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Abstract

Cancer is an umbrella term that includes a wide spectrum of disease severity, from those that are malignant, metastatic, and aggressive
to benign lesions with very low potential for progression or death. The ability to prognosticate patient outcomes would facilitate
management of various malignancies: patients whose cancer is likely to advance quickly would receive necessary treatment that is
commensurate with the predicted biology of the disease. Former prognostic models based on clinical variables (age, gender, cancer
stage, tumor grade, etc.), though helpful, cannot account for genetic differences, molecular etiology, tumor heterogeneity, and important
host biological mechanisms. Therefore, recent prognostic models have shifted toward the integration of complementary information
available in both molecular data and clinical variables to better predict patient outcomes: vital status (overall survival), metastasis
(metastasis-free survival), and recurrence (progression-free survival). In this article, we review 20 survival prediction approaches that
integrate multi-omics and clinical data to predict patient outcomes. We discuss their strategies for modeling survival time (continuous
and discrete), the incorporation of molecular measurements and clinical variables into risk models (clinical and multi-omics data), how
to cope with censored patient records, the effectiveness of data integration techniques, prediction methodologies, model validation,
and assessment metrics. The goal is to inform life scientists of available resources, and to provide a complete review of important
building blocks in survival prediction. At the same time, we thoroughly describe the pros and cons of each methodology, and discuss

in depth the outstanding challenges that need to be addressed in future method development.
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Introduction

Recent advancements in high-throughput technologies have revo-
lutionized cancer research by allowing us to evaluate the patients
and their cancers at different molecular layers, including DNA
single nucleotide polymorphism and variation, gene mutations
(insertion, deletion, translocation, copy number variation, point
mutation, etc.), transcription, translation, transcriptional regu-
lation (e.g. regulation by DNA methylation), post-transcriptional
regulation (e.g. acetylation, lactylation, glycosylation, ubiquitina-
tion, etc.), expression of noncoding RNAs, and metabolites, etc.
In turn, these technological and research advances led to the
discovery of additional cancer hallmarks and broadening of our
cancer knowledge bases [1-7]. By analyzing multiple molecular
layers together, researchers can obtain a more comprehensive
view of cancer evolution and prognosis [8-10]. For instance,
Granja et al. [11] combined transcriptomic, epigenomic, and
proteomic data of leukemic blood cells to identify cancer-specific
processes involved in blood differentiation and key regulators of

leukemia-specific genes. Similarly, other multi-omics studies
resulted in the discovery of molecular signatures of breast cancer
[12,13],liver cancer [14, 15],lung cancer [16, 17], pancreatic cancer
[18, 19], brain cancer [20, 21], and other cancer types [22-24].

Because of the recognized importance of molecular data, many
survival prediction models have been developed using either: (1)
single-omics data [25, 26], (2) multi-omics data [14, 27], or (3)
multi-omics and clinical data combinations [28-34]. Despite the
increasing importance of these integrative methods, there is a
lack of resources to guide researchers through important con-
cepts in integrative prediction: (1) data processing, (2) modeling
of survival time (continuous versus discrete time), (3) modeling
of observable covariates (multi-omics measurement and clini-
cal variables), (4) coping with censored and missing data, (5)
data integration strategies, (6) effective prediction methodologies,
and (7) validation and assessment metrics. Many review articles
exist but they are often tailored toward a specific type of cancer
or data type (gene expression, clinical variables, or image data,
etc.) [35-39].
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Figure 1. Timeline of computational methods developed for cancer survival prediction using multi-omics data and clinical variables.

In this article, we review 20 methods capable of integrating
multi-omics data and clinical variables for survival prediction.
We focus on tools that have working source code and are well
maintained. There are other tools for the analysis of single-omics
[40-43] and image data [44-46] but those methods are excluded
from our review because they are not designed for multi-omics
integration. Figure 1 shows the 20 methods developed between
2017 and 2023.

The manuscript is organized as follows. Section Integration
and validation describes the high-level workflow of survival pre-
diction methods, recapitulating common techniques in data pro-
cessing, multi-omics data integration, and validation metrics. Sec-
tion Modeling and censoring discusses the modeling of survival
time, the incorporation of observable covariates into survival
prediction, and the strategies of handling censored data. Section
Technical details of prediction methods categorizes the machine
learning techniques and discusses their pros and cons. Section
Summary and practical guideline summarizes the key character-
istics of each method and provides a practical guideline for users
to choose a suitable method. Section Outstanding challenges dis-
cusses the outstanding challenges that need to be addressed in
future research. Finally, section Conclusion concludes the article.

Integration and validation

Figure 2A shows the general workflow that prediction approaches
follow. The input includes multi-omics data and clinical variables.
The output can be survival time, survival probability, vital status
with probability, hazard ratio, or cumulative hazard risk. These
supervised approaches first learn from the training set before
they can predict the survival of new patients. The training data
consist of data from a set of patients in which both input and
survival outcomes are known. After learning from the training
data, the models can predict the outcomes of new patients. The
development of a survival prediction model usually consists of
three stages: data processing, training and integration, and vali-
dation, which will be explained in the following subsections.

Data processing

Data processing consists of filtering, normalization, imputation,
gene mapping, gene-level aggregation, and sample intersection.
The goal of filtering is to remove features/variables that have none
to weak association with patients’ outcomes. Data normalization
is tailored to each data type and includes log2, min-max, z-score
transformation, and one-hot encoding [47, 48]. For sequencing
data, depth normalization is an important step. OmiEmbed, TF-
ESN, TF-LogHazardNet, and I-Boost convert read counts into
FPKM/RPKM or TPM. The remaining methods validate their
approaches using pre-processed and normalized data from TCGA
and NCBI GEO. Data imputation is often necessary because of

missing values. For example, if a gene has only some missing
values for a specific patient, it is desirable to impute the
missing values instead of removing the gene from the analysis.
FGCNSurv, MiNet, TCGA-omics-integration, M2EFM, MDNNMD,
and blockForest use KNN imputation [49] to substitute missing
values of a patient with mean values of those features from the
nearest neighbors of the patients. Other methods simply replace
missing values with mean, median, or zero. Another important
step is batch correction, but is neglected by most approaches.
M2EFM is the only method that uses the ComBat function in the
sva package [50] to correct for batch effects of both training and
testing datasets.

Gene-level aggregation is performed by some methods. GDP,
MiNet, TF-Loghazard Net, and TF-ESN require users to perform
gene-level aggregation for omics types other than gene expres-
sion (e.g. DNA methylation, copy number variation). MiNet, TF-
Loghazard Net, and TF-ESN further intersect the gene-level fea-
tures among all molecular types. Finally, all approaches intersect
samples/patients among multi-omics, clinical, and survival data
tokeep patients that have all types of data for the training process.

Training and data integration

The training process generally consists of model training and
data integration, which can be executed either simultaneously
or separately. For training, the methods implement three dis-
tinctive types of models: regularized linear regression, deep neu-
ral network, and ensemble learning. Details about model train-
ing and machine learning techniques are described in section
Technical details of prediction methods.

Figure 2B shows the integration strategies, which can be cat-
egorized as early, middle, mixed, and late integration [51, 52].
Early integration involves concatenating the input data matrices
into a single matrix, and potential dimension reduction (low-
variance filtering, univariate survival models, etc.) to reduce noise
and computational burden. Methods following the early integra-
tion strategy include IPF-LASSO, Priority-Lasso, M2EFM, SALMON,
GDP, MiNet, SurvivalNet, I-Boost, blockForest, and TCGA-omics-
integration.

Middle and mixed integration strategies use representation
learning to capture shared information. They assume that all
input matrices can be decomposed into a common latent space,
revealing the underlying mechanisms [52, 53]. Middle integration
approaches include Multimodal NSCLC, TF-Loghazard Net, TF-
ESN, SAE, CSAE, OmiEmbed, and FGCNSurv. These methods use an
autoencoder (AE) [54] to encode multi-omics data into a common
representation, which is then concatenated with clinical data.
In some cases, middle integration methods use an AE to simul-
taneously encode multi-omics and clinical data into a common
representation. Mixed integration methods use AEs or multilayer
perceptrons (MLPs) [55] to transform each data type into a lower
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Figure 2. High-level workflow (A) and data integration strategies (B) of survival prediction methods.

dimensional representation before combining them. Multimodal-
SurvivalPrediction and CustOmics adapt the mixed integration
strategy.

Late integration is a meta-analysis approach that trains sep-
arate survival prediction models for each input type and then
quantitatively combines the predicted values using an ensemble
learning strategy such as applying a weighted aggregation func-
tion. MDNNMD is the sole method that uses the late integration
strategy.

Validation and assessment metrics

To validate the methods, developers apply them to another set
of patients with known outcomes that are not included in the
training set. The performance of the methods is measured by
comparing the predicted outcomes with the ground truth using
several metrics. These metrics measure the following capabilities
of prediction models: (1) discrimination, (2) calibration, and (3)
overall performance.

Discrimination refers to the ability to separate and rank
patients according to their survival probability. Concordance
index (C-Index) is a metric that compares the rank order of
patients based on predicted hazard or survival probability
against the true ranking according to survival time [56]. Time-
independent C-Index, such as Harrell's C-Index [57] or Uno’s
C-Index [58], validates outcomes such as prognostic index, or
risk score of patients. In contrast, the time-dependent C-Index
is used for time-varying outcomes, such as survival probability
of patients across time intervals. In total, 18 out of 20 methods
(all but IPF-LASSO and MDNNMD) use C-Index as their main
assessment metric. Priority-Lasso uses Uno’s C-Index, while

TF-Loghazard Net and TF-ESN use the time-dependent C-Index.
The remaining 15 approaches use Harrell’s C-Index.

Two other metrics for discrimination power are the area under
the ROC curve (AUC) and Log-Rank test. One can define a thresh-
old and transform predicted values or survival probabilities into
binarized vital status. In this case, the AUC value measures how
well the prediction model distinguishes between the patients
experiencing the event and those who do not. Priority-Lasso,
FGCNSurv, and MDNNMD use AUC. Based on the predicted prob-
ability of hazard or survival, one can also stratify patients into
two different groups and utilize the Log-Rank test to examine
significant differences between the true survival probability in
these groups [59]. M2EFM, SALMON, MiNet, SAE, CSAE, FGCNSurv,
CustOmics, and MDNNMD use the Log-Rank test.

Calibration refers to the accuracy of the predicted risk in
comparison with the true probability of the event. There are three
levels of calibration that are listed in an increasingly stringent
order: mean calibration, weak calibration, and moderate calibra-
tion [60-62]. Mean calibration requires that the average predicted
risk equals to the overall event rate which can be computed
based on Kaplan-Meier estimation [63]. Weak calibration requires
that the model generally does not overestimate or underestimate
the predicted risk for any patient. One can evaluate moderate
calibration by separating patients into different groups based on
their predicted risks and comparing the predicted against the
true probability of the event within each group. Priority-Lasso and
M2EFM evaluate their models using moderate calibration.

The overall performance indicates both discrimination and
calibration power of prediction models. Integrated Brier Score
(IBS) [64] is a standard metric to assess the overall performance.
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Brier Score is calculated for each observed time as the average of
the sum of squared differences between the predicted probability
of event and the observed outcomes (e.g. 1 is dead and 0 is alive)
of patients [65]. IBS is obtained by combining the Brier scores
for each observed time. Five methods, IPF-LASSO, Priority-Lasso,
OmiEmbed, TCGA-omics-integration, and CustOmics, assess their
overall performance using IBS. One can also use both discrimi-
nation and calibration metrics listed above in their performance
assessment.

Modeling and censoring
Continuous versus discrete-time modeling

Survival prediction methods generally formulate the random vari-
able T that describes the length of time until the occurrence of
a well-defined event of interest (e.g. death, disease recurrence)
using the survival function and hazard function. The survival
function S(t) is defined as S(t) = P(T > t), which is the probability
that an individual will survive past time t. In contrast, the hazard
function h(t) represents how likely a patient will experience the
event given that the individual has already survived past time t.
The hazard can be considered as mortality rate or instantaneous
risk at the time t. Crucially, specifying the survival function allows
the hazard function to be ascertained and vice versa (see Fig. 3).
In continuous-time survival representation, T is a continuous
variable with a cumulative distribution function (CDF) F and a
probability density function (PDF) f. The survival function S(t)
is defined as S(t) = P(T > t) = 1 — F(t). The hazard function

is defined as h(t) = E%w = % = —41InS(. The

cumulative hazard function H(t) is defined as H(t) = fot h(x)dx. The
relationship between H(t) and S(t) is as follows: H(t) = — In S(t) and
S(t) = e7HO,

Discrete-time approaches partition the survival time into con-
tiguous intervals {(to, t1], (t1, t2], ..., (t-1, §j]}, where to = 0. The PDF
f is discretized so that f(I) = P(T € I) = P(.x < T < ),
where [; represents a specific time interval: (tj_1, tj]. The survival
probability is given as S(I)) = P(T > tj) =1 — Zk:tkﬁt) fIy), and the

hazard is calculated as h(l)) = S{;fiz) .Note that the hazard can also

be written as a conditional probability h(lj) = P(t_, < T < §|T >
ti_1), which is the probability of experiencing the event during
the interval given that the patient has survived up to the start
of that interval. The survival probability S(t) can also be rewritten
as S(Ij) = P(T > tj) = [T,_, (1 — h(T).

OmiEmbeded, TF-Loghazard Net, TF-ESN, and MDNNMD
formulate survival time using the discrete-time strategy. IPF-
LASSO, Priority-Lasso, and blockForest allow users to choose
one among different implemented models in which each model
follows either the continuous-time or discrete-time modeling
strategy. MultimodalSurvivalPrediction simultaneously trains two
different models: one model formulates survival time using the
continuous-time strategy and the other adapts the discrete-time
strategy. All the remaining methods follow the continuous-time
strategy.

The methods following the discrete-time strategy can model
the survival/hazard of patients for each interval using a different
formula. However, discrete-time methods encounter the potential
issue of losing information of survival time. Segregating survival
times into intervals results in the model being unable to
account for variability in survival duration among patients
experiencing the event within the same interval. On the contrary,
the adaptation of continuous-time strategy typically requires
strict assumptions about the distribution of survival quantities

(e.g. survival time, survival function, hazard function, hazard
ratio, etc.) across all observed times.

Note that none of the reviewed methods allows users to input
variables for multiple time points. In order to incorporate time-
varying variables, each sample should be represented by multi-
ple records indicating different time points/intervals with corre-
sponding covariate values [66-68]. Although many methods can
be extended to process time-varying variables, all accompanied
tools input only one value per variable per sample.

Parametric versus nonparametric modeling

Nonparametric models do not assume any parametric form for
the survival function or the hazard function. The estimators such
as Kaplan-Meier [63] and Nelson-Aalen [69, 70] estimate the
survival probability and cumulative hazard directly from the set
of observed time points. For example, Kaplan-Meier sorts survival
times into an increasing order {ti, ty, ..., tm} and calculates the sur-
vival function as Sgu(t) = Hi:t‘g(l— %), in which n; is the number of
alive patients at the beginning of t; and d; represents the number
of patients experiencing the event at t;. Nonparametric models
can be used in comparing the survival among two or more groups
of patients, but they often lack inference for effects of important
covariates.

Parametric models can address some shortcomings of non-
parametric models by formulating the parameters as a func-
tion of observable covariates (measurable variables). For exam-
ple, we can model the survival time to follow the exponential
distribution, such that f(t) = Ae=. The rate parameter A rep-
resents the mortality rate (hazard) at time t because h(t) =
g((—g = X. The parameter A can depend on measurable covari-
ates using » = efX where g is a row vector of coefficients
and X is a column vector of covariates (e.g. gene expression of
a person). Other commonly used models include Weibull, log-
normal, log-logistic, and generalized gamma [71, 72]. Generally,
parametric models are favored by researchers over nonparametric
techniques because of the aforementioned advantages. However,
parametric modeling requires users to ascertain the accurate
distribution of survival time in their data, which can be a chal-
lenging task in practical scenarios. Moreover, false assumptions
about data distribution may produce biases in the results of an
analysis.

Consequently, semi-parametric models were developed to
address these problems. In comparison to parametric techniques,
semi-parametric models do not specify the distribution of survival
time or the hazard function. Instead, these models specify the
effects of the measurable covariates. Cox proportional hazards
(CPH) [73]—one of the most widely used models—formulates the
hazard function as h(t) = ho(t)efX, in which ho(t) is an arbitrary
baseline hazard, and % is called the hazard ratio. The predicted
survival probability is calculated as S(t) = e Ho®e™ where
Hot) = fot ho(x)dx. CPH models often estimate g using maximum
likelihood estimation and estimate Hy(t) using a nonparametric
method named Breslow estimator [74, 75].

TF-Loghazard Net, TF-ESN, OmiEmbed, and MDNNMD follow
the parametric modeling. IPF-LASSO and Priority-Lasso allow
users to choose between parametric and semi-parametric models.
MultimodalSurvivalPrediction implements both parametric and
semi-parametric models in its analysis pipeline. blockForest
is the only approach that utilizes the Nelson-Aalen estimator
(nonparametric technique) to predict the survival of patients. The
remaining methods implement only semi-parametric prediction
models.
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Coping with censored data

Censoring occurs when the time of event is unknown for a
patient due to the following reasons: (1) study ends without
the patient experiencing the event, (2) the patient withdraws
from the study, and (3) study fails to follow up after some
time. To cope with censored data, prediction methods either (1)

remove the observations with censoring, (2) impute censored
data, (3) dichotomize the data, or (4) adapt likelihood-based
approaches [76]. The first two strategies are straightforward but
removing censored data can lead to significant loss of data, while
imputation might produce biased or false data, especially when
the number of censored observations is large.
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The third strategy binarizes the outcomes, i.e., it compares the
incidence of occurrence versus nonoccurrence of the event within
a fixed period of time. The disadvantages of this strategy include
(i) being unable to distinguish between the loss to follow-up and
end-of-study censoring, (ii) lacking the capability to model the
variability of timing of the event, and (iii) failing to incorporate
time-dependent covariates (age, smoking, etc.).

The fourth strategy adjusts the likelihood function to account
for whether or not an individual observation is censored. An
example is the Kaplan-Meier estimator described in the previ-
ous section. Another example is the CPH model that aims to

maximize the partial likelihood function: L(8) = [, zeﬂx‘eﬁxl,
jeR;

in which {t;, ..., tn} are the unique sorted event times, R;, is the
set of patients that experience the event or are censored at a
time beyond t;. Although the likelihood-based strategy can utilize
all available information, it still makes assumptions about the
censoring mechanism.

MDNNMD applies the third strategy by defining a specific
frame of time for its analysis (e.g. 5 years) and binarizes survival
times of patients. TF-Loghazard Net, TF- ESN, and OmiEmbed
combine the third and fourth strategies by specifying different
time intervals that enclose the whole range of survival time and
convert each observed time into a binary vector representing the
interval that the observed time falls into. Patients experiencing
the event in the same interval will be assigned with exactly
the same binarized vector. Hazard or survival function across
intervals is then estimated using the likelihood-based approach.
This approach improves the third strategy, enabling the methods
to differentiate between loss to follow-up and end-of-studying as
well as account for time-varying covariates. However, the issue of
variability in timing of the event remains unsolved. The remaining
methods adapt the fourth strategy.

Technical details of prediction methods

We categorize the reviewed methods into three groups: regu-
larized linear regression, deep neural network, and ensemble
learning approaches. In each category, we provide a high-level
description of the methods and their pros and cons. Throughout
the section, we use a number of technical terms that are listed
in Table 1. The description of each method can be found in
Supplementary Note.

Regularized linear regression

There are three methods in this category: IPF-LASSO [77], M2EFM
[29], and Multimodal _NSCLC [78]. They typically use CPH model,
a semi-parametric approach that estimates the hazard ratio asso-
ciated with given covariates, representing the likelihood of the
event occurring. Because of the large number of predictors in
the model, methods in this category also apply regularization
techniques (LASSO, Ridge, elastic net) to select the important
predictors and handle potential multicollinearity among them,
thereby improving the model’s predictive performance.
IPF-LASSO concatenates all data into a single matrix and then
applies a model named LASSO with Penalty Factors that employs
user-defined penalty factors for each data type to rescale the
respective data, thus allowing distinct penalties for each coef-
ficient in the objective function. The second method, M2EFM,
performs expression quantitative trait loci (eQTLs) analysis with
Matrix eQTL [79] to identify significantly associated probe-gene
pairs. Next it trains a CPH model with Ridge regularization on
multi-omics data and then integrates predicted values from the

Table 1. A glossary of technical terms

Term Definition

Adam Adaptive moment estimation
AE Autoencoder

AFT Accelerated failure time

AUC Area under the ROC curve

CP Canonical decomposition/parallel factors
C-Index Concordance index

CNN Convolutional neural network
CNV Copy number variation

CPH Cox proportional hazards

DNN Deep neural network

FBM Factorized bilinear model

FC Fully connected neural network
GCN Graph convolutional network
GNN Graph neural network
GradNorm Gradient normalization

IBS Integrated brier score

KNN K nearest neighbor

LASSO Least absolute shrinkage and selection operator
MAML Model-agnostic meta-learning
MSE Mean squared error

MLP Multilayer perceptron

NSCLC Non-small cell lung cancer

SGD Stochastic gradient descent
SVD Singular value decomposition
VAE Variational autoencoder

first model with clinical data to train a second CPH model without
regularization. The third method, Multimodal _NSCLC, applies a
CPH on each molecular feature and then selects features with
the most significant effects on survival outcomes. Next, Mul-
timodal NSCLC uses AE to derive a common representation of
multi-omics data (i.e. middle integration) and then concatenates
the common representation with clinical variables to obtain a
single matrix. Finally, the method trains a CPH model with elastic
net regularization using the obtained matrix and patient survival.
Overall, regularized linear regression approaches utilize
regularization techniques such as LASSO, Ridge, and elastic net,
to avoid overfitting and deal with multicollinearity in high-
dimensional data. Methods in this category can provide users
with interpretability of the obtained results. However, linear
regression models (linear regression, logistic regression and
CPH) rely on specific assumptions about the covariate effects
(e.g. additive/multiplicative, time-constant effects) on survival
response variables. The violation of these assumptions may
occur frequently in real-world scenarios, which could result in
less ideal prediction [71, 80-83]. Furthermore, IPF-LASSO and
Multimodal NSCLC have high computation time. IPF-LASSO
trains its models using a large concatenated data, while the
denoising autoencoder implemented by Multimodal NSCLC
may be computationally intensive to train. M2EFM is highly
dependent on specific omics types and the method does not allow
incorporating additional molecular data in its analysis.

Deep neural networks

There are 12 methods in this category: SALMON [31], GDP [84],
MiNet [85], SurvivalNet [86], TF-Loghazard Net & TF-ESN [87],
SAE & CSAE [88], OmiEmbed [89], CustOmics [90], Multimodal-
SurvivalPrediction [91], and FGCNSurv [92]. They integrate multi-
omics and clinical data into deep neural network architectures
such as MLP and GNN. The objective function of these methods
typically integrates multiple data types and estimates survival
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simultaneously (middle or mixed integration). This function can
be customized to adapt both continuous-time and discrete-time
modeling.

SALMON first uses the package ImQCM [93] to identify co-
expression modules (mRNA and micro RNA) and then applies
SVD [94] to obtain eigengenes. Next, SALMON projects matrices of
eigengenes to a latent space using perceptron layers. These latent
vectors are concatenated with other data types (mutation, clinical
data) and are passed through the output layer to compute the
survival outcome. To train the model, SALMON uses the Adam
optimization algorithm [95] to optimize the negative partial log-
likelihood loss function with traditional LASSO regularization.

GDP employs an MLP model that encompasses an input layer,
two hidden layers, and an output layer for survival modeling.
Users need to provide a vector of group structure of the features,
in which each component specifies the group that a feature is
assigned to. The loss function is composed of negative partial log-
likelihood and a modified LASSO term, in which the group LASSO
is applied for the first weight matrix (between input layer and
the first hidden layer) and standard LASSO is used for remaining
weight matrices. GDP utilizes the Mini-batch Gradient Descent
algorithm [96] to minimize the total loss during training.

Similar to GDP, SurvivalNet utilizes a simple MLP with par-
tial log-likelihood objective function for survival prediction. The
method first performs data filtering on mutation and copy num-
ber variation data using MutSig2CV [97], GISTIC [98], and Sanger
Cancer Gene Census [99]. Next, it standardizes all features using
z-score transformation and then concatenates them into a single
matrix. SurvivalNet incorporates the Bayes Optimization algo-
rithm [100], enabling users to effectively search for the optimal
neural network architecture (e.g. number of hidden layers, layer
width, activation function) and training configuration (e.g. learn-
ing rate, dropout fraction).

MiNet employs a four-layer MLP encoder to embed multi-omics
data into a low-dimensional vector, which is concatenated with
clinical data to predict patient survival outcomes using a CPH
model. MiNet also integrates KEGG and Reactome pathways into
their model by introducing a gene layer and a pathway layer
within the MLP encoder. During training, MiNet optimizes the
MLP weights and CPH coefficients of the model using the log par-
tial likelihood loss function with Ridge regularization and Adam
algorithm.

TF-Loghazard Net & TF-ESN aggregate CNV, DNA methylation,
and gene expression within each gene into a single value
and then merge them into a 3D tensor. They apply canonical
decomposition/parallel factors (CP) [101] to decompose the tensor
into three latent matrices before concatenating them with clinical
data to train DNNs for survival prediction. TF-Loghazard Net
applies Logistic-Hazard - a discrete-time survival model [102],
utilizing Adam optimization scheme and a modified binary
cross-entropy loss which accounts for censoring information of
patients. TF-ESN further encodes the concatenated matrix into a
lower-dimensional matrix and then passes the obtained matrix
to a six-layer MLP. For training its DNN, TF-ESN utilizes Adam
optimization and a loss function that is a weighted sum of the
loss applied by TF-Loghazard Net and mean squared error.

SAE and CSAE both employ a neural network architecture that
consists of an MLP encoder, an MLP decoder, and an MLP network.
CSAE also introduces a concrete selection layer in its encoder
part [103]. The model applies a reparametrization trick, allowing
these weights to be trained along with other weights of the
network. To strengthen the ability of the hidden representation to
predict survival outcomes, SAE and CSAE utilize a combined loss
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function that includes an unsupervised reconstruction loss for
AE, a supervised partial log-likelihood loss for survival prediction
and a Ridge regularization term.

OmiEmbed supports three different analysis tasks: survival
prediction, numerical clinical feature prediction, and tumor type
classification. The method allows users to perform one specific
task or all of them synchronously. The method trains a DNN
that encompasses a VAE for data integration and an MLP. The
training process consists of three phases: (i) the method trains
only the VAE; (ii) the method trains only the MLP; and (iii) both
the deep VAE and MLP are trained collectively. The training loss
function is tailored to each training phase, including only the
losses corresponding to the trained portions.

CustOmics combines different DNN architectures into a single
model, introducing a new training framework with two phases
to optimize the use of these architectures. In the first phase,
each data type is processed through a DNN consisting of an
autoencoder and different MLPs to derive the optimal latent
representation for the selected tasks. In the second phase, the
latent representations from multiple data types are concatenated
and input into central DNN comprising a VAE and different MLPs
corresponding to the given tasks. The VAE extracts the common
latent representation from the combined data, which is then used
to train the MLPs for predicting the desired outcomes.

FGCNSurv uses the DNN architecture that consists of two
encoding MLPs, an FBM [104], and a three-layer GCN. Each of the
encoding MLPs encompasses one input layer, one hidden layer,
and one highway network [105]. The method performs its train-
ing process as follows: encoding MLPs and FBM are utilized for
integrating input data into a fused matrix; the average adjacency
matrix is normalized following the technique proposed by Kipf
and Welling [106] to prevent the problem of exploding/vanishing
gradients; the method inputs the fused and normalized adjacency
matrices to the GCN for estimating the hazard ratio; negative
partiallog-likelihood is calculated as the training loss and weights
of the DNN are updated leveraging Adam optimization algorithm
to minimize the loss.

MultimodalSurvivalPrediction employs a DNN architecture
that consists of three modules: unsupervised learning for data
representation, attention-based multimodal fusion, and survival
prediction. The method uses MLP to encode each input data
type into a distinct representation vector. The attention-based
multimodal fusion module then leverages different perceptron
layers to generate an attention vector for each data type. A unified
representation vector is subsequently computed for the survival
prediction task. The overall network is trained by concurrently
minimizing this similarity loss as well as negative partial log-
likelihood and cross-entropy loss associated with the survival
prediction task. This dual-loss training strategy enhances the
overall performance in survival prediction.

Overall, deep neural network approaches are efficient at
handling large and complex datasets, and they are capable of
capturing nonlinear covariate effects on the survival of cancer
patients. However, these methodologies are computationally
expensive and, in many cases, lack interpretability regarding the
impact of specific covariates on survival. Overfitting can also
be a significant issue, particularly when the training dataset is
too small and does not contain enough samples to accurately
represent all possible input values. Furthermore, many methods
in this category, such as SALMON, GDP, MiNet, SurvivalNet, SAE,
and CSAE, rely on the proportional hazards assumption of the
CPH model, which presumes time-constant covariate effects on
the hazard ratio.
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Ensemble learning

There are four methods in this category: I-Boost [33], Priority-
Lasso [107], blockForest [108], TCGA-omics-integration [109], and
MDNNMD ([32]. These methods use ensemble learning that com-
bines multiple prediction models. Each of these models is trained
on specific data types, on blocks of related covariates (e.g. genes
and proteins in related biological pathways), on multiple subsam-
ples, or bootstrapped samples of the training data. Each model
considers different aspects of the same problem, and combining
multiple models can potentially result in a more robust and accu-
rate prediction model. Various ensemble learning approaches,
such as boosting and random forests, are introduced and refined
within this category.

I-Boost uses a CPH model to estimate the impact of multi-omics
and clinical covariates on patient hazard ratios. This method
employs a boosting approach to determine the coefficients of
these covariates within the prediction model. For each iteration,
the method first calculates the partial likelihood loss using the
overall CPH model with its current coefficients. I-Boost then fits a
CPH with elastic net regularization on each data type separately,
calculating the loss values. The data type and corresponding CPH
model yielding the greatest decrease in the loss function are then
selected. Coefficients of this model are then used to update the
coefficients in the overall CPH model.

Priority-Lasso sequentially ensembles multiple regression
models built for each data type (linear regression, logistic regres-
sion, or CPH). Users are required to predefine a block structure
for the input data, where each block can represent a data type or
a set of features within a data type. Priority-Lasso consecutively
fits a Lasso regression model to each data block, starting from
the highest priority to the lowest one. Each subsequent model
is used to refine the predictions of the previous ones. In the
inference phase, the final prediction is obtained by summing the
estimations of all fitted models given the corresponding blocks.

blockForest concatenates all input data types and treats fea-
tures from each data type as distinct blocks. The method applies
different parameters (such as sampling probability or weight) to
each block of data, which affects the likelihood of a particular
feature in a specific type being selected when training a sub-
tree. This approach prevents bias toward data types with a high
number of features and allows prioritizing input types based on
their respective levels of predictive information. blockForest offers
five variants of the random forest algorithm for training and
prediction: VarProb, SplitWeights, BlockVarSel, RandomBlock, and
BlockForest.

TCGA-omics-integration applies MAML [110], which optimizes
model weights for adaptability across multiple tasks. The train-
ing process consists of a task-specific adaptation, and a meta-
optimization. In the first step, a copy of the model’s parameters
is created for each task. SGD is then used to optimize these
parameters on the task-specific support data, adapting the model
for that task. Each adapted model is subsequently evaluated on
the corresponding task-specific query data. In the second step, the
losses obtained from applying the task-specific adapted models
on the respective query data in the inner loop are combined into a
meta-loss. Adam optimization algorithm is then used to compute
the gradients of this meta-loss with respect to the initial model
parameters and update these parameters to enhance the model’s
ability to adapt to multiple tasks simultaneously.

MDNNMD predicts binary survival outcomes by integrating
predictions from multiple MLPs, each trained on a type of data.
Each model consists of an input layer, four hidden layers, and an
output layer. During training, batch normalization is applied to

each hidden layer, and dropout is incorporated before the output
layer. Each model generates a probability-based prediction of the
vital status, which are then combined using a weighted linear
aggregation function [111] to produce the final predicted survival
outcome for the patient.

Overall, ensemble approaches can leverage the prediction
power of complementary models. These approaches are not
dependent on specific omics types and they provide the flexibility
of adding new molecular types to the analysis. However, methods
in this category (except for blockForest) follow the time-constant
assumption of the covariate effects on the survival of patients,
which might be violated in practice. There are also specific
shortcomings of certain ensemble-learning-based approaches.
I-Boost implements an iterative process of selecting data type
for training a CPH model, which is usually computationally
expensive. MDNNMD applies a simple aggregation strategy on
predicted values obtained from its trained MLPs, which makes
the method prone to overfitting.

Summary and practical guideline

Table 2 summarizes the key characteristics of the surveyed meth-
ods: main assumption, input, handling of missing data, output,
integration strategy, modeling, validation data, and validation
metric. Most methods follow either continuous-time modeling
strategy or discrete-time strategy and formulate their models in
one of three forms: parametric, semi-parametric, and nonpara-
metric. MultimodalSurvivalPrediction is the only method that
simultaneously trains two different models for predicting the
hazard ratio (continuous-time + semi-parametric model) and
probability of the vital status (discrete-time + parametric model)
of patients. The availability of the methods (software link, doc-
umentation & user guides, programming language, publication
year) are shown in Supplementary Table S1.

To further assist readers to choose a suitable method, we
provide a general guideline as illustrated in Fig. 4. To begin with,
the input of all surveyed methods includes multi-omics data and
survival information of patients. If users do not have clinical vari-
ables or they want to investigate the impacts of only molecular
features on the survival of patients, FGCNSurv might be a good
option. Otherwise, they might select one of the remaining tools
for their analysis based on the specific survival outcome that they
want to predict (hazard ratio, vital status with probability, survival
probability, survival time, and cumulative hazard).

Figure 4 also evaluates 20 methods utilizing six different
metrics: (i) tutorial, (ii) documentation, (iii) case-study, (iv)
installation, (v) user-friendliness, and (vi) accuracy. For each
metric, a method is given a score from one (worst) to five (best).
The overall score is equally weighted among the three criteria: (1)
how accurate the method is (average of C-Index, td-C-Index, IBS,
and D-Calibration [112]), (2) how well the method is documented
(average of Tutorial, Documentation, and Case-Study), and (3)
how reliable the implementation is (average of Installation and
User-Friendliness). There are 12 methods with an overall score at
least 3.5. These encompass Multimodal NSCLC, GDP, SurvivalNet,
CSAE, CustOmics, I-Boost, TCGA-omics-integration, OmiEmbed,
IPF-LASSO, Priority-Lasso, blockForest, and MultimodalSurvival-
Prediction. Among these, four are standalone packages (I-Boost,
IPF-LASSO, blockForest, and PriorityLasso). The remaining eight
methods are available as scripts on GitHub with a README file
that provides the instruction for installation and execution.
Details of TCGA data and analysis results can be found in
Supplementary Note and Tables S2, S3, and S4.
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START

Multi-omics data

Survival information

+I+I

Do you have clinical

‘_ ------

data?
Yes
4
What kind of survival
outcomes do you want
to predict?
4
Multiple ST/VP/HR %
outcomes
ST/VP/CH+SP
HR+VP

(HR: Hazard ratio, VP: Vital status with probability, SP: Survival probability, ST: Survival time, CH: Cumulative hazard)

Figure 4. Method guideline and assessment scores (tutorial, documentation, case-study presentation, installation, user-friendliness, accuracy, and overall

score).

First, the tutorial metric demonstrates whether a detailed,
comprehensible tutorial is provided for each surveyed tool. We
assess the tutorial provided for each method according to all
phases of a general analysis including data importing, data
processing, model training, and survival prediction. Most of the
reviewed methods have a high score in this metric.

Second, the documentation metric evaluates the quality of
documentation for each method in terms of fundamental func-
tions and parameters. Generally, methods with a software pack-
age (M2EFM, I-Boost, IPF-LASSO, Priority-Lasso, and blockForest)
receive the highest score. GDP, SurvivalNet, SAE, CSAE, CustOmics
also provide an exemplary and exhaustive documentation.

Third, the case-study metric assess each approach according
to the validation technique presented in their paper. This metric
is composed of two sub-criteria: (i) number of case studies using
real datasets reported, and (ii) adaptation of external validation.
A method earns three points if the corresponding paper presents
at least three case studies involving high-quality, real datasets.
Lower number of case studies reported leads to a deduction in
this score. Moreover, if a method is validated using independent
datasets, it is given two more points. M2EFM is the only tool that
receives the maximum five points for the validation metric.

Fourth, the installation metric refers to how straightforward it
is to install the software. We subtract points from the maximum
score for a method if it either (i) does not provide a clear, adequate
installation guidance (e.g. listing programming languages, depen-
dency packages and their required versions as well as describing

how to set up programming environment, install dependencies,
etc.), or (ii) requires manual installation of many dependencies,
which can be challenging and time-consuming to users. Only a
few methods (SurvivalNet, IPF-LASSO, Priority-Lasso, and block-
Forest) receive the highest score for this metric.

Fifth, the user-friendliness metric refers to the ease and conve-
nience of using each method from a practical standpoint. Specifi-
cally, this metric assesses how easy it is for users to perform analy-
sis on example and new datasets utilizing each tool. Higher scores
are given to methods that can be run using simple commands/-
functions. At the same time, a tool will be deducted some points
for the fourth metric if it requires users to manually perform any
step of the analysis pipeline other than data importing. I-Boost,
PriorityLasso, and blockForest stand out as the most user-friendly
methods.

Sixth, the accuracy score assesses how accurate each method
is in predicting patient survival. For this purpose, we perform
cross-validation of 17 TCGA datasets using four different met-
rics: Harrell's C-Index, td-C-Index, IBS, and D-Calibration (see
Supplementary Note and Tables S2, S3, and S4). For each metric,
we calculate the average score value across all datasets, and scale
all values to a score between one (worst) and five (best). The final
accuracy score is calculated as the average of the four scores.
Overall, CSAE and blockForest have the highest accuracy with a
score of 5. Multimodal _NSCLC, I-Boost, TCGA-omics-inegration,
IPF-LASSO, and Priority-Lasso are also among the top-performing
methods with an accuracy score of 4.
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In our analysis, each type of multi-omics data has 5000 fea-
tures, making the total number of features more than 10 times
the number of samples in each dataset. All 20 methods of the
three method categories (regularized linear regression, deep neu-
ral networks, and ensemble learning) are able to analyze the 17
datasets without crashing. In other words, all methods allow the
number of covariates to be larger than the sample size. Regarding
accuracy, each category has methods that achieve high accuracy.
We would conclude that the performance of a method depends
on the method details and implementation, rather than method
category.

Outstanding challenges
Multi-omics integration

By incorporating different types of molecular data, researchers
can better understand the complex progression of cancer, which
typically involves the coordinated activities of multiple omics
layers. For example, it has been reported that the integration
of proteomics with genomics and transcriptomics allows for the
identification of potential biomarkers that drive cancer progres-
sion after primary treatment for colon, rectal, and ovarian cancer
[113, 114]. Utilizing prognostic molecular features, along with
factors such as cell state, cell location, microenvironmental, and
clinical information, has led to increased accuracy of survival
prediction models, as reported in numerous studies [115-120].
Moreover, the use of multi-omics data boosts the reliability of sur-
vival prediction results. The combination of different molecular
types allows researchers to increase the sample size of the study
via taking a union of samples across omics types. Both of these
factors can substantially enhance the statistical robustness and
confidence level of the analysis results [121-123].

However, it is important to note that it is not always beneficial
to add more omics types to the model. Integrating more omics
types can add noise, redundancy, and inverse relationship among
specific omics types to the model, all of which may undermine
the model’s performance [124, 125]. The authors of I-Boost and
Multimodal _NSCLC validated their models using different combi-
nations of multi-omics and clinical data across multiple datasets.
Both studies reported that incorporating all data types did not
derive the best result of their models. Therefore, the selection of
omics types and integration approach should be made regarding
important factors encompassing heterogeneity and interrelation-
ships among different omics data. Intensive data analysis and
expert knowledge are necessary to obtain the optimal subsets of
omics types for the integrative analysis.

Moreover, the task of multi-omics integration is not straightfor-
ward and usually demands considerable effort. The heterogeneity
nature of multi-omics data, inconsistency in data processing, and
unknown interactions among omics layers contribute to predic-
tion instability [126]. Therefore, it is fundamental to ensure the
consistency among input omics data regarding applied assays and
experiment designs, as well as data processing protocols. Besides
that, in practice, the existence of missing data are common among
omics datasets and this problem exacerbates when more omics
types are added to the analysis [127]. To address these issues,
the surveyed methods use various strategies in their integrative
analysis, although many limitations remain, as discussed below.

First, prediction methods intersect samples among the
different molecular and clinical data types during training
process, i.e. the methods only keep patients that have all types of
multi-omics data and clinical variables. Intersection can result
in the loss of important observations, whereas imputing the
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entire representation of an omics type for certain patients could
introduce bias into the analysis. Since multi-omics data are not
always available for all patients, it would be beneficial to adopt
transfer learning-based and multi-view matrix factorization-
based imputation. These techniques can account for the interplay
between the omics data containing missing values and other
molecular types [127-129].

Second, current methods exhibit limitations in their data
integration techniques. Half of the methods in this review perform
early integration for their input data types. Many studies have
demonstrated the superiority of other integration strategies
over early integration, especially in case of great heterogeneity
among data types [130-132]. Deep-learning-based architectures
are capable of extracting meaningful latent variables out of multi-
omics data. Researchers have proposed a mixed-integration deep-
learning design, which comprises of different sub-networks for
learning independent features from each omics and a central
network for integrating these features [130, 133]. However, there
is a lack of interpretability when using deep learning models,
which is important to gain insights into the biology for prognosis
and treatment.

Modeling

In terms of modeling, there are numerous limitations that need
to be addressed. First, prediction approaches neglect biological
knowledge in their models. For example, DNA methylation is
known to repress gene expression but current methods fail to take
into account such interactions [134]. In addition, the relationship
among genes and gene products residing within pathways can
provide valuable insights for studies regarding the mechanism of
cancer. Pathways such as PI3K/AKT/mTOR and Ras/MAPK have
been reported to play critical roles in the development of tumors
[135]. MiNet is the only method that attempts to incorporate gene
set information into their DNN layers by connecting gene nodes
with pathway nodes. The addition of biological knowledge to the
data integration step, via novel techniques including hierarchical
integration or network-based integration, can lead to improve-
ment in performance of survival prediction models [136, 137].

Second, most of the methods favor semi-parametric modeling,
i.e,, most of them use CPH models, which estimate hazard ratios of
cancer patients. It would be more beneficial if prognostic models
can predict survival probability (or probability of other events)
for a patient within a specified time period [138]. Currently, users
need to perform additional steps of estimating patient survival
using techniques such as Breslow estimator [75]. The use of
parametric models can directly provide information about the
survival of patients across time, which is one advantage over
semi-parametric approaches in real-world applications. However,
the efficacy of parametric models depends on the accuracy of
their assumptions about survival time distribution, which can
be challenging to ascertain. To address this issue, an ensemble
strategy can be applied, in which various models with different
formulations of survival time are fit to the same training data
and the final predicted outcome is obtained by combining results
from all trained models. This can help mitigate the reliance of
the model on distribution assumptions to generate more robust
predictions.

Third, the majority of the reviewed approaches follow the time-
constant assumption of covariate effects on survival response
variables. The violation of these assumptions may occur fre-
quently in real-world scenarios, which leads to less accurate pre-
diction [71, 80-83]. Also, methods that follow the time-constant
covariate effect assumption would use the same function and
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parameters for all time intervals, preventing them from incorpo-
rating time-dependent covariates such as age, weight, or smoking
status. OmiEmbed, TF-Loghazard Net, and TF-ESN address this
issue by a discrete-time prediction framework in which the time-
varying covariate effects are formulated and time-dependent fea-
tures can be added to the prediction model. However, generating
time-varying omics-data is computationally expensive and heav-
ily affected by many experimental factors. Future studies should
investigate different nonparametric models in survival prediction,
which do not rely on specific assumptions about the covariate
effects.

Validation

Most methods use cross-validation for validation. Cross-validation
might produce inflated accuracy, fostering an overoptimistic
view about the efficacy of the proposed methods [139, 140].
It is essential to assess prediction methods using independent
external data before applying them in a real-world setting.
M2EFM and Priority-Lasso are the only two approaches that
validated their models using independent datasets. Specifically,
M2EFM trained their model on TCGA data (RNA-Seq and clinical
variables) and tested on GSE39004 and GSE20685 (Affymetrix
microarray and clinical variables). Priority-Lasso trained their
model on AMLCG-1999 trial data [141] (Affymetrix microarray,
gene mutation status, European LeukemiaNet genetic risk
stratification score [142], and clinical variables). The model was
subsequently validated on an independent dataset consisting
of patients from AMLCG-2008 [143] and 40 patients from the
AMLCG-1999 trial. These methods effectively simulate real-world
scenarios where training and testing set were generated from
independent sources using different assaying platforms. However,
there exist major issues that become discernible to researchers
solely upon the undertaking of external validation studies. For
example, problems such as the missing of one or multiple omics
types for new patients, disparities between the training data
and external data (in terms of assaying platforms, underlying
distribution, etc.) can undermine the prediction capability of the
developed models.

In terms of metrics, most methods focus on discrimination
power of their models but neglecting calibration aspects. This is
indicated by the fact that 12 of the surveyed approaches only
output hazard ratios, which are mainly designed to demonstrate
the relative risk among patients. Poorly calibrated estimates often
result in erroneous expectations with cancer patients and health-
care specialists [62]. In addition, while all of the reviewed methods
use at least one discrimination metrics (among C-Index, AUC, log-
Rank test), only a few involve calibration measures (moderate
calibration) or overall performance metrics (e.g. IBS) in their val-
idation. Moreover, the methods utilizing calibration measures do
not provide codes for reproducing the results or explain in detail
how calibration metrics/graphs are constructed. There are a vari-
ety of techniques for calibration measurements that have been
proposed in previous studies even regarding one specific level
of calibration [60, 138, 144]. Thus, users might have difficulties
selecting suitable techniques to measure the calibration quality
of their models.

Finally, it should be highlighted that the accuracy of all analysis
methods is highly dependent on the quality of processed data.
Most of the reviewed methods provide preprocessed data without
including the data processing step in the source code/instruction
files. Also, many approaches in this review utilize a mixture
of external tools for the step of data processing. Exclusion of
detailed guidance on the data processing procedure presents

obvious impediments for users seeking to efficiently leverage the
methods.

Conclusion

We review 20 methods for survival prediction using multi-omics
data. We explain the basic building blocks of survival prediction
approaches, discussing their model and validation strategies. Our
main goals are to assist potential users, especially life science,
biomedical, and clinical scientists, in choosing the most appropri-
ate method for their analysis, as well as support computational
scientists in developing novel methodologies that successfully
address the current drawbacks.

We also discuss the outstanding challenges related to multi-
omics integration, modeling, and validation. Outstanding issues
in multi-omics integration include missing data types (i.e. not all
patients have all types of data), inconsistent preprocessing, and
suboptimal integration. Challenges in modeling include lack of
integration of pathway topology and biological knowledge into the
prediction models, and overreliance on semi-parametric models
and strong assumptions of time-constant covariate effects. For
validation, most approaches use cross-validation, which is prone
to overfitting. These challenges need to be addressed in future
development.

Key Points

e Accurate prediction of patient outcomes is pivotal in
oncology research and treatment.

* Multi-omics integration can leverage the complemen-
tary information available in multiple types of data to
improve the robustness of prediction models.

e This article provides a comprehensive review of 20 sur-
vival prediction approaches leveraging multi-omics data.

e This article discusses underlying assumptions, input and
output, integration, modeling, and validation techniques
of the survival prediction methods.

¢ This paper presents outstanding challenges in the field
that remain unaddressed and need to be solved.
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