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ABSTRACT
With the explosion of high-throughput data, an effective in-
tegrative analysis is needed to decipher the knowledge accu-
mulated in multiple studies. However, batch effects, patient
heterogeneity, and disease complexity all complicate the in-
tegration of data from different sources. Here we introduce
TOMAS, a novel meta-analysis framework that transforms
the challenging meta-analysis problem into a set of stan-
dard analysis problems that can be solved efficiently. This
framework utilizes techniques based on both p-values and ef-
fect sizes to identify differentially expressed genes and their
expression change on a genome-scale. The computed statis-
tics allow for topology-aware pathway analysis of the given
phenotypes, where topological information of genes is taken
into consideration. We compare TOMAS with four meta-
analysis approaches, as well as with three dedicated pathway
analysis approaches that employ multiple datasets (MetaP-
ath). The eight approaches have been tested on 609 samples
from 9 Alzheimer’s studies conducted in independent labs
for different sets of patients and tissues. We demonstrate
that the topology based meta-analysis framework overcomes
noise and bias to identify pathways that are known to be im-
plicated in Alzheimer’s disease. While presented here in a
genomic data analysis application, the proposed framework
is sufficiently general to be applied in other research areas.

Categories and Subject Descriptors
G.3 [Probability and Statistics]: Statistical computing;
J.3 [Life and Medical Sciences]: Biology and genetics

General Terms
Algorithms
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1. INTRODUCTION
Advanced techniques in sequencing and microarray assays

have transformed biological research by enabling compre-
hensive monitoring of biological systems. Vast amounts of
data of all types have accumulated in many public repos-
itories, such as Gene Expression Omnibus (GEO) [1], Ar-
ray Express [2], and The Cancer Genome Atlas (TCGA)
(http://cancergenome.nih.gov). Gene expression data, as
measured by microarray and high-throughput sequencing,
are particularly abundant in public repositories, such that
many diseases are represented by a dozen studies or more.

A typical comparative analysis of molecular data gener-
ally yields a set of genes that are differentially expressed
(DE) between the conditions. These sets of DE genes con-
tain the genes that are likely to be involved in the biolog-
ical processes responsible for the disease. However, such
sets of genes are usually insufficient to reveal the underlying
biological mechanisms. Therefore, researchers have devel-
oped a variety of knowledge bases that map genes to func-
tional modules. These knowledge bases, such as the Kyoto
Encyclopedia of Genes and Genomes (KEGG) [3] or Reac-
tome [4], contain graphs that describe how genes interact
together to accomplish specific biological processes. Over-
Representation Analysis (ORA) [5], Gene Set Enrichment
Analysis (GSEA) [6], Gene Set Analysis (GSA) [7], and Im-
pact Analysis [8], are examples of approaches designed to
identify the pathways that are relevant in a given condition.

Remarkably, due to inherent bias present in individual
studies, independent studies of the same disease often yield
completely different lists of differential expressed (DE) genes,
making interpretation extremely difficult [9, 10]. This prob-
lem is not resolved by simply analyzing the same individual
datasets at the system level, as pathway analysis results are
also often inconsistent as well [11]. Effective meta-analysis
approaches, which are statistical methods for the quantita-
tive analysis of independent but related studies, are needed
to unify the biological knowledge spread over such similar
studies with apparently incongruent results.

Meta-analysis of gene expression data has primarily been
used for DE gene detection [12]. Early meta-analyses simply
performed the intersection or union of DE gene lists obtained
from individual studies [13, 14], resulting in a single list
which is either too conservative or too inclusive, respectively.
Rhodes et al. [15] were among the earliest to apply Fisher’s
method [16] for DE gene detection. Since then, other p-
value based meta-analysis methods have been applied, such
as Stouffer’s method [17], minP [18], and maxP [19].



Recently, meta-analysis has also been used to combine
multiple experiments for on the pathway level [11, 20, 21,
14]. Kaever et al. [20] used Fisher’s and Stouffer’s method
to combine p-values of pathways from independent studies.
Nguyen et al. [11] added another level of meta-analysis to
make better use of large number of samples within individual
studies. Shen et al. [21] developed a dedicated approach,
named MetaPath, that performs meta-analysis at both the
gene and pathway level separately, and then combines the
results to give the final p-value and ranking of pathways.

The major drawback of these p-value-based meta-analysis
approaches is that they neglect the actual expression changes,
i.e. effect sizes. This results in a critical information loss.
While p-value is partly a function of effect size, it is also
partly a function of sample size [22]. For example, with large
sample size, a statistical test will almost always demonstrate
a significant difference, unless the effect size is exactly zero.
In reality, any individual study will include some degree of
batch effects, sampling/study bias, noise, and measurement
errors. Simply combining individual p-values would not be
able to correct such problem. On the contrary, meta-analysis
of effect sizes across all studies would definitely compensate
for and eliminate such random effects [22, 23].

Another limitation of p-value based meta-analyses is that
they work under the assumption that the p-values provided
by the individual statistical tests follow a uniform distribu-
tion under the null hypothesis. Previous reports describe
non-uniform distributions of p-values under the null as due
to specific factors such as improper normalization, cross-
hybridization, poorly characterized variance, heteroskedas-
ticity in microarray data analysis [24, 25].

Here we propose TOMAS (TOpology-aware Meta-Analysis
applied to System biology), a new meta-analysis approach
that utilizes techniques based on both p-values and effect
sizes to combine independent studies. Our contribution is
two-fold. First we use empirical distributions to calculate
p-values for individual studies. This approach avoids mak-
ing assumptions about null distributions of gene expression
and thus compensates for potential bias. Second, the meta-
analysis of effect sizes accurately estimates the central ten-
dency of expression change for individual genes. The esti-
mated genome-scale expression change allows for topology-
aware analysis, in which gene interaction and signal propa-
gation are taken into consideration.

We illustrate the new approach using 609 samples from 9
Alzheimer’s studies conducted in independent labs for dif-
ferent sets of patients and tissues. We compare TOMAS
with 7 other approaches: GSEA and GSA combined with
Fisher’s method [16] and addCLT [11], plus 3 MetaPath ap-
proaches [21]. TOMAS outperforms existing approaches to
identify pathways relevant to the disease. Our results sug-
gest that the combination of both p-value based and effect
based meta-analysis techniques provides more power and ro-
bustness than each taken alone. While presented here in the
context of pathway analysis, the framework can be modified
to adapt to other domains or applications, such as biomarker
detection, genome-wide association studies (GWAS), or en-
richment analysis (Gene Ontology, gene set analysis).

2. METHODS
The pipeline consists of three main modules: i) identify-

ing genes that are differentially expressed under the disease
condition, ii) estimate the expression change (effect size) of

the genes, and iii) perform pathway analysis using the cal-
culated statistics. The first and second modules essentially
represent two different meta-analysis approaches at the gene
level – one is based on p-value while another is based on
effect-size. In Figure 1, the purple arrows show the detailed
steps of the first module while the blue arrows display the
steps of the second module. The results obtained from the
two modules then serve as the input for the topology-aware
pathway analysis.

To identify differentially expressed genes, we first calcu-
late p-values for each gene in each study, and then com-
bine the p-values for each gene across independent studies.
Study-specific and gene-specific empirical distributions of t-
statistics are calculated by randomly assigning class labels
to samples. Each distribution consists of 1, 000 random t-
statistics. The left- and right-tailed p-values are calculated
by comparing the actual t-statistic obtained from the real
grouping against these empirical distributions. The p-values
are then combined separately for the left and right tails. The
final p-value for the gene is set to twice the minimum of the
two combined p-values (see Section 2.1 for more details).

To estimate the central tendency of effect sizes, we first
compute standardized mean difference (SMD) for each gene
in each study. We next estimate the overall effect size us-
ing the random-effects model and the REstricted Maximum
Likelihood (REML) algorithm [26]. This overall estimated
effect size represents the change in expression of the gene
under the effect of the disease (Section 2.2).

The combined p-values and the estimated effect sizes rep-
resent the evidence from which we will infer the differential
expression between the two phenotypes. These statistics
can be used as the input for analyses that are routinely
done in pathway analysis (Section 2.3). The difference is
that these statistics are gathered from multiple independent
studies and thus are expected to accurately represent the
real expression change of genes on a genome-scale. Technical
details of each step are described in the following sections.

2.1 Computing cumulative p-values

2.1.1 Empirical hypothesis testing
In this framework, we use the t-statistic as the discrimi-

nating statistic between the conditions (disease vs. healthy).
Formally, denoting x1 and x2 as the two groups of measure-
ments to be compared, the two-sample t-statistic for unequal
variances is defined as:

t =
(x̄1 − x̄2)√
s21
n1

+
s22
n2

(1)

where x̄1 and x̄2 are sample means, n1 and n2 are sample
sizes, s21 and s22 are sample variances.

Considering the dataset DSi (i ∈ [1..m]), we randomly
divide the biological samples of the dataset into two groups
and then calculate the t-statistic for each gene. We repeat
this step 1, 000 times to construct the empirical distribu-
tions ξi1, ξ

i
2, . . . , ξ

i
n (where n is the number of genes). Since

these distributions are constructed from the random sam-
pling of the same (mixed) set of measurements, they can be
considered null distributions. The t-statistics obtained from
the real grouping are compared against these distributions
to provide a test for differential expression.

For the gene j, we have m left-tailed p-values p1jl, . . . , p
m
jl

where l denotes “left-tailed”. We combine these m values



Figure 1: The overall pipeline of TOMAS. The input consists of m independent datasets, which have n genes
in common. The blue arrows show the computation of effect sizes. For each gene, we first calculate Hedge’g
in each study and then estimate the overall effect size using the REstricted Maximum Likelihood (REML)
algorithm. The purple arrows show the computation of empirical p-values. Study specific, gene specific
empirical distribution of t-statistics are calculated by randomly assigning class labels to samples. The left-
and right-tailed p-values are calculated by comparing the actual t-statistic obtained from the real grouping
against these empirical distributions. The p-values are then combined separately for the left and right tails.
The final p-value of the gene is set to twice the minimum of the two combined p-values. The effect sizes and
the combined p-values of the genes then serve as input of Impact Analysis.



using addCLT (see Section 2.1.2) to get a single value pjl =
addCLT (p1jl, . . . , p

m
jl ). Similarly, we calculate the right-tailed

p-value pjr = addCLT (p1jr, . . . , p
m
jr), in which r denotes

“right-tailed”. The final p-value for the gene will be set to:

pj = 2 ∗min(pjl, pjr) (2)

This combined p-value of the gene represents how unlikely
the cumulative differential expression is observed by chance.

In this work, we use the t-statistic is as the discriminating
statistic between the two phenotypes. However, we acknowl-
edge that the t-statistic can be substituted by any other
statistics to suit the purpose of the analysis.

2.1.2 Combining p-values
Existing methods of combining independent p-values in-

clude Fisher’s method [16], Stouffer’s method [17], minP [18],
maxP [19], and addCLT [27, 11, 28]. Fisher’s method uses
the negative log product of the p-values as the summary
statistic. Under the null hypothesis, this statistic follows a
chi-square distribution with 2m degrees of freedom. Simi-
larly, the test statistic of Stouffer’s method is the sum of p-
values transformed into standard normal variables, divided
by the square root of m. This summary statistic follows a
standard normal distribution if the null hypothesis is true.
A major drawback of Fisher’s and Stouffer’s method is that
they are sensitive to outliers. For example, if one of the in-
dividual p-value approaches zero, the combined p-value will
be zero regardless of other individual p-values. The same is
true for the minP’s and maxP’s statistic, where outliers can
greatly influence the combined p-value.

On the contrary, the addCLT method uses the average of
p-values as the test statistic and therefore it is more robust
against extreme p-values. Denoting the individual p-values
to be combined as P1, P2, . . . , Pm, the summary statistic is

defined as X =
∑m

i=1 Pi

m
(X ∈ [0, 1]). The probability density

function (pdf) is derived from a linear transformation of the
Irwin-Hall distribution [29, 30] as follows:

f(x) =
m

(m− 1)!

bm·xc∑
i=0

(−1)i
(
m

i

)
(m · x− i)m−1 (3)

When m is large, the computation of Equation (3) can
lead to underflow/overflow problems. Therefore, we use the
Central Limit Theorem [31] to estimate this distribution in
this case. The variable X is the mean of m independent and
identically distributed (i.i.d.) random variables that follow
a uniform distribution with a mean of 1

2
and a variance of

1
12

. From the Central Limit Theorem [31], the average of
such m i.i.d. variables follows a normal distribution with
mean µ = 1

2
and variance σ2 = 1

12m
, i.e. X ∼ N ( 1

2
, 1
12m

)
for sufficiently large values of m.

2.2 Estimating overall effect sizes

2.2.1 Standardized mean difference
Since gene expression is scaled differently in each study, it

is more reasonable to use the standardized mean difference
(SMD) to measure expression changes, instead of the raw
mean difference. Here we briefly describe two popular SMD
metrics: Cohen’s d [32] and Hedge’s g [33].

Consider a study composed of two independent groups.
Let x̄1 and x̄2 represent the sample means for that gene in
the two groups, n1 and n2 the number of samples in each

group. The pooled standard deviation of the two groups and
Cohen’s d are calculated as follows:

spooled =

√
(n1 − 1)s21 + (n2 − 1)s22

n1 + n2 − 2
(4)

d =
x̄1 − x̄2
Spooled

(5)

We note that Cohen’s d, which is based on sample av-
erages, tends to overestimate the population effect size for
small samples. Let n be the degrees of freedom used to esti-
mate Spooled, i.e. n = n1 +n2− 2. The corrected effect size,
or Hedges’ g [33], can be computed as follows:

J =
Γ(n

2
)√

n
2

Γ(n−1
2

)
(6)

g = J · d (7)

where Γ is the gamma function. In this work, we use Hedge’
g as the standardized mean difference (SMD) between dis-
ease and control groups for each gene.

2.2.2 Restricted maximum likelihood estimation
Consider a collection of m studies where the effect size

estimates, y1, . . . , ym have been derived as shown in Equa-
tion (7). A fixed-effects model would assume that there is
one true effect size which underlies all of the studies in the
analysis, such that all differences in observed effects are due
to sampling error. However, this assumption is implausi-
ble since it cannot account for heterogeneity between stud-
ies [34, 35, 36] (see Appendix A for details).

In contrast, the random-effects model allows for variabil-
ity of the true effect. For example, the effect size might
be higher (or lower) in studies where the participants are
older, or have a healthier lifestyle compared to others. The
random-effects model assumes that each effect size estimate
can be decomposed into two variance components by a two
stage hierarchical process [35, 37, 38]. The first variance
represents the variability of the effect size across studies,
and the second variance represents the sampling error within
each study. We can write the random-effects model as:

yi = µ+N(0, σ2) +N(0, σ2
εi) (8)

where µ is the central tendency of the effect size, N(0, σ2)
represents the error term by which the effect size in the
ith study differs from the central tendency µ, and N(0, σ2

εi)
represents the sampling error.

The derivation and formulation of the REstricted Maxi-
mum Likelihood (REML) algorithm has been described in
the literature [35, 39, 40] (see Appendix B for details). The
REML estimator of µ̂ and the combined p-value of individual
genes serve as the input of Impact Analysis (Section 2.3).

2.3 Topology-aware pathway analysis
Impact Analysis [41, 8] combines two types of evidence:

(i) the over-representation of DE genes in a given pathway,
and (ii) the perturbation of that pathway, caused by disease,
as measured by propagating expression changes through the
pathway topology. These two aspects are captured by the
probability values, PNDE and PPERT , respectively.

The first p-value, PNDE , is obtained using the hypergeo-
metric model, which is the probability of obtaining at least



the observed number of differentially expressed genes. The
input of the hypergeometric test consists of: i) the set of all
measured genes, and ii) the set of DE genes. The former is
the set of genes that are common in all datasets while the
latter is the set of genes that have a combined p ≤ 0.01.

The second p-value, PPERT , depends on the identity of
the specific genes that are differentially expressed as well
as on the known interactions between the genes. It is cal-
culated based on the perturbation factor in each pathway.
The perturbation factor of a gene, PF (g), is defined as:

PF (g) = ∆E(g) +
∑

u∈USg

βug ·
PF (u)

Nds(u)
(9)

The first term represents the signed normalized expression
change of the gene g, i.e. effect size. The second term is the
sum of perturbation factors of upstream genes, normalized
by the number of downstream genes of each such upstream
gene. The value of βug quantifies the strength of interaction
between u and g. By default, βug = 1 for activation and
βug = −1 for repression. The net perturbation accumulation
at the level of each gene, Acc(g), is calculated by subtracting
the observed expression change from the perturbation factor:

Acc(g) = PF (g)−∆E(g) (10)

The total accumulated perturbation in the pathway is then
computed as:

Acc(Pi) =
∑
g∈Pi

Acc(g) (11)

The null distribution of Acc(Pi) is built by permuting both
sample and gene labels of expression changes. The p-value,
PPERT , is then calculated by the probability of having values
more extreme than the actually observed Acc(Pi).

To compute PPERT , the following input is required: the
graphical representation of the pathway, the set of DE genes,
and their estimated effect sizes. The graphical representa-
tion of pathways is obtained from KEGG; the list of DE
genes is obtained from the combined p-values (Section 2.1.2);
the estimated effect sizes are obtained from the random-
effects model and the REML algorithm (Section 2.2.2).

The two p-values, PNDE and PPERT , are then combined
using Fisher’s method to get a p-value that represents how
likely the pathway is impacted under the effect of the disease.

3. RESULTS
We compare the performance of TOMAS with 7 existing

approaches: GSEA and GSA, each combined with Fisher’s
method and addCLT, plus 3 MetaPath approaches: gene
level, pathway level and combined. We analyze 9 Alzheimer’s
gene expression datasets that were generated in independent
labs for different sets of patients and tissues. The 9 datasets
are GSE1297 (hippocampus), GSE4757 (entorhinal cortex),
GSE5281 (entorhinal cortex, medial temporal gyrus, poste-
rior cingulate, superior frontal gyrus, hippocampus, and pri-
mary visual cortex), GSE16759 (parietal lobe), GSE18309
(peripheral blood mononuclear cell), GSE28146 (hippocam-
pus), GSE36980 (frontal cortex, temporal cortex, and hip-
pocampus), GSE39420 (brain tissues), and GSE48350 (en-
torhinal cortex, post-central gyrus, hippocampus, and supe-
rior frontal gyrus). Table 1 shows the details of each dataset,
such as the number of control and disease samples, tissues,

and platforms. Pre-processing was performed on individ-
ual datasets using the threestep function from the package
affyPLM version 1.38.0 [42]. The parameters used for the
threestep function are: robust multi-array analysis (RMA)
background adjustment, quantile normalization, and median
polish summarization. We use the KEGG database version
76, which includes 182 signaling pathways.

There is a dedicated pathway in KEGG, Alzheimer’s dis-
ease, that was created precisely in order to describe the
known mechanisms involved in this disease. However, it
is well known that Alzheimer’s disease, Parkinson’s disease,
and Huntington’s disease share many signaling mechanisms
and affect the same tissue (brain). The common elements in-
clude abnormal protein folding, endoplasmic reticulum stress,
and ubiquitin mediated breakdown of proteins, leading to
programmed cell death [43, 44, 45, 46]. In addition, previ-
ous studies [47] have shown the presence of a strong cross-
talk that makes these three neurological diseases pathways
appear as significant simultaneously, due to their dominant
mitochondrial module. Therefore, we expect a good analysis
method to find all three of these pathways as significant in
this meta-analysis of Alzheimer’s data.

For each of the nine datasets, GSEA produces a list of 182
p-values for 182 signaling pathways. In other words, nine p-
values will be calculated for each pathway – one per study.
These p-values are independent and thus can be combined
using either Fisher’s method or addCLT. Therefore, each
meta-analysis method produces a list of pathways ranked
according to the combined p-values. Similarly, we also com-
bine GSA p-values using Fisher’s and the addCLT method.
The p-values of each list are then adjusted for multiple com-
parison using False Discovery Rate (FDR).

Table 2 displays the results obtained from the four ap-
proaches: i) GSA + Fisher’s method, ii) GSA + addCLT,
iii) GSEA + Fisher’s method, and iv) GSEA + addCLT. The
table shows the 24 top ranked pathways and the adjusted
p-values for each of the 4 approaches. The horizontal lines
across each list marks the cutoff of 1%. The three neuro-
logical disorder pathways, Alzheimer’s disease, Huntington’s
disease, and Parkinson’s disease are highlighted in green.

There are 23 significant pathways using GSA with Fisher’s
method, many of which are likely to be false positives. Each
of the top 17 pathways has a combined p-value equal to
zero because the p-value was zero for at least one of the
datasets. The pathways Alzheimer’s disease, Huntington’s
disease, and Parkinson’s disease are not reported as signif-
icant and are ranked at the positions 26th, 25th, and 33rd,
respectively. GSA with addCLT produces a single false pos-
itive, the Retrograde endocannabinoid signaling, but it is
also unable to identify any of the true positive pathways.
The three neurological disorder pathways are also ranked at
higher positions (4th, 6th, and 15th).

Similarly, GSEA combined with Fisher’s method and add-
CLT also fail to identify any of the three neurological disor-
der pathways as significant. GSEA with Fisher’s method
rank the pathways Alzheimer’s disease, Huntington’s dis-
ease, and Parkinson’s disease at positions 8th, 10th, and
17th, respectively; GSEA with the addCLT rank them at
positions 49th, 10th, and 47th, respectively. In summary, all
four approaches fail to provide the needed power to identify
the three neurological disorder pathways as significant at the
significance threshold of 1%.



Table 1: Description of the 9 Alzheimer’s gene expression datasets used in the experimental studies.

Accession ID Control Disease Tissue Platform

GSE1297 9 22 Hippocampus Affymetrix Human Genome U133A
GSE4757 10 10 Entorhinal cortex Affymetrix Human Genome U133 Plus 2.0
GSE5281 74 87 Entorhinal cortex, medial temporal gyrus, Affymetrix Human Genome U133 Plus 2.0

posterior cingulate, superior frontal gyrus,
hippocampus, and primary visual cortex

GSE16759 4 4 Parietal lobe Affymetrix Human Genome U133 Plus 2.0
GSE18309 3 3 Peripheral blood mononuclear cell Affymetrix Human Genome U133 Plus 2.0
GSE28146 8 22 Hippocampus Affymetrix Human Genome U133 Plus 2.0
GSE36980 47 32 Frontal cortex, temporal cortex, and hippocampus Affymetrix Human Gene 1.0 ST
GSE39420 7 14 Brain tissues Affymetrix Human Gene 1.1 ST
GSE48350 173 80 Entorhinal cortex, post-central gyrus, Affymetrix Human Genome U133 Plus 2.0

hippocampus, and superior frontal gyrus

Table 2: The 24 top ranked pathways and their adjusted p-values obtained by combining the GSA and
GSEA p-values using Fisher’s method and addCLT for Alzheimer’s data. The horizontal lines show the
1% significance threshold. The neurological disorder pathways, Alzheimer’s disease, Parkinson’s disease and
Huntington’s disease, are highlighted in green. All the four meta-analysis approaches fail to identify the target
pathway Alzheimer’s disease as significant, and rank it at the positions 26th, 4th, 8th, and 49th, respectively.

GSA + Fisher’s method GSA + addCLT

Pathway p.fdr Pathway p.fdr

1 Retrograde endocannabinoid signaling 0 Retrograde endocannabinoid signaling 0.0072
2 Toxoplasmosis 0 Toxoplasmosis 0.0177
3 Long-term depression 0 Long-term depression 0.0177
4 Gap junction 0 Alzheimer’s disease 0.0177
5 Amphetamine addiction 0 Morphine addiction 0.0177
6 Vasopressin-regulated water reabsorption 0 Huntington’s disease 0.0177
7 Staphylococcus aureus infection 0 GABAergic synapse 0.0177
8 Small cell lung cancer 0 Epithelial cell signaling in Helicobacter pylori infection 0.0177
9 cAMP signaling pathway 0 Glutamatergic synapse 0.0218
10 Pathogenic Escherichia coli infection 0 Gap junction 0.0246
11 Adipocytokine signaling pathway 0 Amyotrophic lateral sclerosis (ALS) 0.0255
12 Platelet activation 0 Cardiac muscle contraction 0.0257
13 Phospholipase D signaling pathway 0 Oxytocin signaling pathway 0.0279
14 Ovarian steroidogenesis 0 Endocrine and other factor-regulated calcium reabsorption 0.0279
15 mRNA surveillance pathway 0 Parkinson’s disease 0.0279
16 Maturity onset diabetes of the young 0 Non-alcoholic fatty liver disease (NAFLD) 0.0279
17 Chemokine signaling pathway 0 Synaptic vesicle cycle 0.0279
18 Synaptic vesicle cycle 0.0005 Transcriptional misregulation in cancer 0.0279
19 Glutamatergic synapse 0.0005 Circadian entrainment 0.0279
20 Dopaminergic synapse 0.0012 Serotonergic synapse 0.0279
21 Serotonergic synapse 0.0021 Dopaminergic synapse 0.0279
22 Endocrine and other factor-regulated calcium reabsorption 0.0077 Vibrio cholerae infection 0.0279
23 Morphine addiction 0.0092 Inflammatory bowel disease (IBD) 0.0279
24 Epithelial cell signaling in Helicobacter pylori infection 0.0105 HTLV-I infection 0.0279

GSEA + Fisher’s method GSEA + addCLT

Pathway p.fdr Pathway p.fdr

1 Amyotrophic lateral sclerosis (ALS) 0 Vascular smooth muscle contraction 0.2508
2 Serotonergic synapse 0 Vibrio cholerae infection 0.2508
3 Insulin secretion 0 Melanogenesis 0.5060
4 Cardiac muscle contraction 0 Renin-angiotensin system 0.5060
5 Endocrine and other factor-regulated calcium reabsorption 0.1155 Ras signaling pathway 0.8492
6 Synaptic vesicle cycle 0.1155 Dorso-ventral axis formation 0.8492
7 Vascular smooth muscle contraction 0.1666 Amyotrophic lateral sclerosis (ALS) 0.8492
8 Alzheimer’s disease 0.1666 Adipocytokine signaling pathway 0.8492
9 Pancreatic secretion 0.1666 Inflammatory mediator regulation of TRP channels 0.8492
10 Huntington’s disease 0.1666 Huntington’s disease 0.8492
11 Glutamatergic synapse 0.2896 Prostate cancer 0.8492
12 Adrenergic signaling in cardiomyocytes 0.3053 GnRH signaling pathway 0.8492
13 Vibrio cholerae infection 0.3694 Thyroid hormone synthesis 0.8492
14 Renin-angiotensin system 0.3708 Rap1 signaling pathway 0.8492
15 Melanogenesis 0.3708 Synaptic vesicle cycle 0.8492
16 Amphetamine addiction 0.4514 Regulation of autophagy 0.8492
17 Parkinson’s disease 0.4514 Sulfur relay system 0.8492
18 Ribosome biogenesis in eukaryotes 0.4514 Toxoplasmosis 0.8492
19 Thyroid hormone synthesis 0.4673 Pancreatic secretion 0.8492
20 Non-alcoholic fatty liver disease (NAFLD) 0.5247 Endometrial cancer 0.8492
21 Vasopressin-regulated water reabsorption 0.5391 Cell cycle 0.8492
22 Prostate cancer 0.5697 Vasopressin-regulated water reabsorption 0.8492
23 Dopaminergic synapse 0.5712 AMPK signaling pathway 0.8492
24 Wnt signaling pathway 0.5712 Alcoholism 0.8492



Table 3: The 10 top ranked pathways and FDR-corrected p-values obtained by combining Alzheimer’s data
using 4 approaches: MetaPath G, MetaPath P, MetaPath I, and TOMAS. MetaPath G, MetaPath P, and
MetaPath I fail to identify the target pathway Alzheimer’s disease as significant, and rank it at the positions
72th, 90th, and 28th, respectively. TOMAS identifies the target pathway as significant and ranks it on top.

MetaPath G (gene-level) MetaPath P (pathway-level)

Pathway p.fdr Pathway p.fdr

1 Type II diabetes mellitus 0.1850 Long-term depression 0.2162
2 Renin-angiotensin system 0.6165 Dorso-ventral axis formation 0.2412
3 Circadian rhythm 0.6483 Allograft rejection 0.2422
4 Shigellosis 0.7750 Circadian rhythm 0.2830
5 Proteoglycans in cancer 0.7820 Endocrine and other factor-regulated calcium reabsorption 0.2855
6 Salivary secretion 0.7822 Shigellosis 0.3350
7 Small cell lung cancer 0.7862 Renal cell carcinoma 0.3602
8 Taste transduction 0.7864 Gap junction 0.3728
9 Malaria 0.7872 VEGF signaling pathway 0.3875
10 Regulation of actin cytoskeleton 0.7913 African trypanosomiasis 0.4273

MetaPath I (both levels) TOMAS

Pathway p.fdr Pathway p.fdr

1 Shigellosis 0.3320 Alzheimer’s disease <10−4

2 Renin-angiotensin system 0.3451 Parkinson’s disease <10−4

3 Long-term depression 0.3533 Huntington’s disease <10−4

4 Allograft rejection 0.3545 Synaptic vesicle cycle <10−4

5 Type II diabetes mellitus 0.3670 Non-alcoholic fatty liver disease (NAFLD) 0.0003
6 Endocrine and other factor-regulated calcium reabsorption 0.3750 Cardiac muscle contraction 0.0007
7 Dorso-ventral axis formation 0.3798 Epithelial cell signaling in Helicobacter pylori infection 0.0027
8 Circadian rhythm 0.4188 Vibrio cholerae infection 0.0170
9 Renal cell carcinoma 0.5656 Fc gamma R-mediated phagocytosis 0.0302
10 Gap junction 0.5934 Regulation of actin cytoskeleton 0.0427

We also employ MetaPath to combine the 9 Alzheimer’s
studies. MetaPath performs meta-analysis at both gene and
pathway levels separately, and then combines the results to
give the final p-value and ranking of pathways. At the gene
level, MetaPath calculates a t-statistic for each gene in each
study, then combines them using the maxP method [19]. A
pathway enrichment score is calculated using these genes,
for each pathway, using a Kolmogorov-Smirnov test, and as-
sessed for significance with a sample-wise permutation test.
At the pathway level, MetaPath calculates pathway enrich-
ment for each individual study, then combines the p-values,
again using the maxP method [19]. Finally, p-values from
the gene and pathway level are integrated using minP [18]
to give the final p-value and ranking of pathways.

Table 3 shows the top 10 ranked pathways and adjusted
p-values of the three MetaPath approaches: MetaPath G
(gene-level), MetaPath P (pathway-level), and MetaPath I
(both levels). MetaPath G identifies no significant pathway.
The three pathways Alzheimer’s disease, Huntington’s dis-
ease, and Parkinson’s disease are ranked at positions 72nd,
18th, and 42nd, respectively. Similarly, MetaPath P pro-
duces no significant pathway and ranks the three pathways
at positions 90th, 43rd, and 161st, respectively. In conse-
quences, the combination of these two methods, MetaPath I,
also fails to identify the three neurological disorder pathways
as significant (adjusted p-values 0.87, 0.97, and 0.91 with
rankings 28th, 89th, and 63rd, respectively).

Finally, we apply TOMAS to combine the 9 studies. Sta-
tistical tests were one-sided and performed independently for
the two null hypothesis that no genes are over-expressed and
no genes are under-expressed. The one-sided p-values are
calculated and then combined using the addCLT method [11].
The final p-value for a gene is set to twice the minimum of
the two one-sided p-values. The p-values for the whole set
of genes are then adjusted for multiple comparisons using

FDR. We use the standard 1% as the significance cutoff to
identify the DE genes. For effect sizes, we first calculate
Hedge’s g [33] in each study, and then estimate the over-
all effect size for each gene using the REML algorithm [26].
The DE genes and their expression change (effect size) then
serve as input for Impact Analysis [8].

The results of TOMAS are shown in Table 3. TOMAS
identifies 7 pathways as significant using the 1% threshold.
All three neurological disorder pathways are significant and
are ranked at the very top. The target pathway Alzheimer’s
disease is the most significant with adjusted p = 10−6.

There are totally 3, 971 KEGG genes that are measured
in the 9 datasets. The framework identified 898 genes (23%)
that are differentially expressed using the cutoff FDR=1%.
The pathway Alzheimer’s disease has 62 DE genes (out of
142); Parkinson’s disease has 59 DE genes (out of 111);
Huntington’s disease has 77 DE genes (out of 155). Most
of these DE genes belong to the mitochondrial module that
is included in all the three neurological disease pathways.

Given that the pathway Alzheimer’s disease is influenced
by the mitochondrial compartment, which is strongly im-
plicated in the disease [43, 44, 45, 46], it is not surprising
that other pathways with strong mitochondrial components
also garner high rankings. Previous studies [47] have shown
the presence of a cross-talk that makes the neurological dis-
ease pathways, Alzheimer’s disease, Parkinson’s disease and
Huntington’s disease, along with Cardiac muscle contraction
and Non-alcoholic fatty liver disease (NAFLD), appear as
significant simultaneously, due to their dominant mitochon-
drial module. Cardiac muscle contraction has a strong mi-
tochondrial component and is highly dependent on calcium
signaling, which is also prevalent in Synaptic vesicle cycle,
Alzheimer’s disease, and Huntington’s disease. Ca2+ reg-
ulates mitochondrial metabolism, but calcium overload to



mitochondria can result in cell damage from reactive oxy-
gen [48].

4. CONCLUSIONS
In this article, we present a novel topology-aware meta-

analysis able to combine multiple studies and identify the
signaling pathways that are significantly impacted in a given
phenotype. This approach first calculates the empirical p-
values for each gene in each study and then combines them
using an approach based on the Central Limit Theorem. The
combined p-value of a gene represents how unlikely the dif-
ferential expression of the gene is observed by chance. At the
same time, the framework also estimates the overall effect
sizes using the REstricted Maximum Likelihood (REML) al-
gorithm. The two statistics then serve as input for Impact
Analysis which identifies the pathways that are impacted by
the given disease.

To evaluate this framework, we examined 609 samples
from 9 Alzheimer’s gene expression datasets. TOMAS was
compared against 7 different approaches, GSA and GSEA
combined with Fisher’s method and addCLT, plus three ap-
proaches implemented in the MetaPath package. We demon-
strated that TOMAS outperforms existing approaches to
correctly identify pathways relevant to the disease.

The main innovation of TOMAS is that it addresses the
challenging meta-analysis problem by transforming it into
a set of standard analysis problems that can be solved effi-
ciently.
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APPENDIX
A. FIXED-EFFECT MODEL

The general form for the linear model is

y = Xβ + e (12)

where y ∈ Rk is a vector of k effect sizes, X is an design
matrix, β is a vector of p unknown fixed effects, and e is a
vector of random error, ei ∼ N(0, σ2), so the error are i.i.d.
normal variables.



The likelihood function for (12) is given by

L(β, σ2; y) =

k∏
i=1

f(yi;Xiβ, σ
2)

=

k∏
i=1

1√
2πσ2

exp(− 1

2σ2
(yi −Xiβ)2)

where Xi is the ith row of X, f(y;µ, σ2) is the probability
density function for a normal random variable y with mean
µ and variance σ2.

After removing the additive constant − k
2

ln(2π), the log-
likelihood function is then given by

l(β, σ2; y) = −k
2

ln(σ2)− 1

2σ2
(y −Xβ)T (y = Xβ) (13)

and the maximum likelihood estimates of µ and σ2 are those
values that maximize L or l.

Note that the ordinary least squares estimator of β is the
value that minimize the sum of squares of the residuals, i.e.
the difference between the data (yi) and its estimated value
(Xiµ):

n∑
i=1

(yi −Xiβ)2 (14)

This clearly yields the same estimate as the maximum
likelihood method. Taking differentiation with respect to β
and setting the derivative to zero will yield

β̂ = (XTX)−1XT y (15)

and for σ2

σ̂2 =
(y −Xβ̂)T (y −Xβ̂)

k
(16)

When X is not full column rank, the generalized inverse
of A is used, such that AA−1A = A.

B. RANDOM-EFFECTS MODEL
More generally, the random-effects model given by Equa-

tion (8) can be written in the general linear mixed-effects
model as

y = Xβ + Zγ + e (17)

where y ∈ Rk are the observed size effects, X ∈ Rk×p is a
design matrix for β ∈ Rp (vector of fixed effects parameters),
Z is the design matrix for the γ ∈ Rq (a vector of random
effects parameters), and e ∈ Rk is a vector of random error
terms. We note that Equation (17) and Equation (8) are
identical when y consists of the k effect size estimates, X is
a vector composed entirely of 1’s, β includes only the mean
µθ, Z is the identity matrix, γ is comprised of the τi values
at the population level.

As described above, we have E(γ) = E(e) = 0. In ad-
dition, from the independency between the true effect and
sampling error, we also have cov(γ, e) = 0. Denoting D =
var(γ) and V = var(y), we have

V = var(Zγ + e) = Zvar(γ)ZT + var(e)

= ZDZT + var(e)

After assuming normality of the random terms in the
model, we have y ∼ N(Xβ, V ). Denoting the variance com-
ponents in V by the vector σ2, as described in [35, 39], we
can write the log-likelihood function of β and σ2 as:

l(β, σ2; y) = −1

2
ln |V | − 1

2
(y −Xβ)TV −1(y = Xβ) (18)

after removing the additive constant − k
2

ln(2π). The log-

likelihood function of µθ and σ2
θ for Equation (8) can be

written as follows:

l(µθ, σ
2; y) = −1

2

k∑
i=1

ln(σ2
θ + σ2

εi)−
1

2

k∑
k=1

(yi − µθ)2

σ2
θ + σ2

εi

(19)

Setting partial derivatives with respect to µθ and σ2
θ equal

to zero and solving the likelihood equations for the two pa-
rameter to be estimated, we obtain the mean and variance,
i.e. µ̂θ and σ̂2

θ , of the size effects. Solution for the maxi-
mum likelihood (ML) method can be obtained by iterating
between µ̂θ and σ̂2

θ .
However, the maximum-likelihood estimator of σ2

θ tend to
underestimate the population heterogeneity in finite sam-
ples by failing to account for the loss in degree of freedom
that results from estimating β [35, 39, 40]. The restricted
maximum likelihood method is based on the likelihood of a
vector whose components are independent linear combina-
tions of the observations. The basic idea is to end up with
a random vector that contains all the information on the
variance components but no longer contains information of
the fixed effect parameters.

Denoting r = rank(X), r = 1 for meta-analysis random-

effects model. Denote K ∈ R(N−r)×n as a matrix of full
ranks, and E(Ky) = 0. Since E(Ky) = KXβ and y ∼
N(Xβ, V ), we also have KX = 0 and KY ∼ N(0,KV KT ).
For instance, M = I − X(XTX)−1XT would be a good
example. The log-likelihood function for Ky is given by

l(σ2; y) = −1

2
ln |V | − 1

2
ln |XTV −1X|

− 1

2σ2
(y −Xβ̂)TV −1(y = Xβ̂)

(20)

This simplifies to

l(σ2
θ ; y) = −1

2

k∑
i=1

ln(σ2
θ + σ2

εi)−
1

2
ln

k∑
i=1

1

σ2
θ + σ2

εi

−1

2

k∑
i=1

(yi − µ̂(ML)
θ )2

σ2
θ + σ2

εi

(21)

The REML estimator of σ2
θ is then given by

σ̂2
θ =

∑k
i=1 w

2
i [(yi − µθ)2 − σ2

εi ]∑k
i=1 w

2
i

+
1∑k
i=1 wi

(22)

and

wi =
1

σ̂2
θ + σ2

εi

µ̂θ =

∑k
i=1 wiyi∑k
i=1 wi

(23)

Again, the variance and mean are obtained in the same
iterative manner as described for the regular maximum like-
lihood estimator.


