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Abstract—Advances in single-cell technologies have shifted
genomics research from the analysis of bulk tissues toward a
comprehensive characterization of individual cells. This holds
enormous opportunities for both basic biology and clinical
research. As such, identification and characterization of short-
lived progenitors, stem cells, cancer stem cells, or circulating
tumor cells are essential to better understand both normal and
diseased tissue biology. However, quantifying gene expression in
each cell remains a significant challenge due to the low amount
of mRNA available within individual cells. This leads to the
excess amount of zero counts caused by dropout events. Here
we introduce RIA, a regression-based approach, that is able to
reliably recover the missing values in single-cell data and thus can
effectively improve the performance of downstream analyses. We
compare RIA with state-of-the-art methods using five scRNA-seq
datasets with a total of 3,535 cells. In each dataset analyzed, RIA
outperforms existing approaches in improving the identification
of cell populations while preserving the biological landscape. We
also demonstrate that RIA is able to infer temporal trajectories
of embryonic development stages.

Index Terms—single cell, scRNA-seq, imputation, sequencing

I. INTRODUCTION

Single-cell RNA sequencing (scRNA-seq) was first known
in 2009 when Tang et al. [1] monitored how individual cells re-
spond to signals and other environmental cues at critical stages
of cell-fate. However, scRNA-seq had not gain major attention
until 2014 when sequencing cost became more affordable.
Since then, a number of scRNA-seq protocols have been
developed to isolate single cells and to prepare cDNA libraries
using next generation sequencing (NGS) platforms [2, 3].
These advancements in single-cell sequencing hold enormous
opportunities for both basic biology and clinical applications.
For example, scRNA-seq disclosed diverse characteristic of
cells within a seemingly analogous cell population or tissue,
and revealed insights into cell identity, cell fate, and cellular

functions [4]. Single-cell data was also used to detect highly
variable genes (HVGs) that contribute for heterogeneity across
cells in a cell population, to discover the relationship between
genes and cellular phenotypes, or to identify new rare cell
types via dimensionality reduction and clustering [5].

However, scRNA-seq data come with additional chal-
lenges [6, 7]. One challenge is that sequencing mRNA within
individual cells requires artificial amplification of DNA mate-
rials millions of times, leading to disproportionate distortions
of relative transcript abundance and gene expression. Another
outstanding challenge is the “dropout” phenomenon where a
gene was highly expressed in one cell but did not express at
all in another cell [8]. These dropout events usually occur due
to the limitation of sequencing technologies when only a low
amount of starting mRNA in individual cells can be captured,
leading to low sequencing depth and failed amplification [9–
11]. Since downstream analyses of scRNA-seq is heavily
relied on expression measurement’s accuracy, it is very crucial
to impute the false zero expression introduced by dropout
phenomenon and sequencing error.

There have been a number of imputation methods developed
to address this challenge for single-cell data. MAGIC [12, 13]
was one of the first imputation method that is able to impute
single-cell data on a genomic scale. MAGIC imputes zero
expression value by using heat diffusion [14] concept. It first
constructs the affinity matrix between cells using Gaussian
kernel and then constructs a Markov transition matrix by
normalizing the sc-RNA similarity matrix. Next, the weights of
the other cells are estimated by the transition matrix. Another
method is DrImpute [15], which is based on the cluster
ensemble strategy [16] using consensus clustering [17, 18]
as the basic clustering algorithm. It performs clustering for a
predefined number of times and imputes the data by averaging
value of similar cells. If the number of clusters is not provided
by users, DrImpute will use some default values that might not
be optimal for the data. The major drawback of MAGIC and978-1-7281-3003-3/19/$31.00 ©2019 IEEE



DrImpute is that they rely on many parameters to fine-tune
their model, which often leads to overfitting. This makes their
results unreliable, i.e., the imputation is sensitive to a slight
change in the input data or in parameter settings.

SAVER [19] and scImpute [20] are statistical methods that
model dropouts in scRNA dataset as a mixture of different
distributions. scImpute models the gene expression as a mix-
ture of two different distributions: the Gaussian distribution
represents the actual gene expression while the Gamma dis-
tribution accounts for the dropout events. scImpute estimates
the parameters of the mixture model using the Expectation-
Maximization (EM) algorithm [21]. Genes with a high dropout
rate are consider imputable while genes with low dropout rate
do not need imputation. The method then uses a non-negative
least square to impute genes with high dropout rates. Similarly,
SAVER [19] models read counts as a mixture of Poisson-
Gamma and then uses a Bayesian approach to estimate true
expression values of genes by borrowing information across
genes. Similar to SAVER and scImpute, BISCUIT [22] uses
the Dirichlet process mixture model [23] to repeatedly perform
the processing steps such as normalization, sc-RNA data
imputation, and cells clustering by simultaneously inferring
clustering parameters, estimating technical variations (e.g.
library size), and learning co-expression structures of each
cluster.

Despite initial success, these statistical methods have some
important limitations that need to be addressed. First, the EM-
based strategy involves estimation of many parameters for
all genes across the whole genome. This makes the methods
very slow and vulnerable to overfitting. Second, these methods
attempt to alter the expression of all genes, including those that
are not affected by dropout events.

Here we propose a new approach, RIA, that can reliably
impute missing values from single-cell data. Our method con-
sists of two modules. The first module performs a hypothesis
testing to identify the values that are likely to be impacted by
the dropout events. The second module estimates the missing
value using a robust regression approach. All of the parameters
are learned from the data themselves. The approach is tested
using five benchmarking datasets with a total of 3,535 cells.
We demonstrate that RIA outperforms existing imputation
methods in improving the identification of cell population and
temporal trajectories.

II. METHODS

Figure 1 shows the overall analysis pipeline of RIA.
The input of RIA is a matrix in which rows represent
genes/components and columns represent cells/samples. RIA
first performs a hypothesis testing to determine genes that have
accurate values with high confidence. These genes are will be
used as the training set. The rest of the genes (genes that need
to be imputed) will be the imputable set. The method then
uses a generalized linear model to learn from the training set
and to impute the missing data in the imputable set. Finally,
RIA concatenates the two sets of genes and outputs a matrix

that has the same number of rows and columns as of the input
matrix.

A. Hypothesis Testing and Identification of Dropout

In order to impute the missing data without introducing false
signals to the original data, it is important to determine which
genes are impacted by dropouts and which genes do not need
imputation. Therefore, we have developed a hypothesis testing
approach to determine the set of genes that are likely to be
impacted by dropouts.

Our approach is based on the observation that for genes that
are not impacted by dropouts, the log-transformed expression
values are normally distributed [20, 24]. Therefore, we use z-
test to determine whether a zero value is observed by chance
or by the impact of dropout events. For each gene g, we use the
non-zero expression values to determine the parameters µ and
σ of the Gaussian distribution. Next, we use z-test to estimate
how likely a zero value occurs, given that the expression values
follow the estimated Gaussian distribution. If the chance of
observing a zero value is less than the significance threshold
(0.05), we conclude that gene g is likely to be affected by
dropout. By repeating this process for all genes, we can divide
our data into two sets of genes: a set G that include genes
affected by dropout, and a set M that have high confidence
of not being affected by dropout.

B. Regression-based Imputation

Based on the hypothesis testing described above, we divide
the data into two groups of genes: i) a group G in which all of
the genes are likely to be affected by dropouts (imputable set),
and ii) a group of genes M that have accurate gene expression
that do not need imputation (training set). The linear regression
process consists of two steps. The first step is to select genes
from the training set that are highly correlated with the gene
we need to impute. In the second step, we train the linear
model using these highly-correlated genes and then estimate
the missing values.

For a gene g ∈ G (imputable set), let us denote y as
the non-zero part of g. In the first step we calculate the
Pearson correlation coefficient of y with the corresponding
values of every gene in M (training set). We then select 10
genes from M with the highest correlation coefficients. De-
noting {mi1 , . . . ,mi10} as the selected genes in M , we have
{xi1 , . . . , xi10} as the vectors obtained from {mi1 , . . . ,mi10}
that are highly correlated with y. Note that each vector xij
is a part of mij . We train the generalized linear model in
which {xi1 , . . . , xi10} are the predictor variables and y is the
outcome variable. In our implementation, we adopt the lm
function that is available in the stats package. Next, we use the
trained linear model to estimate the missing values in g, using
{mi1\xi1 , . . . ,mi10\xi10} as the predictors, where mij\xij is
that part of mij that do not belong to xij .

III. RESULTS

Here we assess the performance of RIA using five single-
cell datasets that are available in NIH Gene Expression
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Fig. 1. The overall pipeline of RIA. The algorithm consists of two modules. In the first module, we apply a hypothesis testing approach to determine which
genes need to be imputed and which genes can be used as training. In the second module, we adopt the generalized linear model to impute the missing values
from the imputable set. The algorithm outputs the imputed matrix that has the same number of rows and columns as of the input data.

Omnibus (GEO) [25] and Array Express [26]: Biase’s [27],
Yan’s [28], Goolam’s [29], Deng’s [30], and Zeisel’s [31]. The
processed data were downloaded from Hemberg lab’s website
(https://hemberg-lab.github.io/scRNA.seq.datasets).

In each dataset, the cell populations and developmental
stages are known. This informatinom are only used a posteri-
ori to assess the performance of each method in improving the
identification of cell populations and the recovery of temporal
trajectories. We compare our method with two state-of-the-art
methods for single-cell imputation: MAGIC [13] and scImpute
[20]. Both methods are widely used and each represents a
different imputation strategy. MAGIC uses Markov affinity
matrix to smooth the data while scImpute is a statistical
approach that models the data as a mixture of Gamma and
Gaussian distributions.

The details for each dataset (accession ID, number of cells,
number of cell types, organism, and single-cell protocol) are
described in Table I. The first four studies, Biase [27], Yan’s
[28], Goolam [29] and Deng [30], measure the gene expression
of embryonic cells at different stages, from zygote to the cells
of the late blastocyst. Cell types of these datasets were labeled
according to their developmental stages (timestamp). The fifth
dataset, Zeisel [31], was obtained from a mouse brain tissue.
The cell labels of this dataset were assigned based on expert
knowledge of the underlying biology [31].

TABLE I
SINGLE-CELL DATA OBTAINED FROM NIH GEO

Dataset Accession ID Size K Organism Protocol
Biase[27] GSE57249 49 4 Mouse Embryo SMARTer
Yan[28] GSE36552 90 6 Human Embryo Tang
Goolam[29] E-MTAB-3321 124 5 Mouse Embryo Smart-Seq2
Deng[30] GSE45719 268 6 Mouse Embryo Smart-Seq2
Zeisel[31] GSE60361 3,005 9 Mouse Brain STRT-Seq

For each dataset, we downloaded the already processed
expression data, in which genes are represented in rows
and cells are in different columns. We only perform log2
transformation to re-scale sc-RNAseq data, i.e., log2(A + 1)
where A is the expression matrix. Genes that do not express
across any cells will be removed.

A. RIA improves the identification of sub-populations while
preserving the biological landscape

For each of the five datasets described in Table I, the cell
types are known. We use this information a posteriori to assess
how separable the cell populations are after imputation. For
each dataset, we have a raw matrix that serves as the input
of each imputation method. After imputation, we have four
matrices: the raw data and three imputed matrices (from RIA,
MAGIC, and scImpute). In order to assess how separable the
cell types in each matrix, we use k-means [32] to cluster each
matrix and then compare the obtained partitionings with the
known cell types. We use three different metrics for comparing
the obtained partitionings with the known types: adjusted Rand
index (ARI) [33], Jaccard index [34] and Purity [35] (see
Appendix A for more details of the three metrics).

TABLE II
COMPARISONS USING ADJUSTED RAND INDEX (ARI).

Dataset Adjusted Rand Index
Raw RIA scImpute MAGIC

Biase 0.558 0.711 -0.009 0.154
Yan 0.558 0.573 0.507 0.029
Goolam 0.501 0.914 0.321 0.197
Deng 0.549 0.815 0.229 0.483
Zeisel 0.738 0.768 0.689 0.289

Table II shows the ARI values obtained for each method
and for the raw data. For each row, cells highlighted in bold



have the highest ARI values. For each of the five datasets
analyzed, the ARI values obtained for RIA are substantially
higher than those of scImpute and MAGIC, demonstrating the
superiority of the developed method over existing approaches.
More importantly, the ARI values for RIA are higher than
those obtained for raw data, demonstrating the ability of RIA
in recovering the true expression of missing values due to
dropout events. At the same time, it also demonstrates that
RIA do not introduce false signals. In contrast, the ARI
values obtained for scImpute and MAGIC are consistently
lower than those obtained for raw data. There might be two
reasons. First, these methods rely on sophisticated models
that are prone to overfitting. Second, they lack of an efficient
mechanism to verify whether a low expression value is due to
sequencing limitation (i.e., dropout) or indeed due to biological
phenomena. Therefore, they are likely to add false signals to
the imputed data.

Tables III and IV show the Jaccard index and Purity values
obtained for raw data and imputed data using RIA, scImpute,
and MAGIC. Again, these metrics confirm that RIA is the best
among the competing methods. All of the three benchmarking
metrics show that RIA consistently outperforms scImpute and
MAGIC in every single analysis.

TABLE III
COMPARISON USING JACCARD INDEX

Dataset Jaccard Index
Raw RIA scImpute MAGIC

Biase 0.589 0.708 0.339 0.289
Yan 0.498 0.498 0.473 0.146
Goolam 0.496 0.892 0.375 0.312
Deng 0.524 0.781 0.395 0.518
Zeisel 0.651 0.683 0.605 0.285

TABLE IV
COMPARISON USING PURITY INDEX

Dataset Purity Index
Raw RIA scImpute MAGIC

Biase 0.795 0.836 0.449 0.612
Yan 0.711 0.778 0.733 0.467
Goolam 0.822 0.952 0.693 0.621
Deng 0.805 0.839 0.627 0.750
Zeisel 0.876 0.893 0.840 0.668

Here we will also demonstrate that RIA improves the quality
of the data without altering the transcriptomics landscapes.
Since single-cell data are high-dimensional and are hard to
interpret, it is desirable to visualize them in low dimensional
space with two or three dimensions. Traditionally, researchers
use t-distributed Stochastic Neighbourhood Embedding (t-
SNE) [36, 37] for this purpose, which preserve local structure
among cells. We first use Principal Component Analysis
(PCA) [38] to reduce the number of dimensions to 20, and
then use t-distributed Stochastic Neighbourhood Embedding

(t-SNE) [39] to visualize the data. The purpose of using PCA
is to reduce the running time of the visualization process.

Figures 2 and 3 show the visualization of the raw data
and the imputed data. For all of the five datasets, the tran-
scriptomics landscape of RIA is similar to that of the original
data, demonstrating that RIA did not alter the transcriptomics
landscape. On the contrary, the transcriptomics landscapes
obtained from scImpute and MAGIC are very different from
the those of the original data.

Regarding time complexity, both MAGIC and RIA are
extremely fast. These two methods are able to analyze any
of the five datasets in minutes. On the other hand, scImpute
is slow because it needs to iteratively estimate the mixture
parameters for every single gene across the genome. It takes
scImpute an hour to analyze the Zeisel datasets using 20 cores.

Fig. 2. Transcriptomics landscape of the Zeisel dataset. The scatter plot shows
first two principle components calculated by t-SNE for raw and imputation
data using RIA, scImpute, and MAGIC. RIA preserve the transcriptomics
landscape of the data whereas scImpute and MAGIC introduces artificial
signals and complete change the landscape.

B. RIA recovers temporal trajectories in embryonic develop-
mental stages

We use the four embryonic datasets to demonstrate RIA’s
ability in recovering the temporal dynamics. The Biase dataset
consists of 49 inter-blastomere cells from mouse embryonic
stem cells (mESCs), including zygote, 2-cell and 4-cell. The
Goolam dataset includes transcriptome data of 124 individual
cells in mouse pre-implantation development stages: 2-cell,
4-cell, 8-cell, 16-cell and blast. The Yan dataset consists of



Fig. 3. Transcriptomics landscape and temporal development stages. The scatter plots show the first two dimensions of the t-SNE results calculated from
Biase, Yan, Goolam, and Deng datasets. Due to dropouts, it is difficult to recognize different temporal dynamics of cells. The raw data and imputed data
using scImpute and DrImpute do not show clear patterns. On the contrary, RIA significantly elucidates the cell lineage identification such that it is clearly
recognized in the 2-D scatter plots.



90 cells from human pre-implantation embryos and human
embryonic stem cells (hESCs). The Deng dataset includes
the expression profiles of 268 individual cells of mouse pre-
implantation embryos of mixed background.

Figure 3 shows the transcriptomics landscape and temporal
development stages using the raw data and imputation data
produced by RIA, MAGIC, and scImpute. The lines in each
scatter plot connect cell groups in consecutive developmental
stages. For example, for the Biase dataset, the zygote group
is directly connected with the 2-cell class while the 2-cell
class is connected with the 4-cell class. For this dataset,
raw data and data imputed by any of the three imputation
methods clearly distinguish cells at different time points. The
pseudotime ordering is consistent with the time labels. For
the Goolam dataset, the landscapes of the raw data and data
imputed by RIA and scImpute have similar pattern. On the
contrary, the transcriptomics landscape of MAGIC is very
different from the rest.

For the Yan and Deng datasets, the data imputed by RIA
better distinguish cell groups of different time points. The
pseudotime ordering for RIA accurately reflects the transcrip-
tome dynamics along the time course. On the contrary, the raw
data and data imputed by MAGIC and scImpute fail to depict
a clear time trajectory. Overall, RIA better recovers temporal
trajectories than existing state-of-the-art imputation methods.

IV. CONCLUSION

In this article, we present a new method to recover missing
values caused by dropout events in scRNA-seq data. The
contribution of this approach is two folds. First, we introduce
a statistical hypothesis testing to identify the set of genes
that are likely to be affected by dropouts. Second, we impute
missing values by using highly correlated genes that share
similar biological characteristics. This strategy avoids intro-
ducing false signals. Our extensive analysis shows that RIA
dramatically outperforms existing state-of-the-art approaches
in improving the identification of cell populations. Our anal-
ysis also demonstrates that RIA is able to recover temporal
trajectories in embryonic development stages. Regarding time
complexity, RIA is fast and is able to impute thousands of
cells with tens of thousands of genes in minutes.

For future work, we plan to utilize the perturbation clus-
tering (PINSPlus) [40–42] to group genes and samples with
similar patterns together before performing linear regression.
This will improve the performance of the regression model and
imputation. Another direction is to perform meta-analysis [43–
46] to learn common bias and dropout patterns of certain
platforms and protocols. This will provide us with more
prior knowledge to further customize our model in order to
improve the imputation procedure. Finally, we plan extend this
work to improve the data for omics integration and network
analysis [47–52].
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APPENDIX

Rand index (RI) evaluates the similarity between predicted
clusters and true cell types. Given P as a set of clusters and
Q is a set of true cell types then RI is calculated as:

RI =
t+ u

t+ u+ v + s
=
t+ u(

N
2

) (1)

where t is the number of pairs belonging to the same cell
type in Q and are grouped together in the same cluster in P ,
u is the number of pairs of different cell types in Q and are
grouped to different clusters in P , v is the number of pairs
of same cell types in Q and are grouped to different clusters
in P , s is the number of pairs in different cell types in Q
and are grouped together in the same cluster in P , N is the
total number of cells, and

(
N
2

)
is the number of possible pairs.

In brief, RI measures the ratio of pairs that are clustered in
the same way (either together or different) from two partitions
(e.g. 0.80 means 80% of pairs are grouped in the same way).
The Adjusted Rand Index (ARI) [33] is the corrected-for-
chance version of the Rand Index. The ARI values ranged
from -1 to 1 in which 0 indicates for a random grouping. The
ARI score is calculated as :

ARI =
RI − exptected RI

max(RI)− expected RI
(2)

The Jaccard index is also known as Intersection over Union.
In our context, The Jaccard index basically measures the
number of pairs in same true cell type and are grouped
together, divided by the number of pairs that are either in
the same true cell type or are clustered together. The Jaccard
index is measured by following formula:

J =
t

t+ u+ v
(3)

Finally, the Purity metric measures the extent to which
clusters contain a single true cell type. Denoting X as the
clusters and Y as the classes, Purity is calculated as follows:

Purity =
1

N

∑
x∈X

maxy∈Y |x ∩ y| (4)
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