for
each cell type in each run. Finally, we calculate: (i) the coeffi-
cient of variation (standard deviation divided by mean) as the
dispersion of the estimated proportions and (ii) the deviation
of the correlation with ground truth. The dispersion and stan-
dard deviation of correlation for each method are reported in 

Supplementary Figure S14 . 
We found that a majority of methods are susceptible to 

noise. Only eight methods have the dispersion smaller than 

0.1: AdRoit, dtangle, CPM, MuSic, DecO T, DWLS, ReFA C- 
Tor and DSA. Some methods even have the dispersion larger 
than 1 (i.e. standard deviation is greater than mean), indicat- 
ing that the results of these methods are very unstable. Simi- 
larly, 44 out of 48 methods have the standard deviation larger 
than 0.1, suggesting that the order of the cell type proportions 
can be easily influenced by noise. 

Stability and usability 

Method stability and usability play an important role in how 

well the method is received by the community. While re- 
searchers mainly seek to use the most accurate method, instal- 
lation issues, crashes, poor documentation, fine-tuning many 
parameters might prevent users from trying or effectively de- 
ploying a given method. 

Here, we measure method stability by how well the meth- 
ods finish an analysis without crashing. This metric also re- 
flects the quality of testing that was performed when the 
method was published. Across all analyses conducted in 

our benchmarking, we calculate the percentage of success- 
fully completed analyses for each method. The percentage 
is then scaled to the range between 1 and 10 and rounded 

up, resulting in the final stability score for each method.
With a total of 130 datasets (30 datasets from the accu- 
racy assessment, 20 datasets from the assessment for miss- 
ing cell types and 80 datasets from the scalability evalua- 
tion), we observe that 24 methods occasionally failed to fin- 
ish some datasets ( Supplementary Table S4 ). Most methods 
can finish all analyses without crashing. Among the meth- 
ods tested, only eleven methods have crash rates of more 
than 10%. These are cellDistinguisher (crash rate of 57%),
DeCompress (50%), debCAM (46%), Bseq-SC(28%), spa- 
tialDWLS(27%), EMeth(23%), ARIC(23%), DigitalDLSorter 
(20%), BayCount (17%), DAISM (15%) and AdRoit (13%). 

We also quantify the usability of a method based on the 
quality of the source code, installation, documentation and 

user-friendliness ( Supplementary Tables S5 and S6 ). Each cri- 
terion is scored between 1 and 5 (the higher the better). For 
each method, we calculate the average score. The scores of all 
methods are then scaled to the range of [1,10] and rounded 

to establish the method’s usability score. Most methods are 
open-source using GPL, MIT or BSD licenses, allowing users 
to freely download, modify and distribute the source. The 
exceptions are MySort (Galaxy), DCQ (not available) and 

CIBER SOR T (custom license). It is worth noting that most 
methods used R and Python, which are free and open-source.
Only SMC, BayesCCE and Deblender use Matlab which re- 
quires a Matlab license. Methods that are easiest to install 
are those deposited in official package repositories such as R 

package repositories (CRAN and Bioconductor) and Python 

package index (PyPI). However, 36 out of 53 methods are 
available on GitHub as a package or scripts. Many of these 
methods have a problematic installation, including missing 
dependencies or incompatibility with the latest version of the 
runtime environments. Documentation, tutorials and function 

manuals are also sometimes of less than ideal quality or not 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae267#supplementary-data
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https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae267#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae267#supplementary-data
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mpact of incomplete reference data 

o understand the impact of incomplete reference data, we
erform more analysis using data obtained from CELLx-
ENE. Each tissue from CELLxGENE has 10 cell types or
ore, which allows us to generate experiments in which there

re substantially more cell types in the bulk data than the ref-
rence data. In each experiment, we first generate the complete
ata (reference, bulk, true proportions) and then remove 25%
nd 50% of cell types from the reference data. We compare
he performance of deconvolution methods in three scenarios:
A) the reference data is complete (i.e. no missing cell types),
B) the reference data lacks 25% of cell types and (C) the ref-
rence data lacks 50% of cell types. Consistent with previ-
us analyses, we quantify the accuracy of the deconvolution
ethods using four metrics: (i) mean absolute error (MAE),

ii) sample-wise Spearman correlation (SCorr), (iii) cell-type-
ise Spearman correlation (CCorr) and (iv) mean absolute

rror between the two sample-pairwise Pearson correlations
MAECorr). 

Note that for scenarios B and C, the proportions in the
round truth have more cell types than the predicted pro-
ortions. To match the predicted cell types with those in
he ground truth, we use the Hungarian algorithm (Kuhn–

unkres) ( 136 ) implemented in the RcppHungarian R pack-
ge ( 137 ) to perform maximum bipartite matching. This algo-
ithm identifies pairs of cell types by calculating the Pearson
istance between each pair of cell types in the ground truth
nd predicted proportions. Next, the algorithm searches for
ne-to-one matching that minimizes the total distance. After
atching, we compare the values between the ground truth

nd predicted proportions to calculate the four accuracy met-
ics (MAE, SCorr, CCorr and MAECorr). 

Supplementary Figure S15 shows the accuracy scores in
ll three scenarios. In general, the accuracy of most meth-
ds decreases when the reference is incomplete, but reference-
ree and semi-reference-free methods perform relatively well.
ote that the incomplete reference affects the performance of
ot only reference-based methods, but also reference-free and
emi-reference-free methods because we provide them with
he number of cell types in the reference. With 25% of cell
ypes missing (scenario B), the top methods in these two cate-
ories (Linseed and Deblender) have scores similar to that of
omplete data (scenario A). With 50% of cell types missing
scenario B), the performance of these two methods decreases
nly slightly. However, methods in these two categories
re less accurate than top reference-based methods in any
cenario. 

The reference-based methods are affected the most in case
f missing cell types. Compared to scenario A (complete ref-
rence), the overall accuracy of top methods in this category
rops in scenario B (25% missing) and further decreases in
cenario C (50% missing). The performance gaps between the
op methods in this category and the rest become smaller when
he reference is incomplete (B and C). However, the rankings
f reference-based methods are very consistent in all scenar-
os, with a correlation of 0.96 between A and B, and a corre-
ation of 0.88 between A and C. Seven methods (DWLS, DE-
eq2’s unmix, MuSiC, CIBER SOR T, ARIC, LinDeconSeq and
IXTURE) are ranked in top 10 in all three scenarios, while

3 methods (D WLS, DESeq2’ s unmix, MuSiC, CIBER SOR T,
ethylResolver, ARIC, LinDeconSeq, FARDEEP, MIXTURE,
ySort, AdRoit, ImmuCellAI and Scaden) are consistently

mong the top 15 in all three scenarios. 
Practical guidelines and discussions 

The number of deconvolution methods has been growing
rapidly since the concept was first introduced in 2009 ( 138 ).
In this article, we present a comprehensive review and eval-
uation of 53 such methods to assess their methodology, ac-
curacy , scalability , consistency and stability in estimating cell
type proportions from mixture bulk data. We also discuss
the quality of the implementation, documentation, and user-
friendliness of the methods. Our goal is not to only provide a
practical guideline for users to select the most suitable method
for their analysis, but also to provide a reference for the cur-
rent stage of the field and for the future development of de-
convolution methods. One of the limitations of this paper is
that we did not evaluate the methods for the effect of mixing
two or more cell types. A researcher that is concerned about
this problem should undertake additional benchmarking in
order to understand the way various methods cope with this
problem. 

Guideline for practitioners 

Figure 6 presents a general guideline for users to choose de-
convolution methods that are most suitable for their data and
purpose. The guidelines only include methods that have high
accuracy and stability in the technical evaluation, i.e. mean
absolute error (MAE) of at most 10%, all correlation met-
rics (SCorr, CCorr) of at least 60%, and stability of at least
95% (crashing rate of at most 5%). The figure provides the
statistics of the selected methods, including all four accuracy
metrics (MAE, SCorr , CCorr , MAECorr), running time and
memory usage for various input sizes, and method usability
(see Supplementary Section S3 ). 

To illustrate how these results can be used to choose the best
method for a given application, let us consider a situation in
which no reference data is available. Our results suggest that
in this case, Linseed might be a good option since it does not
require any reference data. However, if possible, we suggest
users provide reference data, including the markers, single-
cell expression, and expression of reference cell types. This
additional information would allow users to improve the ac-
curacy of the deconvolution process. For example, even when
users only know the marker genes of the cell types in the tis-
sue, they can apply Deblender, a semi-reference-free method,
to deconvolve the data. Such list of marker genes can be easily
obtained from the literature or from public databases such as
CellMarker ( 139 ) and PanglaoDB ( 140 ). 

An even better situation is when users can provide single-
cell expression data with cell type labels of the same tissue
as the reference. Such reference data would allow to: (i) iden-
tify the markers of known cell types using differential analysis
and (ii) generate the signature expression for each cell type. If
the true cell type labels of the cells are not available, one can
perform supervised or unsupervised learning to segregate cells
into different cell types or groups. For supervised learning, one
can obtain the markers of potential cell types in the tissues
from public databases and then apply classification methods
to classify the cells to known cell types For unsupervised learn-
ing, one can segregate the cells into cell groups using cluster-
ing methods developed for single-cell data. Some methods re-
quire cell-type expression as the reference data, which are usu-
ally pure bulk expression data or obtained from other studies.
This cell-type expression usually contains the expression of
only marker genes. In principle, many of these methods can

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae267#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae267#supplementary-data
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Figure 6. Guideline for selecting suitable methods for cellular deconvolution. The diagram shows the summary statistics of the methods, including their 
accuracy, running time, memory usage and usability. The accuracy includes four metrics: (i) sample-wise mean absolute error (MAE), (ii) sample-wise 
Spearman correlation (SCorr), (iii) cell-type-wise Spearman correlation (CCorr) and (iv) mean absolute error between ground-truth and predicted 
correlation matrices (MAECorr). Note that this diagram only presents the top methods that ha v e their o v erall score of at least 7, and are the most 
accurate with correlation metrics of at least 60% and mean absolute error (MAE) of at most 10%. Note that Linseed has SCorr 58% but we include it in 
the guideline because it is the only reference-free method that has o v erall score o v er 7 and MAE less than 10% . The input of all decon v olution methods 
must include a bulk dataset. Depending on additional input data, the diagram points to suit able soft w are. For e xample, if one does not ha v e an y data that 
can be used as a reference, then Linseed, which is a reference-free method, may be the optimal choice. However, if one can provide the list of marker 
genes of the constituent cell types, then Deblender may be a better choice. If more reference data are a v ailable, one can choose one of the 
reference-based methods. 
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also be run if one can provide a full cell-type expression with-
out filtering out non-marker genes. However, this should only
be the last resource since these methods are not designed to
handle such a reference. 

When performing cellular deconvolution, we recommend
users analyze their data using multiple methods and multi-
ple initializations to confirm that they have high confidence in
the analysis results. However, each method requires a different
runtime environment (i.e. R, Python, Matlab, Shell script) and
different input formats, making it difficult to conduct system-
atic analysis and comparison. In order to address this issue, we
provide an R package that can be used as a wrapper to easily
run any of these deconvolution methods. Each method is pre-
installed in a docker image and will be executed as a container
using either a docker or a singularity engine. We note that, for
a few methods, users will need to acquire a license to run them.
This includes methods implemented in MATLAB (BayesCCE,
SMC, Deblender) which is a proprietary programming lan-
guage, and CIBER SOR T whose code needs to be requested
from its authors. The list of supported methods can be easily
extended by containerizing newly developed tools. 

Researchers can also apply the methods in our package to
analyze spatial transcriptomics data by treating each spot or
location as a bulk sample. For instance, AdRoit consistently
ranks among the top-performing methods across various ex-
perimental settings, as highlighted in a recent comprehensive
review on deconvolution methods for spatial data by Chen
et al. ( 40 ). MuSiC demonstrates strong performance when
evaluated based on the root mean squared error between the 
predicted proportions and the ground truth, as observed in 

the comparison of method performance by the authors of 
CARD ( 141 ). Nevertheless, there are two limitations when 

applying the bulk transcriptome deconvolution methods to 

spatial transcriptome data. First, these methods do not take 
into consideration the physical location information from the 
spatial transcriptomics. For example, the cell-type composi- 
tions on neighboring locations contain valuable information 

for inferring cell-type composition on the location of inter- 
ests ( 141 ). Second, the spatial transcriptomics data contain 

thousands of spots, thus, it may require substantial time and 

space complexity to run the methods on this type of data ( 113 ) 
(also see Supplementary Figure S13 ). We recommend users 
to consult benchmarking papers for spatial transcriptomics 
data ( 38–40 ). 

Outstanding challenges in cellular deconvolution 

There are outstanding challenges that need to be addressed to 

improve the quality of deconvolution results. First, most meth- 
ods assume that the marker genes are mutually exclusive be- 
tween cell types. However, this assumption is not always true.
For example, in the immune system, the expression of CD4 

and CD8 marker genes are not mutually exclusive between 

CD4+ T cells and CD8+ T cells ( 142 ). This phenomenon is 
more common among subtypes of the same cell type (e.g., Th1,
Th2 and Th17 cells of CD4+ T cells), where subtypes share 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae267#supplementary-data
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ommon markers as the marker of the cell type. When this as-
umption is violated, the deconvolution results can be biased
gainst the cell types that have overlapping markers. Multi-
ollinearity between cell types also leads to unstable results
r multiple solutions in cellular deconvolution. This challenge
s particularly evident in high-purity mixtures of tumor cells,
here deconvolution methods may mistake normal epithelial

ells with cancer epithelial cells due to their transcriptional
imilarities ( 37 ). Also, because of the non-overlapping mark-
rs, when the bulk expression has a similar expression pattern
ith the small set of markers of a cell type, the proportion of

hat cell type might be overestimated. Another factor that con-
ributes to underestimated / overestimated proportions is that
he actual number of cell types in the bulk data might be larger
han the number of cell types in the signature matrix. Under
his situation, the compositions of the cell types that are not
n the signature matrix will be distributed to the cell types in
he signature matrix, leading to the overestimation. 

In addition, current deconvolution methods do not con-
ider the dynamics and interdependence of cells. The mea-
ured expression profiles of cells and cell types can be per-
urbed by many factors, including biological heterogeneity
microenvironment and cell development) and technological
ariation (sequencing technology, library preparation, etc.).
n fact, cell states play an important role in the variability
f the expression of cells, and the appearance of a cell type
an affect the expression of other cell types. For example,
he expression levels of the marker genes in T cells are not
nly affected by the activation state (activated or resting) of
he cells ( 143 ), but also by the presence of other cell types,
uch as macrophages ( 144 ). This cell expression dynamics has
lso been shown in many studies of cell differentiation using
ingle-cell data ( 145 ). Other confounding factors such as the
ifferent phenotypes between the reference and the bulk sam-
les, batch effects, and technical variations can also affect the
econvolution results. In other words, the ideal reference ex-
ression profile needs to: (i) reflect both the dynamic within
nd between cell types, (ii) match the phenotype of bulk sam-
les and (iii) use the same sequencing platform as used for the
ulk sample. Such reference expression profile is difficult to
btain since it requires tremendous efforts to collect the ref-
rence data from different mixtures of cell types and different
onditions. 

Another key challenge for deconvolution is to accurately
alidate the performance of the methods. Current problems
nclude the difficulty of determining the ground truth of bulk
amples for a large number of cell types and tissues. The ma-
ority of bulk samples accompanied with cell type compo-
itions are from blood samples obtained from flow cytom-
try. This introduces bias to the development of deconvolu-
ion methods because they overfit to the cell types in blood.
lthough one can use purified cell lines to generate data for
ther cell types, datasets generated in vitro usually have a low
umber of samples and cell types. Using two libraries from the
ame tissue of the same donor, one for bulk sequencing and an-
ther for single-cell sequencing to determine the ground truth,
an produce reasonable reference profiles but does not guar-
ntee the reliability of the ground truth. This is because the
ell type proportions in the single-cell data are not necessar-
ly the same as those in the bulk data due to tissue dissocia-
ion ( 99 , 146 , 147 ) and other factors. This presents a challenge
ot only for the validation of deconvolution methods, but also
or many research areas that use single-cell profiling. 
Data availability 

The Tabula Sapiens and CELLxGENE single-cell data used for
technical evaluation are deposited on the following Zenodo
repositories: https:// doi.org/ 10.5281/ zenodo.10687798 (Tab-
ula Sapiens) and https:// doi.org/ 10.5281/ zenodo.10688809
(CELLxGENE), respectively. The simulated data are avail-
able at https:// doi.org/ 10.5281/ zenodo.10891254 . Prebuilt
docker images are available on Docker Hub at https://
hub.docker.com/ u/ deconvolution . The source files to build
the docker images are available at https:// doi.org/ 10.5281/
zenodo.10891276 . The wrapper to run all methods is avail-
able at https:// doi.org/ 10.5281/ zenodo.10891290 . Scripts to
generate the evaluation results are available at https://doi.org/
10.5281/zenodo.10891326 . 

Supplementary data 

Supplementary Data are available at NAR Online. 
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