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ABSTRACT

In molecular biology and genetics, there is a large
gap between the ease of data collection and our abil-
ity to extract knowledge from these data. Contribut-
ing to this gap is the fact that living organisms are
complex systems whose emerging phenotypes are
the results of multiple complex interactions taking
place on various pathways. This demands power-
ful yet user-friendly pathway analysis tools to trans-
late the now abundant high-throughput data into
a better understanding of the underlying biologi-
cal phenomena. Here we introduce Consensus Path-
way Analysis (CPA), a web-based platform that al-
lows researchers to (i) perform pathway analysis us-
ing eight established methods (GSEA, GSA, FGSEA,
PADOG, Impact Analysis, ORA/Webgestalt, KS-test,
Wilcox-test), (ii) perform meta-analysis of multiple
datasets, (iii) combine methods and datasets to ac-
curately identify the impacted pathways underlying
the studied condition and (iv) interactively explore
impacted pathways, and browse relationships be-
tween pathways and genes. The platform supports
three types of input: (i) a list of differentially ex-
pressed genes, (ii) genes and fold changes and (iii)
an expression matrix. It also allows users to import
data from NCBI GEO. The CPA platform currently
supports the analysis of multiple organisms using
KEGG and Gene Ontology, and it is freely available
at http://cpa.tinnguyen-lab.com.

GRAPHICAL ABSTRACT

INTRODUCTION

Advanced high-throughput and sequencing technologies
have transformed biological research by allowing scientists
to monitor changes in living organisms and biological sys-
tems. Regardless of the assay technology used, a compara-
tive analysis experiment often yields a set of differentially
expressed (DE) genes or gene products. Though important,
these lists of DE genes fail to reveal the mechanisms un-
derlying the studied condition. To translate the differential
expression to biological knowledge, researchers have been
developing various knowledge bases that map genes and
their products to functional modules and biological pro-
cesses. These include KEGG (1), Reactome (2), Wikipath-
ways (3) and Gene Ontology (GO) (4). At the same time,
pathway analysis methods have been developed to identify
pathways that are impacted under certain conditions.

More than 70 pathway methods have been developed
thus far (5,6). These methods can be categorized into three
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classes. The earliest approaches use Over-Representation
Analysis (ORA) (7–12) that identify the pathways in which
the DE genes are over- or under-represented. The draw-
backs of ORA include: (i) it only considers the number of
DE genes and completely ignores their expression changes
and (ii) it assumes the genes are independent, which they are
not. Functional Class Scoring (FCS) approaches (13–17)
have been developed to address some of the issues raised by
ORA approaches. The main improvement of FCS is based
on the observation that small but coordinated changes in
the expression of functionally related genes can have a sig-
nificant impact on pathways. However, both ORA and FCS
still ignore the direction and type of the signals between
genes, the positions and roles of the genes on each pathway,
as well as all the other information captured by the topology
of the pathway. Topology-based (TB) approaches (18–25)
which fully exploit all the knowledge about how genes in-
teract as described by pathways, have been developed more
recently. Recent reviews included 22 TB methods (6,26).

In spite of the availability of powerful pathway meth-
ods, understanding the phenomena that determine the mea-
sured changes is as challenging as ever, if not more so. First,
the sheer number of methods makes it challenging for life
scientists to choose the correct method for their data and
purpose. In a recent publication (5), we have shown that
all existing methods often provide biased results. No single
method is consistently superior to others. Second, many of
these methods are software packages that require users to
go through the burden of installation and updating (some
are not even executable anymore due to outdated dependen-
cies). This hinders reproducibility and universal accessibil-
ity of analysis results. Finally, most tools do not offer in-
teractive data visualizations that are important for users to
deeply explore pathway connectivities and gene networks.

Recognizing these challenges, many web-based tools
have been developed to assist researchers in their anal-
ysis. Tools such as EnrichNet (27), GENAVi (28), We-
bGestalt (29), WebGIVI (30), DAVID (31), INMEX (32),
g:Profiler (33) and Enrichr (34) provide graphical user in-
terfaces (GUIs) for users to input gene lists and perform
enrichment analysis. Other tools such as KaPPA-View (35),
3Omics (36), PaintOmics (37), IMPaLA (38), and Gene-
Trail2 (39) visualize enrichment results of multi-omics data.
These tools, however, have a number of limitations: (i)
cannot combine, compare and contrast results of differ-
ent methods, (ii) lack integrative capability across multiple
datasets and (iii) unable to comprehensively visualize path-
way connectivity, gene networks, and expression change all
together.

Here, we introduce Consensus Pathway Analysis (CPA),
a comprehensive web-based resource that allows users to
compare and contrast analysis results across different meth-
ods and experiments. Specifically, CPA allows researchers
to: i) perform pathway analysis using eight popular meth-
ods, GSEA (40), GSA (14), FGSEA (41,42), PADOG (16),
Impact Analysis (19), ORA/WebGestalt (29,43), KS-
test (44) and Wilcox-test (45), ii) perform meta-analysis of
multiple datasets, iii) combine methods and datasets to find
consensus results, and iv) interactively explore significantly
impacted pathways across multiple analyses, and browse
relationships between pathways and genes. CPA currently

supports the analysis of more than 1000 organisms using
KEGG and Gene Ontology databases.

MATERIALS AND METHODS

The CPA website is a cloud-computing service for pathway
analysis. It provides functions to manage users’ data, sup-
ports multiple analysis sessions and visualizes results. All
computations are performed on the CPA server hosted by
the University of Nevada, Reno (UNR). Inputs, parameter
settings, and analysis results are saved onto the user account
and can easily be loaded and updated. Users can also switch
between analysis sessions, as well as browse and export re-
sults at any time.

Figure 1A shows the overall workflow of an analysis ses-
sion using CPA while Figure 1B shows sample visualiza-
tions and analysis results. Overall, the analysis pipeline con-
sists of three main modules: data input, parameter setting,
and analysis and visualization. For input data, users can
choose to input a gene list, a gene list and their fold changes,
or a gene expression matrix from their local machine. The
interface is designed so that users can flexibly analyze their
own data. We also support a direct import from NCBI Gene
Expression Omnibus (GEO) (46). This is especially helpful
if users are interested in taking advantage of existing data
on NCBI GEO. In parameter setting, users can choose the
pathways of interest (GO/KEGG), analysis methods, and
method parameters. Finally, in the analysis and visualiza-
tion module, users can visualize and interactively explore
and export analysis results. Figure 1B shows example vi-
sualizations and publication-ready figures generated by the
platform. These include: sample landscape (using t-SNE),
volcano plot, gene heatmap, pathway–pathway connectiv-
ity and gene networks. We will describe in details each of
the three modules in the following sections.

Input and data management

The CPA platform supports three different types of input
including (i) a list of differentially expressed (DE) genes,
(ii) genes and their fold changes and (iii) an expression ma-
trix. The first two input types can be directly entered on
the website or uploaded from users’ local machine as a .txt
or .tsv file, in which each row represents a gene. For ex-
pression matrix input, a dataset can be represented by two
.csv files (command-separated)––one for expression matrix
and one for sample grouping. The sample grouping file
has two columns in which the first column includes sam-
ples and the second column are their corresponding groups
(e.g. control or disease). The sample grouping file is op-
tional. If not provided, users need to manually select con-
trol and disease samples in the GUI (Supplementary Fig-
ure S5). The platform supports ID conversion from other
gene identifiers to Entrez IDs. The conversion is based on
the ID mapping provided by the UniProt database with
more than 90 ID types, and 200 annotation packages cur-
rently available from Bioconductor (https://bioconductor.
org/packages/3.12/data/annotation/).

CPA provides an easy-to-use file manager for users to
upload and manage expression data (upload, remove, re-
name, and download). Users can upload expression data
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Figure 1. The overall workflow and data visualization using consensus pathway analysis (CPA). (A) The analysis pipeline consists of three modules: i)
input data, ii) parameter setting, and iii) analysis and visualization. The input in one dataset can be a gene list, a gene list and their fold changes (FC) or an
expression matrix. In one analysis session, CPA allows users to analyze multiple datasets using multiple pathway analysis methods. (B) Result visualization.
Once the analysis is done, users can interactively explore and export the results. For example, they can export the samples landscape (B1), volcano plot
(B2), and heatmaps showing P-values and log FC across all datasets (B3). At the pathway level, users can interactively visualize the pathway–pathway
connectivity graph (B4) and KEGG pathways (B5). Users can see detailed analysis results and statistics by clicking on each node of graphs (B4). In this
example, the analysis includes three datasets and three methods. Analysis results, plots and graphs can be exported as comma-separated values (.csv file)
or publication-ready figures (.png, .svg, etc.).
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Figure 2. Main components of the pathway analysis page. Users are able to: (1) select input type, (2) select corresponding input with the input type, (3)
choose the organism and pathways to be analyzed. The website supports meta-analysis of multiple datasets and multiple methods (4). The website also
allows users to change the parameters of individual methods if desired (5).

files from their local machine or import them from NCBI
GEO. Data importation from GEO is based on the Biocon-
ductor R package GEOquery (47). A dataset can only be
imported from GEO if the series matrix (pre-processed gene
expression file) is available. Files uploaded and imported by
anonymous users will be deleted after 24 hours. Users are
encouraged to log onto CPA using a Google account so that
they can permanently save data and get access to their anal-
ysis sessions across multiple devices.

Parameter setting for pathway analysis

Figure 2 shows the GUI for pathway analysis, in which users
can select one or multiple datasets for an analysis session.
For each dataset, users can choose the input type from the
drop-down list (see Supplementary Figures S1–S4). When
users choose to provide a list of DE genes (gene list),
ORA/Webgestalt is available for analysis. When genes and
fold changes are chosen, Wilcox-test, KS-test, and FGSEA
are available for analysis. When users provide an expression
matrix, all of the eight pathway analysis methods are avail-
able for analysis: GSEA, GSA, FGSEA, PADOG, Impact

Analysis, ORA/WebGestalt, KS-test and Wilcox-test (Sup-
plementary Figure S6). Supplementary Material Section 1
provides brief descriptions for each of the eight methods.
Each of them is designed to find different patterns of the
data. The purpose of consensus analysis is that users can
explore the results of multiple analyses, including results of
different datasets as well as of different methods. However,
we would also like to note that a particular pathway is iden-
tified by multiple methods does not necessarily make it more
biologically meaningful.

Currently, CPA supports the analysis of more than 1000
organisms that have KEGG pathways (48) and GO
terms (4,49). Users can also upload pathway annotations
of other databases in the GMT file format. After choosing
data, pathways, and methods, users can start the analysis by
simply clicking the ‘Start analysis’ button. Note that classi-
cal methods such as ORA, KS or Wilcox test usually take
a second to finish the analysis. However, methods such as
PADOG or GSEA that involve permutation and bootstrap-
ping usually take several minutes to finish an analysis, espe-
cially when analyzing multiple datasets. Analysis sessions
are queued and updated in real-time. Results and configu-
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rations are saved onto user accounts so that they can switch
to any analysis session at any time.

Analysis and visualization

Once the analysis is completed, the website displays the
pathway-pathway connectivity graph (Figure 3A) in which
nodes represent pathways and edges indicate that the con-
nected pathways share a certain number of genes (defined by
users). In this pathway graph, the size of a node is propor-
tional with the number of genes in the pathways while the
border thickness is proportional with the total number of
DE genes. As shown in the figure, each node is divided into
multiple slices that represent the results of multiple anal-
yses. For example, an analysis session with three datasets
and three methods has a total of nine slices (nine analy-
ses). Users can change the number of nodes displayed by
changing the significance threshold (P-value) and the num-
ber analyses in which the P-values are significant. By de-
fault, the significance threshold is set to 5% (after adjust-
ment using FDR), and a node appears only if the pathway
is significant in at least one analysis. A slice is colored if
the pathway has a significant P-value in the corresponding
analysis. When users hover the mouse over a node, a small
window will appear and show the P-values of the pathway
in all analyses. In Figure 3A, the black window shows the P-
values of the Alzheimer’s disease pathway. All nine P-values
of this pathway are significant (FDR < 5%) and thus all
slices are colored. In contrast, the Amyotrophic lateral scle-
rosis pathway has a white slice because one analysis has a
non-significant P-value. The graph is highly configurable
inasmuch users can easily change the scale and color of
all elements to export high-quality figures. Users can also
choose to display pathways of only GO, or KEGG, or both
(Supplementary Figure S7).

A pathway table that accompanies the pathway graph
shows the essential information of each pathway: ID, de-
scription, number of genes, and the P-values obtained in all
analyses (Figure 3B). Using the editable fields and pop-up
menus of this table, users can change the significance thresh-
old, filter out pathways, or hide the results of any method
or dataset. They can also interactively modify the graph by
hiding unwanted pathways or adding pathways of interest.
The table can also be used to select pathways with more than
a certain number of significant results, or select pathways
that are significant in some analyses but not in others. Users
can also conduct meta-analysis by combining P-values of a
pathway across multiple datasets using Fisher’s (50), Stouf-
fer’s (51), addCLT (52), or minP method (53). Note that
combining P-values obtained from different methods for
the same dataset might lead to artificially low meta P-
values. Therefore, it is recommendable to combine the P-
values obtained from independent datasets. When combin-
ing P-values using Fisher’s or Stouffer’s method, any indi-
vidual P-value of zero will result in a combined P-value of
zero. Therefore, by default, the platform will round the indi-
vidual P-values up to 1e−10 before combining. The meta-
analysis results will be added to the pathway table as a col-
umn and can also be used to manipulate the pathway graph.
The meta-analysis results will be added to the pathway table

as a column and can also be used to manipulate the pathway
graph.

Besides the pathway table, the platform also creates a
gene table (Figure 3C) that appears when users select one
or more nodes of the pathway graph. The table shows the
genes of the selected pathways, their description, and statis-
tics obtained from all datasets. The table can be modified
to show either the intersection or union of all pathways se-
lected. Users can sort the genes, remove unwanted genes, or
remove a dataset. The genes and their statistics can be ex-
ported. Users can also generate the heatmaps displaying log
FC and P-values of the genes by just clicking the ‘Heatmap’
button.

The platform also supports pathway visualization. When
users right-click on a node of the pathway graph, they
can choose to display the KEGG pathway (Figure 3D).
In this presentation, each node is a compound. The bar
under each node in the pathway is divided into smaller
parts that correspond to datasets included in the analy-
sis session. Each part is colored based on its impact di-
rection (i.e., up- or down-regulated). Users can easily find
genes that are consistently up- or down-regulated in all
datasets and relationships among them. Since each node
in a KEGG pathway often includes multiple genes, the
color of each part reflects the average FC of all genes in
the node. By default, we also combine the P-values of all
genes of the node to obtain a combined P-value. Users can
choose to color the node based on this combined P-value.
Users can also remove any unwanted datasets from the vi-
sualization. When users click on a KEGG node, they can
see the genes belonging to the node. For example, when
clicking on the PSEN1 node on the KEGG pathway, the
gene table appears as shown in Figure 3E. This table dis-
plays the genes, their description, P-value, and log FC in all
datasets.

While exploring the analysis results, users can export any
graph as raster (.png) or vector (.svg) images. They can also
export results obtained from differential analyses, genes in-
formation, and P-values from pathway analysis as .csv files.
Other plots in the pathway analysis page (e.g. sample land-
scape, volcano plot, etc.) can be export as raster images
(.png).

IMPLEMENTATION

Figure 4 shows the architecture and technologies used
to build the CPA platform. We used MeteorJS (https:
//www.meteor.com/)––a full-stack JavaScript platform for
modern web development – as the core web platform
to create the web server and to communicate with user
clients.

For the front end, we build the graphic user interface
using React, which is a JavaScript library (https://reactjs.
org/). The website is designed to be user-friendly with three
main pages: pathway analysis, pathway visualization, and
data management. In the pathway analysis page, users
can upload and choose datasets, select methods, and ob-
serve gene-level statistics. Gene-level plots are generated
using the Plotly JavaScript graphing library (https://plotly.
com/javascript/). In the visualization page, we implement
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Figure 3. Pathway analysis and visualization using the CPA platform. (A) Pathway-pathway connectivity graph where nodes represent pathways and edges
represent that there are common genes between pathways. In this example, we analyze three datasets using three methods, making a total of nine analyses.
Each node is a pie chart in which individual slices correspond to different analyses. A slice is colored if the corresponding P-value is significant. Nodes
border’s thickness indicates the number of significantly differentially expressed (DE) genes in the pathway. (B) Pathway panel showing the significant
pathways and the adjusted P-values obtained in each dataset using each analysis method. For example, the Alzheimer’s disease pathway is shown on top
with significant P-values in all of the nine analyses (P-values are colored in red when they are significant). This pathway panel is automatically populated,
together with the pathway connectivity graph after the analysis is performed. (C) Gene panel that appears when users left-click a node in the pathway
connectivity graph (in panel A). This panel shows the genes of the pathways and their statistics (P-values and log FC) across all datasets. (D) Gene network
(KEGG pathway) and expression change. This panel appears when users right-click a node in the pathway connectivity graph (in panel A). Nodes in a
KEGG pathway graph are divided equally into multiple colored parts representing expression change (up- or down-regulated). (E) Gene panel that appears
when users right-click on a node of the gene network (in panel D).
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Figure 4. The architecture of the CPA platform. (A) Front end that consists of a graphic user interface (using React), graph manipulation module (using
Cytoscape) and data handling module (Meteor client). (B) Back end that consists of a web server (Meteor web server), runtime environment (NodeJS), R
servers (Rserve), and a database (MongoDB). Each backend module is containerized using Docker (blue boxes). The R servers are used to perform pathway
analysis while the database is used to store user data and analysis results. User clients (from front end) communicate with back-end servers through the
Distributed Data Protocol (Meteor client) and a Nginx web proxy server.

the interactive network visualization using CytoscapeJS,
which is a graph theory library (https://js.cytoscape.org/).
Gene heatmaps are plotted using D3js (https://d3js.org/).
In the data management page, we build the file man-
ager using OpusCapita React File Manager (https://www.
npmjs.com/package/@opuscapita/react-filemanager). Data
exchange between user clients and back-end servers is ac-
complished using the Distributed Data Protocol (Meteor
client) and a Nginx web proxy server (https://www.nginx.
com).

For the back end, we build the webserver using Meteor
and NodeJS (https://nodejs.org). NodeJS is a JavaScript
runtime environment built on Chrome’s V8 JavaScript en-
gine that allows JavaScript code to run outside the browser
environments. Input files for analysis are stored on the
server’s storage for fast access. Other data including user
information, analysis sessions, analysis configuration, and
results are saved in a MongoDB database (https://www.
mongodb.com). Once the requests for performing pathway
analysis are received from clients and saved by the web
server, they are passed onto R servers created by Rserve
(https://www.rforge.net/Rserve/) to perform pathway anal-
yses. Multiple Rserve instances can be created to perform
multiple analyses concurrently. All software and packages
in the back end run in containerized environments using
Docker (https://www.docker.com/).

DATA SOURCE

CPA supports the analysis of more than 1000 organisms us-
ing KEGG (48) and GO terms (4). At the time of writing
this article, the version of KEGG is 97.0 (released 1 Jan-
uary 2021) and of GO terms is 1.16 (released 16 February
2021). The automatic ID conversion in the CPA platform is
based on the ID mapping from the UniProt database (cur-
rent version: 2021 02) and more than 200 annotation pack-
ages from Bioconductor (version 3.12, released 28 October
2020). ID mappings and databases will be updated twice a
year (January and July).

Table 1. Alzheimer’s datasets used in our data analysis. The first two
columns show the accession ID and tissue while the last three columns
show the number of controls, number of diseases and assaying platforms,
respectively

Dataset Tissue C D Platform

GSE5281 Entorhinal cortex 13 10 HG-U133+ 2.0
GSE84422 Sup. Tem. gyrus 14 22 HG-U133A
GSE48350 Entorhinal cortex 39 15 HG-U133A

Figure 5. The connected module of pathways that are significantly im-
pacted in Alzheimer’s datasets GSE5281, GSE84422 and GSE48350. Each
dataset is analyzed using three pathway methods, ORA, KS-test, and
FGSEA. Only pathways that are significantly impacted in at least 5 analy-
ses (out of 9) are shown.

RESULTS

To show how the CPA platform can be used for path-
way analysis, we have created an example analysis session
and include it in our tutorial page. In this example ses-
sion, we analyze three Alzheimer’s datasets: GSE5281 (54),
GSE84422 (55), and GSE48350 (56). The three datasets
consist of a total of 66 control and 57 disease sam-
ples (Table 1). We choose the Alzheimer’s datasets be-
cause there is a target pathway in KEGG, Alzheimer’s
disease, that describes the known mechanisms and bio-
logical processes involved in this disease. It is also well-
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Table 2. FDR-corrected P-values of 14 pathways that are significantly impacted in three Alzheimer’s datasets (GSE5281, GSE84422, and GSE48350). Each
dataset is analyzed by three methods (ORA, KS-test, and FGSEA), resulted in 9 analyses (columns 3–11). The last three columns show the meta-analysis
results using the addCLT method. The results indicate that these pathways are consistently identified as significant across all analyses

GSE5281 GSE84422 GSE48350 Meta-analysis

# Pathway name ORA KS FGSEA ORA KS FGSEA ORA KS FGSEA ORA KS FGSEA

1 Alzheimer disease 4e-09 1e-06 2e-02 4e-05 5e-11 1e-02 1e-02 4e-04 1e-02 4e-07 9e-13 2e-06
2 Huntington disease 4e-12 9e-10 2e-02 2e-05 4e-12 1e-02 8e-04 2e-05 1e-02 6e-11 3e-17 2e-06
3 Parkinson disease 0 4e-13 2e-02 4e-07 0 1e-02 2e-03 1e-04 1e-02 6e-10 2e-14 2e-06
4 Prion disease 9e-11 1e-07 2e-02 8e-05 4e-12 1e-02 1e-03 8e-08 1e-02 2e-10 8e-24 2e-06
5 Pathways of

neurodegeneration
1e-11 2e-08 2e-02 4e-06 4e-10 1e-02 2e-03 7e-06 1e-02 3e-10 1e-18 2e-06

6 Oxidative
phosphorylation

3e-11 3e-07 2e-02 4e-05 8e-11 1e-02 2e-02 5e-03 1e-02 1e-06 1e-08 2e-06

7 Cardiac muscle
contraction

2e-02 1e-02 2e-02 6e-01 3e-01 1e-02 4e-02 9e-02 1e-02 3e-02 1e-02 2e-06

8 Thermogenesis 4e-05 1e-02 2e-02 3e-01 5e-02 1e-02 3e-01 9e-03 1e-02 4e-02 6e-06 2e-06
9 Retrograde

endocannabinoid s.
8e-06 1e-03 2e-02 4e-01 7e-04 1e-02 3e-04 3e-07 1e-02 4e-03 3e-11 2e-06

10 Amyotrophic lateral
sclerosis

2e-09 2e-06 2e-02 2e-07 1e-10 1e-02 1e-01 2e-03 1e-02 3e-03 6e-10 2e-06

11 GABAergic synapse 8e-02 4e-02 3e-02 9e-02 4e-02 1e-02 4e-03 3e-03 1e-02 7e-05 7e-06 4e-06
12 Spinocerebellar ataxia 4e-03 1e-02 2e-02 3e-03 1e-05 1e-02 8e-02 3e-03 1e-02 3e-04 5e-08 2e-06
13 Non-alcoholic fatty liver

d.
7e-06 6e-03 2e-02 3e-01 1e-04 1e-02 2e-01 1e-02 5e-02 2e-02 3e-07 8e-05

14 Morphine addiction 4e-01 7e-01 3e-02 1E+00 6e-01 4e-02 5e-03 9e-04 1e-02 3e-01 8e-01 3e-05

known that the pathways Parkinson’s disease, Hunting-
ton’s disease, and Pathways of neurodegeneration - mul-
tiple diseases share many genes and mechanisms with
Alzheimer’s disease (57–60). Therefore, we expect to iden-
tify all these neurological disorder pathways as statistically
significant.

In this analysis, we include a total of 335 KEGG path-
ways and 2508 GO terms. In the global pathway–pathway
connectivity graph, we have a total of 2843 nodes––one
node per KEGG pathway or GO term. Each dataset is ana-
lyzed with three methods, ORA, KS-test, and FGSEA, us-
ing default parameters. For each analysis, we adjust the P-
values using Benjamini–Hochberg’s False Discovery Rate
(FDR) (61). The significance threshold is set to FDR < 5%.
Figure 5 shows the subnetwork obtained with the significant
nodes. Nodes in the module are selected so that each path-
way is significantly impacted in at least five analyses (out of
nine analyses).

The five pathways related to neurodegenerative dis-
eases, Pathways of neurodegeneration - multiple diseases,
Alzheimer’s disease, Huntington’s disease, Parkinson’s dis-
ease, and Prion disease, are consistently identified as sig-
nificant in all of the nine analyses. The Amyotrophic
lateral sclerosis pathway is significant in eight out of
nine.

Table 2 shows the FDR-corrected P-values of the 14
pathways. The first column shows the pathway name while
the next nine columns show the P-values obtained from
the nine analyses. As the web interface also allows us to
combine the P-values obtained for a pathway across mul-
tiple datasets, we use the addCLT method (52) to combine
the P-values for each method. The meta-analysis results are
presented in the three last columns in Table 2. The meta-
analysis, as well as the results obtained from individual
analyses, clearly shows that pathways related to neurode-

generative diseases are significantly impacted regardless of
datasets and methods.

Using the website, we also perform a gene-level analysis
to identify genes that can potentially play an important role
in the dysregulation of the five neurodegenerative pathways.
For that purpose, we intersect the genes that: (i) belong to all
of the five pathways and (ii) are differentially expressed in all
three datasets (FDR < 5%). Figure 6A shows the heatmaps
of the resulting 21 DE genes. Most of these genes belong to
the components related to mitochondria, proteasome, and
microtubule in all five pathways. Figure 6B shows the di-
rect mapping of these genes to those components of the
Alzheimer’s disease pathway.

CONCLUSIONS

In this article we describe a new web-based platform named
CPA that allows researchers to: (i) analyze gene/protein
expression data using eight popular methods (GSEA,
GSA, FGSEA, PADOG, Impact Analysis, Webgestalt, KS-
test, Wilcox-test), (ii) perform meta-analysis of multiple
datasets, (iii) combine methods and datasets to find con-
sensus results and (iv) interactively explore significantly im-
pacted pathways across multiple analyses, and browse re-
lationships between pathways and genes. Our main objec-
tive is to help life scientists who are trying to understand
the underlying biological mechanisms when comparing two
phenotypes. The platform is user-friendly with rich features
to explore and visualize pathway analysis results. More
importantly, it allows users to see the differences, as well
as the consensus results across many methods and exper-
iments. At the same time, we also aim at helping bioin-
formaticians who are developing new pathway analysis
methods.
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Figure 6. Differential analysis of genes that belong to five neurodegenerative pathways: Pathways of neurodegeneration - multiple diseases, Alzheimer’s
disease, Huntington’s disease, Parkinson’s disease, and Prion disease. (A) Heatmaps of P-values and log FC of genes that are differentially expressed (DE)
in all of the three Alzheimer’s datasets (GSE5281, GSE84422, and GSE48350). (B) Mapping of DE genes to mitochondria, proteasome, and microtubule
components of the Alzheimer’s disease pathway.
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SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.

ACKNOWLEDGEMENTS

We thank Evagelia C. Laiakis and Ha Nguyen for their in-
sightful suggestions on data analysis and visualization. Any
opinions, findings and conclusions, or recommendations ex-
pressed in this material are those of the authors and do not
necessarily reflect the views of any of the funding agencies.

FUNDING

National Institute of General Medical Sciences [GM103440
and 5 U54 GM104944]; National Science Founda-
tion [2001385, 2019609, 2029572]; National Aeronautics
and Space Administration [80NSSC19M0170]. Funding
for open access charge: National Institute of General
Medical Sciences [GM103440 and 5 U54 GM104944].
Conflict of interest statement. None declared.

REFERENCES
1. Kanehisa,M. and Goto,S. (2000) KEGG: Kyoto encyclopedia of

genes and genomes. Nucleic Acids Res., 28, 27–30.
2. Jassal,B., Matthews,L., Viteri,G., Gong,C., Lorente,P., Fabregat,A.,

Sidiropoulos,K., Cook,J., Gillespie,M., Haw,R. et al. (2019) The
reactome pathway knowledgebase. Nucleic Acids Res., 48,
D498–D503.

3. Kelder,T., Pico,A.R., Hanspers,K., Van Iersel,M.P., Evelo,C. and
Conklin,B.R. (2009) Mining biological pathways using WikiPathways
web services. PLoS One, 4, e6447.

4. The Gene Ontology Consortium (2021) The Gene Ontology resource:
enriching a GOld mine. Nucleic Acids Res., 49, D325–D334.

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/advance-article/doi/10.1093/nar/gkab421/6284183 by guest on 25 M

ay 2021

http://cpa.tinnguyen-lab.com
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkab421#supplementary-data


10 Nucleic Acids Research, 2021

5. Nguyen,T.-M., Shafi,A., Nguyen,T. and Draghici,S. (2019)
Identifying significantly impacted pathways: a comprehensive review
and assessment. Genome Biol., 20, 203.

6. Nguyen,T., Mitrea,C. and Draghici,S. (2018) Network-based
approaches for pathway level analysis. Curr. Protoc. Bioinformatics,
61, 8–25.
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