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Abstract

Cancer is an umbrella term that includes a range of disorders, from those that are
aggressive and life-threatening to indolent lesions with low or delayed potential for
progression to death. After 20 years of cancer screening, the chance of a person being
diagnosed with prostate or breast cancer has nearly doubled. However, this has only
marginally reduced the number of patients with advanced disease, suggesting that
screening has resulted in the substantial harm of excess detection and over-diagnosis.
At the same time, 30 to 50% of patients with non-small cell lung cancer (NSCLC) de-
velop recurrence and die after curative resection, suggesting that a subset of patients
would have benefited from more aggressive treatments at early stages. Although not
routinely recommended as the initial course of treatment, adjuvant and neoadjuvant
chemotherapy have been shown to significantly improve the survival of patients with
advanced early-stage disease. The ability to prognosticate outcomes would allow us
to manage these diseases better: patients whose cancer is likely to advance quickly or
recur would receive the necessary treatment. The important challenge is to discover
the molecular subtypes of disease and subgroups of patients. To address this impor-
tant challenge, we develop a novel approach named Subtyping via Consensus Factor
Analysis (SCFA) that can efficiently remove noisy signals from consistent molecu-
lar patterns in order to reliably identify cancer subtypes and accurately predict risk
scores of patients. In an extensive analysis of 7,973 samples related to 30 cancers that
are available at The Cancer Genome Atlas (TCGA), we demonstrate that SCFA out-
performs state-of-the-art approaches in discovering novel subtypes with significantly
different survival profiles. We also demonstrate that SCFA accurately predicts risk
scores that strongly correlate with patient survival and vital status. More impor-
tantly, the accuracy of subtype discovery and risk prediction improves when more
data types are integrated into the analysis.

More recently, advancements in single-cell RNA sequencing (scRNA-seq) have
revolutionized our ability to study biological systems at the single-cell level. The
widespread utilization of scRNA-seq across various research domains, such as can-
cer, immunology, and virology, has resulted in the generation of massive amounts of
scRNA-seq data each year. However, the analysis of scRNA-seq data poses signif-
icant computational challenges due to the increasing number of cells and technical
noise. First, scRNA-seq data is high-dimensional, with thousands of genes repre-
senting each cell. This poses difficulties in visualizing and comprehending the data.

Analyzing relationships between thousands of genes and millions of cells, as required
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for applications such as trajectory inference or gene regulatory network inference,
can be computationally demanding and time-consuming. Second, scRNA-seq data is
characterized by noise and sparsity, with numerous missing values and outliers. This
makes it challenging to identify consistent patterns and trends, potentially leading
to false positives or false negatives in the results. Third, technical noise is often in-
troduced during the sample preparation and sequencing process, stemming from low
starting material and amplification procedures. Such noise introduces inconsistencies
in the data, hindering comparisons across different experiments.

To address the challenges associated with scRNA-seq data mining, we establish
four innovative computational methods that effectively extract biological information
from the noisy and massive single-cell data. First, we introduce an analysis frame-
work, named single-cell Decomposition using Hierarchical Autoencoder (scDHA), that
reliably extracts representative information of each cell. In one joint framework, the
scDHA software package conducts cell segregation through unsupervised learning, di-
mension reduction and visualization, cell classification, and time-trajectory inference.
Second, we develop three novel imputation methods: single-cell Imputation via Sub-
space Regression (scISR), single-cell Imputation using Neural Network (scINN), and
single-cell Imputation using Residual Network (scIRN). These methods effectively
recover missing data caused by dropout events in scRNA-seq data. We validate the
performance of the four methods using extensive real-world data, including 43 scRNA-
seq datasets with over a million cells. We demonstrate that the proposed methods
outperform state-of-the-art techniques in several research sub-fields of scRNA-seq
analysis, including cell segregation through unsupervised learning, visualization of
transcriptome landscape, cell classification, and pseudo-time inference.

The dissertation is divided into three parts. In the first part, I introduce the sig-
nificance of molecular subtype discovery and then detail the proposed method, SCFA,
for cancer subtyping and risk prediction. In the second part, I provide an overview of
single-cell data (scRNA-seq), together with the opportunities and the computational
challenges. Next, I describe the four methods we developed for single-cell analysis,
scDHA, scISR, scINN, and scIRN. Each method is accompanied with extensive val-
idation and extensive analyses. In the third part, I summarize the dissertation and

discuss future research directions that I will potentially pursue.



il

Dedication

I would like to dedicate this Ph.D. dissertation to the individuals who have played
instrumental roles in my life:

First and foremost, I am deeply indebted to my parents, Quy and Tu, for their
unwavering love, unconditional support, and countless sacrifices they have made
throughout my educational journey. Your faith in my abilities and constant encour-
agement have served as my pillars of strength. This dissertation stands as a testament
to the unwavering belief you have always had in me.

I am also grateful to my sister, Nga, and my brother, Nhat, for their continuous
love, support, and encouragement. Your presence in my life has been a consistent
source of inspiration and motivation.

Furthermore, I would like to extend my dedication to all those who have touched
my life in ways that words cannot fully express. Your kindness, encouragement, and
unwavering belief in my capabilities have left a profound impact, and I am genuinely
grateful for that.

This dissertation represents the culmination of the collective support, guidance,
and encouragement I have received throughout my academic journey. To all those
mentioned by name and those unmentioned, I extend my heartfelt appreciation for

being integral parts of this endeavor.



v

Acknowledgments

I would like to extend my sincere gratitude to my advisor, Dr. Tin Nguyen,
for his unwavering guidance, support, and encouragement throughout my doctoral
studies. I am truly grateful for his mentorship, patience, and steadfast belief in my
abilities. His passion for research and dedication to academic excellence have served
as constant sources of inspiration, motivating me to strive for greatness. Addition-
ally, I deeply appreciate his invaluable insights, thought-provoking discussions, and
intellectual challenges that have expanded my horizons.

I would also like to express my gratitude to my esteemed committee members,
Dr. Frederick Harris, Dr. Hung La, Dr. Lei Yang, and Dr. David Cantu, for
their indispensable feedback and suggestions. I am thankful for the time and effort
they dedicated to reviewing my dissertation and providing constructive input. Their
expertise and guidance have played an instrumental role in the successful completion
of this dissertation.

Finally, I want to extend my heartfelt thanks to my colleagues at the University
of Nevada, Reno, especially Phi Hung Bya, Bang Sy Tran, and Ha Viet Nguyen, who
are also my dear friends. Their camaraderie, friendship, and unwavering support have

made this journey more enjoyable and memorable.



Contents
Abstract i
Dedication iii
Acknowledgments iv
Table of Contents v
List of Tables ix
List of Figures xi
Part I Machine Learning in Cancer Subtype Discovery
and Risk Prediction of Patients 1
Chapter 1 Cancer Subtyping: Significance and Challenges 2
Chapter 2 SCFA: A Novel Method for Cancer Subtyping and Risk
Prediction Using Consensus Factor Analysis 6
2.1 Methodology . . . . . . . . . 7
2.1.1 Dimension reduction and factor analysis . . .. .. ... ... 8
2.1.2  Subtyping using consensus ensemble . . . . .. .. ... L. 9
2.1.3 Risk score prediction . . . . .. ... 10
2.2 Validation and Analysis Results . . . . . ... ... ... ... .... 12
2.2.1 Subtypting on 30 TCGA datasets . . . . . .. ... ... ... 12
2.2.2  Discovered subtypes and clinical variables . . . . . . .. . .. 16
2.2.3 In-depth analysis of the Pan-Kidney (KIPAN) dataset . . . . . 18
2.2.4  Risk score prediction using multi-omics data . . . . . . . . .. 26



2.3

vi

Conclusion (SCFA) . . . . . . ... . 31

Part II Single-cell RNA Sequencing (scRNA-seq): Data
Mining of High-Dimensional, Large-scale Biological Data 32

Chapter 3 Mining scRNA-seq Data: Background, Significance, and

Current Challenges 33

Chapter 4 scDHA: Fast and Precise Single-cell Data Analysis using

4.1
4.2

4.3

4.4

a Hierarchical Autoencoder 39
Introduction . . . . . .. ..o 40
Methodology . . . . . . . . . 41
4.2.1 Data filtering using non-negative kernel autoencoder . . . . . 42
4.2.2 Data compression using Stacked Bayesian Autoencoder . . . . 44
4.2.3 Cell segregation via clustering . . . . . . .. .. .. ... ... A7
4.2.4  Dimension reduction and visualization . . . .. .. ... ... 49
4.2.5 Cell classification . . . . .. .. ... ... ... L. 50
4.2.6  Pseudo-time trajectory inference . . . . . . . ... ... ... 51
Validation and Analysis Results . . . . .. ... ... ... ... ... 51
4.3.1 Cell segregation . . . . . . . . ... ... 52
4.3.2 Dimension reduction and visualization . . . .. ... ... .. 62
4.3.3 Cell classification . . . . . ... ... ... ... .. 64
4.3.4 Time-trajectory inference . . . . . . .. ... ... ... ... 76
Conclusion (scDHA) . . . . . ... . 81

Chapter 5 scISR: A Novel Method for Single-cell Data Imputation

5.1
5.2

5.3

using Subspace Regression 83
Introduction . . . . . ... 84
Methodology . . . . . . . . . 86
5.2.1 Hyper-geometric testing . . . . . . . ... ... ... ... 87
5.2.2 Identifying gene subspaces . . . . . . ... ... .. ... ... 90
5.2.3 Subspace regression . . . . . . ... 92

Validation and Analysis Results . . . . . . ... ... ... ... ... 94



vii

5.3.1 Cluster analysis of 25 scRNA-seq datasets using k-means . . . 96
5.3.1.1  Cluster analysis of 25 scRNA-seq datasets using Seurat 105

5.3.1.2  Preservation of the transcriptome landscape . . . . . 110

5.3.1.3 Normalized intra dispersion of imputed genes . . . . 123

5.3.1.4 Running time . . . . . . . ... 124

5.3.1.5  Simulation studies . . . .. ... ... ... ... .. 124

5.4 Conclusion (scISR) . . .. .. ... oo oo 135

Chapter 6 scINN: Single-cell RNA Sequencing Data Imputation us-

ing Similarity Preserving Network 136

6.1 Introduction . . . . . . . .. .. 137
6.2 Methodology . . . . . . . . ... 139
6.2.1 Generating similarity information . . . . . . .. ... ... .. 140
6.2.2 Imputing dropout data using neural network . . . . . . . . .. 142

6.3 Validation and Analysis Results . . . . . ... ... ... ... .... 142
6.3.1 scINN improves the identification of sub-populations . . . . . 143
6.3.2 scINN improves transcriptome landscape visualization . . . . . 146

6.4 Conclusion (scINN) . . . ... .. . 148

Chapter 7 scIRN: Single-cell RN A Sequencing Data Imputation us-

ing Deep Neural Network 149

7.1 Methodology . . . . . . . . ... 150
7.1.1 Generating low-dimensional, non-redundant representation . . 151

7.1.2 Imputing dropout data using residual network . . . . . . . .. 151

7.2 Validation and Analysis Results . . . . . ... ... ... ... .... 153
7.2.1 scIRN improves the identification of sub-populations . . . . . 154

7.2.2 scIRN improves transcriptome landscape visualization . . . . . 155

7.3 Conclusion (scIRN) . . . . .. ..o o oo 157
Part III Summary 160
Chapter 8 Conclusion 161

Chapter 9 Future Research 164



viil

References 166
Appendices 207
Appendix A Evaluation metrics 207
Appendix B Publication list 209

B.1 Journal articles . . . . . . .. ... ... 209

B.2 Conference proceedings . . . . . . . . .. ... L. 212



List of Tables

2.1
2.2

2.3

2.4

2.5

2.6

2.7

4.1

4.2

4.3

4.4

Description of 30 cancer datasets from The Cancer Genome Atlas

Cox p-values of subtypes identified by SCFA, CC, SNF, iClusterBayes
(iCB), and CIMLR for 30 TCGA datasets . . . .. ... .......
P-values obtained from Fisher’s exact test that assesses the statistical
significance of the association between the discovered subtypes and
gender . .o
P-values obtained from ANOVA that assesses statistical significance in
age difference between the discovered subtypes . . . . . . . . . .. ..
Adjusted Rand Index (ARI) values obtained from comparing the dis-
covered subtypes against known cancer stages and tumor grades. . . .
Normalized Mutual Information (MNI) values obtained from compar-

ing the discovered subtypes against known cancer stages and tumor

Risk score prediction evaluated by concordance index (C-index) and

Cox p-values. . . . . . . . . ..

Description of the 34 single-cell datasets used to assess the performance
of computational methods . . . . . .. . ... ... ... ... ...
Performance of scDHA, SC3, SEURAT, SINCERA, CIDR, SCANPY,
and k-means on 34 single-cell datasets measured by adjusted Rand
index (ARI). . . . ... o
Performance of scDHA, SC3, SEURAT, SINCERA, CIDR, SCANPY,
and k-means on 34 single-cell datasets measured by normalized mutual
information (NMI). . . . . . . ... ... ... .. . ..
Performance of scDHA, SC3, SEURAT, SINCERA, CIDR, SCANPY,

1X

13

14

21

22

23

24

30

53

95

and k-means on 34 single-cell datasets measured by Jaccard Index (JI). 57



4.5

4.6

4.7

5.1

5.2
5.3
5.4
5.5
5.6
5.7
5.8

6.1

7.1

Running time of scDHA, SC3, SEURAT, SINCERA, CIDR, SCANPY,
and k-means on 34 single-cell datasets. Overall, scDHA is the fastest
and was able to analyze 611,034 cells within 24 minutes. . . . . . ..
Silhouette values calculated for representation using scDHA, PCA, t-
SNE, UMAP, and SCANPY. . . . . . .. .. ... .. ... ......
Classification performance measuring by accuracy of scDHA, XGBoost,
Random Forest (RF), Deep Learning (DL), and Gradient Boosting

Machine (GBM) approach on single cell evaluation pairs. . . . . . . .

Description of the 25 single-cell datasets used to assess the performance
of imputation methods . . . . . . . .. ... ... ...
Adjusted Rand Index (ARI) obtained from raw and imputed data . .
Jaccard Index (JI) obtained from raw and imputed data . . . . . ..
Purity Index (PI) obtained from raw and imputed data . . . . . . ..
Adjusted Rand Index (ARI) obtained from raw and imputed data . .
Jaccard Index (JI) obtained from raw and imputed data . . . . . ..
Purity Index (PI) obtained from raw and imputed data . . . . . . . .
Adjusted Rand Index (ARI) obtained from raw and imputed data using

Seurat as the clustering method . . . . . . . ... ... ... .....

Description of the 10 single-cell datasets used to assess the performance

of imputation methods. . . . . . . . . ... ... .

Description of the 10 single-cell datasets used to assess the performance

of imputation methods. . . . . . . ... ..o

74



List of Figures

2.1
2.2
2.3
2.4

2.5

2.6

2.7

2.8

2.9

2.10

2.11
2.12

4.1

4.2

4.3

4.4

4.5

SCFA pipeline for cancer subtyping . . . . . . .. .. ... ... ...
Overall pipeline for risk prediction using SCFA . . . . . . . . ... ..
Cox p-values of subtypes identified by SCFA . . . . .. ... ... ..
Cox p-values of subtypes identified by SCFA, SNF, iClusterBayes, CC,
and CIMLR using different data types. . . . . . . .. ... ... ...
P-values obtained from comparing the discovered subtypes against gen-
der, age, and survival information . . . . . .. .. ... ... ...
Adjusted Rand Index (ARI) values obtained from comparing the dis-
covered subtypes . . . . ...
Normalized Mutual Information (NMI) values obtained from compar-
ing the discovered subtypes . . . . . . .. .. ... .. L.
Kaplan-Meier survival analysis of the Pan-kidney (KIPAN) dataset

Age distribution for each subtype of the KIPAN dataset. . . . . . ..
Heatmap of subtypes discovered by SCFA for the KIPAN dataset. . .
Number of patients in each group for each mutated gene for KIPAN .
Evaluation of risk prediction using concordance index (C-index) and

Cox p-values . . . . . . . . . .

Overview of scDHA architecture . . . . . . . ... ... .. ... ...
High-level representation of Stacked Bayesian Autoencoder. . . . . . .
Clustering performance of scDHA, SC3, SEURAT, SINCERA, CIDR,
SCANPY, and k-means measured by adjusted Rand index (ARI) on
34 scRNA-seq datasets. . . . . . . . . ...
Clustering performance of scDHA, SC3, SEURAT, SINCERA, CIDR,
SCANPY, and k-means across six data platforms. . . . . . . . . . ..

Running time of the scDHA, SC3, SEURAT, SINCERA, CIDR, SCANPY,

and k-means on 34 scRNA-seq datasets. . . .. ... ... ......

X1

11
17

18

19

19

20

20

25

26
27

o8

99



4.6

4.7
4.8

4.9

4.10

4.11

4.12

4.13

4.14

4.15

4.16

4.17

4.18

4.19

4.20

4.21

4.22

xii

Clustering performance of scDHA on 34 single-cell datasets with vary-

ing size of bottleneck layer in the first module. . . . . . . . . . .. .. 61
Effect of gene filtering cutoff on scDHA performance. . . . . . . . .. 61
Transcriptome landscape visualization of Kolodziejczyk and Serger-
stolpe datasets using scDHA, PCA| t-SNE, and UMAP. . . . . . . .. 63
Representation of the Yan, Gollam, Deng, and Pollen datasets using
scDHA, PCA, t-SNE, UMAP, and SCANPY.. . . . . ... ... ... 66
Representation of the Patel, Wang, Darmanis, and Camp (Brain) datasets
using scDHA, PCA, t-SNE, UMAP, and SCANPY. . . ... ... .. 67
Representation of Usoskin, Kolodziejezyk, Camp (Liver), and Xin datasets
using scDHA, PCA, t-SNE, UMAP, and SCANPY. . . ... ... .. 68
Representation of Baron (mouse), Muraro, Segerstolpe, and Klein datasets
using scDHA, PCA, t-SNE, UMAP, and SCANPY. . . ... .. ... 69
Representation of Romanov, Zeisel, Lake, and Puram datasets using
scDHA, PCA, t-SNE, UMAP, and SCANPY.. . . . . . .. ... ... 70
Representation of Montoro, Baron (Human), Chen, and Sanderson
datasets using scDHA, PCA, t-SNE, UMAP, and SCANPY. . .. .. 71
Representation of Slyper, Campbell, Zilionis, and Macosko datasets
using scDHA, PCA, t-SNE, UMAP, and SCANPY. . . ... ... .. 72
Representation of Hrvatin, Tabula Muris, Karagiannis, and Orozco
datasets using scDHA, PCA, t-SNE, UMAP, and SCANPY. . . . .. 73
Representation of Darrah, and Kozareva datasets using scDHA, PCA,
t-SNE, UMAP, and SCANPY. . . . . . .. ... .. ... ... .... 75
Average silhouette values obtained from 2D representations across six

data platforms. . . . . . . . ... 75
Classification accuracy of scDHA, XGBoost, Random Forest (RF),
Deep Learning (DL), Gradient Boosted Machine (GBM) using five hu-

man pancreatic datasets. . . . . . .. ..o 76
Pseudo-time inference of three mouse embryo development datasets
(Yan, Goolam, and Deng) using scDHA and Monocle. . . . . . . . .. 78
Pseudo-time inferred by scDHA, Monocle, TSCAN, Slingshot, and
SCANPY for the Yan, Goolam, and Deng datasets. . . . . . .. ... 79
Visualized trajectory inferred from Yan, Goolam, and Deng dataset

using scDHA, Monocle, TSCAN, Slingshot, and SCANPY. . . . . .. 80



5.1

5.2

5.3

5.4

5.5

5.6

5.7

5.8

5.9

5.10

0.11

5.12

5.13

5.14

5.15

5.16

5.17

5.18
5.19

Single-cell Imputation using Subspace Regression (scISR) . . . . . . .
The resilience of pair-wise connectivity . . . . . . . .. ... ... ..
Adjusted Rand Index (ARI) obtained from raw and imputed data . .
Assessment results of each imputation method with respect to cell iso-
lation techniques, quantification schemes, or normalized units . . . . .
Assessment results of each imputation method with respect to cell iso-
lation techniques, quantification schemes, or normalized units . . . . .
Adjusted Rand Index (ARI) obtained from raw and imputed data using
Seurat as the clustering method . . . . . . . ... ... ... ... ..
Transcriptome landscape of the Fan, Treutlein, Yan, Goolam and Deng
datasets using t-SNE . . . . .. .o oo
Transcriptome landscape for the Pollen, Darmanis, Usoskin, Camp and
Klein datasets using t-SNE . . . . . . . .. .. ... L.
Transcriptome landscape for the Romanov, Segerstolpe, Manno (Hu-
man), Marques and Barron (Human) datasets using t-SNE . . . . . .
Transcriptome landscape for the Sanderson, Slyper, Zilionis (Mouse),
Tasic and Zyl (Human) datasets using t-SNE . . . . . . . ... .. ..
Transcriptome landscape for the Zillionis (Human), Wei (Human),
Cao, Orozco and Darrah datasets using t-SNE . . . . . .. ... ...
Transcriptome landscape for the Fan, Treutlein, Yan, Goolam and
Deng datasets using UMAP . . . . .. ... ... ... ... ..
Transcriptome landscape for the Pollen, Darmanis, Usoskin, Camp and
Klein datasets using UMAP . . . ... .. .. ... ... .......
Transcriptome landscape for the Romanov, Segerstolpe, Manno (Hu-
man), Marques and Barron (Human) datasets using UMAP . . . . .
Transcriptome landscape for the Sanderson, Slyper, Zilionis (Mouse),
Tasic and Zyl (Human) datasets using UMAP . . . . . ... ... ..
Transcriptome landscape for the Zillionis (Human), Wei (Human),
Cao, Orozco and Darrah datasets using UMAP . . . ... ... ...
The distance correlation between raw data and imputed data using the
first two components obtained from t-SNE and UMAP . . . . . . ..
Distribution of the normalized intra dispersion for 25 real datasets . .
Running time of the six imputation methods on 25 real scRNA-seq

datasets . . . .. L,

xiil

99

103

106

110

113

114

115

116

117

118

119

120

121

122



5.20

5.21

5.22

5.23

5.24

6.1
6.2

6.3

6.4

6.5

6.6

7.1

7.2

7.3

7.4

7.5

7.6

Xiv

Assessment of MAGIC, scImpute, SAVER, scScope, scGNN, and scISR
using simulation (100 cells and 300 genes) . . . . . ... ... .... 127
Assessment of MAGIC, sclmpute, SAVER, scScope, scGNN, and scISR
using simulation of 1,000 cells . . . . . . .. .. ... 128
Assessment of MAGIC, scImpute, SAVER, scScope, scGNN, and scISR
using simulation of 10,000 cells . . . . . . . . . ... ... ... ... 129
Assessment of MAGIC, scImpute, SAVER, scScope, scGNN, and scISR
using simulation studies . . . . .. ... oL oo 131
Assessment of MAGIC, scImpute, SAVER, scScope, scGNN, and scISR
using simulated datasets with different dropout distributions and sam-

plesizes . . . . .. L 134

The workflow of single-cell Imputation using Residual Network (scINN) 141
Adjusted Rand index (ARI) obtained from clustering on raw data and
data imputed by DrImpute, MAGIC, scImpute, SAVER, and scINN . 145
Normalized mutual information (NMI) obtained from clustering on raw
data and data imputed by DrImpute, MAGIC, scImpute, SAVER, and

scINN . .o 145
Jaccard index (JI) obtained from clustering on raw data and data im-
puted by Drlmpute, MAGIC, scImpute, SAVER, and scINN . . . . . 146
Visualization quality using raw and imputed data, measured by silhou-
etteindex (SI) . . . . . . . L 147
Transcriptome landscape of the Klein dataset . . . . . ... ... .. 147

The overall workflow of single-cell Imputation using Residual Network
(scIRN) . . o 152
Adjusted Rand index (ARI) obtained from clustering on raw data and
data imputed by MAGIC, SAVER, scIlmpute, DrImpute, and scIRN . 156
Normalized mutual information (NMI) obtained from clustering on raw
data and data imputed by MAGIC, SAVER, sclmpute, DrImpute, and

scIRN . . 156
Jaccard index (JI) obtained from clustering on raw data and data im-
puted by MAGIC, SAVER, scImpute, DrImpute, and scIRN . . . . . 157
Visualization quality using raw and imputed data, measured by silhou-
etteindex (SI) . . . . . . . .. 158

Transcriptome landscape of the Usoskin dataset . . . . . . . ... .. 158



7.7 Transcriptomics landscape of the Klein dataset

XV



Part 1

Machine Learning in Cancer
Subtype Discovery and Risk

Prediction of Patients



Chapter 1

Cancer Subtyping: Significance

and Challenges

After 20 years of cancer screening, the chance of a person being diagnosed with
prostate or breast cancer has nearly doubled [1-4]. However, this has only marginally
reduced the number of patients with advanced disease, suggesting that screening
has resulted in the substantial harm of excess detection and over-diagnosis. At the
same time, 30-50% of patients with non-small cell lung cancer (NSCLC) develop
recurrence and die after curative resection [5], suggesting that a subset of patients
would have benefited from more aggressive treatments at early stages. Although not
routinely recommended as the initial course of treatment, adjuvant and neoadjuvant
chemotherapy have been shown to significantly improve the survival of patients with
advanced early-stage disease [6-8]. The ability to prognosticate outcomes would allow
us to manage these diseases better: patients whose cancer is likely to advance quickly
or recur would receive the necessary treatment. The important challenge is to discover
the molecular subtypes of disease and subgroups of patients [9-12].

Cluster analysis has been a basic tool for subtype discovery using gene expression

data. These include hierarchical clustering (HC), neural networks [13-17], mixture



model [18-20], matrix factorization [21, 22], and graph-theoretical approaches [23—
25].  Arguably, the state-of-the-art approach in this area is Consensus Clustering
(CC) [26, 27], which is a resampling-based methodology of class discovery and cluster
validation [28-30]. However, these approaches are not able to combine multiple data
types. Although analyses on a single data type could reveal some distinct character-
istics for different subtypes, it is not sufficient to explain the mechanism that happens
across multiple biological levels.

With the advancement of multi-omics technologies, recent subtyping methods have
shifted toward multi-omics data integration. The goal is to differentiate among sub-
types from a holistic perspective, that can take into consideration phenomena at
various levels (e.g., transcriptomics, proteomics, epigenetics). These methods can
be grouped into three categories: simultaneous data decomposition methods, joint
statistical models, and similarity-based approaches. Methods in the first category
(data decomposition) include md-modules [31], intNMF [32], and LRAcluster [33].
These methods assume that there exist molecular patterns that are shared across
multiple types of data. Therefore, these methods aim at finding a low dimensional
representation of the high-dimensional multi-omics data that retains those patterns.
For example, both md-modules and intNMF utilize a joint non-negative matrix fac-
torization to simultaneously factorize the data matrices of multiple data types. In
their design, the basis vectors are shared across all data types while the coefficient
matrices vary from data type to data type. These two methods, md-modules and
intNMF, only differ in the way they iteratively estimate the coefficient matrices. An-
other method is LRAcluster, which applies the low-rank approximation and singular
vector decomposition to generate low dimensional representations of the data and
then performs k-means clustering to identify the subtypes. These methods strongly

rely on the assumption that all molecular signals can be linearly and simultaneously



reconstructed.

Methods in the second category (statistical modeling) include BCC [34], MDI [35],
iClusterBayes [36], iClusterPlus [37], and iCluster [38, 39]. These methods assume
that each data type follows a mixture of distributions and then integrate multiple
types of data using a joint statistical model. The parameters of the mixture models
are estimated by maximizing the likelihood of observed data. These methods strongly
depend on the correctness of their statistical assumptions. Also, due to a large num-
ber of parameters and iterations involved, the computation complexity of statistical
methods is usually extensive. Therefore, these methods often rely on pre-processing
and gene filtering to ease the computational burden.

Methods in the third category (similarity-based) typically construct the pair-wise
connectivity between patients (that represents how often the patients are grouped
together) for each data type and then integrate multiple data types by fusing the
individual connectivity matrices. As these methods perform data integration in the
sample space, their computational complexity depends mostly on the number of pa-
tients, not the dimensions of features/genes. Therefore, these methods are capable of
performing subtyping on a genomic scale. Methods in this category include SNF [40],
rMKL-DR [41], NEMO [42], CIMLR [43], and PINS [44, 45]. SNF creates a patient-
to-patient network by fusing connectivity matrices and then partitions the network
using spectral clustering [46]. rMKL-DR projects samples into a lower-dimensional
subspace and then partitions the patients using k-means. NEMO follows a similar
strategy with the difference is that it incorporates only partial data into the inte-
grative analysis. Though powerful, these methods do not account for the noise and
unstable nature of quantitative assays. PINS and CIMLR follow two different strate-
gies to address noise and instability. PINS introduces Gaussian noise to the data in

order to obtain subtypes that are robust against data perturbation. CIMLR combines



multiple gaussian kernels per data type to measure the similarity between each pair
of samples. The resulted similarity matrix is then subjected to dimension reduction
and k-means to determine the subtypes. Though powerful, the similarity metrics used
in these methods (i.e., Gaussian kernel, Euclidean distance) make them susceptible
to noise and the “curse of dimensionality” [47] from the high-dimensional multi-omics

data.



Chapter 2

SCFA: A Novel Method for Cancer
Subtyping and Risk Prediction

Using Consensus Factor Analysis

This chapter is based on the following publication: Duc Tran, Hung Nguyen, Uyen
Le, Hung N. Luu, and Tin Nguyen. A novel method for cancer subtyping and risk
prediction using consensus factor analysis. Frontiers in Oncology, 2020. DOI:

10.3389/fonc.2020.01052

To address the challenges in cancer subtyping, we develop a novel approach named
Subtyping via Consensus Factor Analysis (SCFA) that can efficiently remove noisy
signals from consistent molecular patterns in order to reliably identify cancer subtypes
and accurately predict risk scores of patients. In an extensive analysis of 7,973 samples
related to 30 cancers that are available at The Cancer Genome Atlas (TCGA), we
demonstrate that SCFA outperforms state-of-the-art approaches in discovering novel
subtypes with significantly different survival profiles. We also demonstrate that SCFA

is able to predict risk scores that are highly correlated with true patient survival and



vital status. More importantly, the accuracy of subtype discovery and risk prediction
improves when more data types are integrated into the analysis. The SCFA software
and is publicly available on Bioconductor: https://www.bioconductor.org/packa

ges/SCFA/.

2.1 Methodology

The high-level workflow of SCFA for subtyping is shown in Figure 2.1. The input of
the subtyping module is a list of data matrices (e.g., mRNA, methylation, miRNA)
in which rows represent patients while columns represent genes/features. For each
matrix, the method first performs a filtering step using an autoencoder and then
repeatedly performs factor analysis [48] to represent the data with different numbers
of factors. By representing data with different numbers of factors, we can improve on
situations where the projected data do not accurately represent the original data due
to noise. Using an ensemble strategy, SCFA combines all of the factor representations

to determine the final subtypes.
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Figure 2.1: SCFA pipeline for cancer subtyping. For each of the data matrix, SCFA
repeatedly performs factor analysis to generate multiple data representations with
different numbers of factors. For each representation, SCFA clusters the data to
construct a connectivity matrix. The method next merges all connectivity matrices
using an ensemble strategy to obtain the final clustering.

In the following subsections, we will describe in detail the techniques used in the

SCFA framework: (i) dimension reduction and factor analysis, and (ii) the ensemble
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strategy for subtyping.

2.1.1 Dimension reduction and factor analysis

The method start with dimension reduction and factor analysis. The purpose of
dimension reduction is to remove features/genes that play no role in differentiating
between patients. Briefly, we utilize a non-negative kernel autoencoder which consists
of two components: encoder and decoder. The encoder aims at representing the
data in a low dimensional space whereas the decoder tries to reconstruct the original
input from the compressed data. By forcing the weights of the network to be non-
negative, we capture the positive correlation between the original features and the
representative features. Selecting features with high variability in weights would result
in a set of features that are informative, non-redundant, and capable of representing
the original data.

After the filtering step using the non-negative autoencoder, we perform another
dimension reduction step using Factor Analysis (FA) [48]. In general, factor analysis
aims at minimizing the difference of feature-feature correlation matrix between the
latent space and original data. Correlation is a standardized metric, where it takes
into account the number of observations and variance of the features during the cal-
culation process. This makes factor analysis robust against scaling and high number
of dimensions compared to traditional decomposition such as principle component
analysis (PCA), which uses Euclidean distance as the distance metric. To further
improve the performance of factor analysis, we adjust the objective of FA to maintain
the patient-patient correlation.

Starting with the original correlation matrix, FA finds & (number of factors) largest
principle components and tries to reproduce the original matrix using those principal

components (model matrix). FA iteratively fits the model matrix to the original ma-



trix using optimization algorithms. In our model, we employ the Minimum Residual
(MINRES) optimization because it copes better with the small and medium sam-
ple size of the input data [49]. Also, instead of preserving the relationship between
variables, we aim to maintain the overall patient-patient relationships by preserv-
ing their Pearson correlations in the representations. By changing the objective, the
computational power required is significantly lower as the number of patients (in the
scale of hundreds) is much lower than the number of features (in the scale of tens of
thousands). Moreover, maintaining the distance between patients in the low dimen-
sional representation would be more beneficial for our desired applications. To avoid
overfitting, we repeatedly perform factor analysis with different numbers of factors,
resulting in multiple representations of each input matrix. Clustering results using all
factor representations of all data types (data matrices) are combined together using

an ensemble strategy to determine the subtypes.

2.1.2 Subtyping using consensus ensemble

Given a collection of factor representations from all data types, we aim at finding
patient subgroups that are consistently observed together in all representations (Fig-
ure 2.1). For each representation, we first determine the optimal number of clusters
using two indices: (i) the ratio of between sum of squares over the total sum of squares,
and (ii) the increase of within sum of squares when the number of cluster increases.
After the optimal number of clusters is determined, we use k-means to cluster the
underlying factor representation to build a connectivity matrix. To avoid the con-
vergence to a local minimum, we perform k-means clustering using multiple starting
points and choose the results with the smallest sum of square error. This process is
repeated for all of the representations to obtain a collection of connectivity matrices

for all data types.
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Finally, we use the Weighted-based meta-clustering algorithm [50] to combine all
clustering results from each data representation to determine the final subtyping. In
short, the meta-clustering first calculates the weight for each pair of patients regard-
ing their chance to be grouped together. Next, it assigns a weight for each patient by
accumulating the weights of all pairs containing this patient. It then computes the
weighted cluster-to-cluster similarity from all connectivity matrices. Finally, it parti-
tions the cluster-to-cluster similarity matrix using hierarchical clustering to determine

the final subtypes.

2.1.3 Risk score prediction

The goal of this module is to calculate the risk score of new patients using their molec-
ular data. The high-level workflow for risk score prediction is shown in Figure 2.2.
This is a supervised learning method that learns from a training set in order to pre-
dict the risk scores each patient in the testing set. More specifically, the training set
consists of a set of patients with molecular data (e.g., mRNA, methylation, miRNA)
and known survival information while the testing set consists of patients with only
molecular data. By default, we provide TCGA datasets in our package as training
data, but users are free to provide training data if necessary. Using the training data,
this module will train the Cox regression model that can be used to predict the risk
scores of new patients. Below is the description of the method for one data type and
for multi-omics data.

Given a single data type as input, we merge the testing data with training data
and then perform dimension reduction and factor analysis to generate multiple rep-
resentations of this data. For each representation, we use the training data to train
the Cox regression model. This model aims at estimating a coefficient (; for each

corresponding predictor x; of the input data. After the model is trained, the risk
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Figure 2.2: Overall pipeline for risk prediction using SCFA. The method will be able
to learn from training data (patients with survival information) in order to predict risk
scores of patients in testing data (patients without survival information). SCFA first
merges training and testing sets together and then performs factor analysis. Using the
factor representations of the training set, the method trains a Cox regression model,
which will be utilized to predict risk factor of patients in the testing set

scores for new patients can be calculated as exp(}_;_, iz;), where n is the number

of features in the factor representation. In the Cox model, the risk score is defined

h(t)

as j.a5, where h(t) is the expected hazard at time t, and hg(t) is the baseline hazard

when all the predictors are equal zero. Patients with a higher risk score are likely to
suffer the event of interest (e.g., vital status or disease recurrence) earlier than the
one with a lower risk score. Here we use elastic net [51] implemented in the R-package
“glmnet” [52] to fit the model to better cope with the dynamic number of predictors.
Elastic net linearly combines Lasso and Ridge penalty during the training process to
select only the most relevant predictors that have important effects on the response
(the risk scores in this case). We use five-fold cross-validation to select the parameters
for the model. The final risk score for each patient is the geometric average of the
risk scores resulted from all representations.

In the case of multi-omics data, we repeat the same process (described above)
for each data type. We perform factor analysis to produce multiple representations,
resulting in a collection of representations from all data types. For a new patient, each
representation will produce an estimated risk score. The final risk score for the patient

is calculated as the geometric average of all predictions from all representations.
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2.2 Validation and Analysis Results

Here we assess the performance of SCFA using data obtained from 7,973 patients from
30 different cancer diseases downloaded from The Cancer Genome Atlas (TCGA). For
each of the 30 cancer datasets, we downloaded mRNA, miRNA, and methylation data.
Table 2.1 shows the details of each dataset. We also downloaded the clinical data for
these patients, which includes vital status and survival information. Using clinical
information, we comprehensively assess the ability of SCFA over existing methods
in unsupervised subtyping, clinical variable association analysis, and supervised risk

prediction.

2.2.1 Subtypting on 30 TCGA datasets

Here we compare the performance of SCFA with four state-of-the-art methods: Con-
sensus Clustering (CC) [26, 27], Similarity Network Fusion (SNF) [40], Cancer In-
tegration via Multikernel LeaRning (CIMLR) [43], and iClusterBayes (iCB) [36].
CC is a resampling-based approach, while SNF and CIMLR are graph-theoretical
approaches. The fourth method, iClusterBayes is a model-based approach and is
the enhanced version iClusterPlus. These methods were selected to represent three
distinctively different subtyping strategies. Among these methods, CC is the only
method that cannot integrate multiple data types. For CC, we concatenate the three
data types for the integrative analysis. We demonstrate that SCFA outperforms these
methods in identifying subtypes with significantly different survival profiles.

Note that here we focus on unsupervised learning, in which each dataset is par-
titioned independently without using any external information. For example, when
analyzing the glioblastoma multiforme (GBM) dataset, we use only the molecular
data (mRNA, miRNA, and methylation) of this dataset to determine the subtypes.

For each cancer dataset, we first use each of the five methods (SCFA, CC, SNF,
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Table 2.1: Description of 30 cancer datasets from The Cancer Genome Atlas (TCGA)

that will be used for validation of the proposed method SCFA.

Dataset #Samples mRNA Methylation miRNA

ACC 79 HiSeq RNASeq v2 Methylation450 HiSeq miRNASeq
BLCA 404 HiSeq RNASeq v2 Methylationd50 GASeq miRNASeq
BRCA 622 HiSeq RNASeq v2 Methylation4d50 HiSeq miRNASeq
CHOL 36 HiSeq RNASeq v2 Methylation450 HiSeq miRNASeq
CESC 304 HiSeq RNASeq v2  Methylation450 HiSeq miRNASeq
COAD 220 HiSeq RNASeq v2  Methylationd50 HiSeq miRNASeq
DBLC 47 HiSeq RNASeq v2 Methylation450 HiSeq miRNASeq
ESCA 183 HiSeq RNASeq Methylation450 HiSeq miRNASeq
GBM 273 HT HG-U133A Methylation27  HiSeq miRNASeq
GBMLGG 510 HiSeq RNASeq v2  Methylationd50 HiSeq miRNASeq
HNSC 228 HiSeq RNASeq Methylation450 HiSeq miRNASeq
KICH 65 HiSeq RNASeq v2 Methylation450 HiSeq miRNASeq
KIPAN 654 HiSeq RNASeq Methylation450 HiSeq miRNASeq
KIRC 124 HiSeq RNASeq Methylation27 GASeq miRNASeq
KIRP 271 HiSeq RNASeq v2 Methylation450 HiSeq miRNASeq
LAML 164  GASeq RNASeq Methylation27 GASeq miRNASeq
LGG 510 HiSeq RNASeq v2 Methylation450 HiSeq miRNASeq
LIHC 366 HiSeq RNASeq v2  Methylation450 HiSeq miRNASeq
MESO 86 HiSeq RNASeq v2 Methylation450 HiSeq miRNASeq
ov 286 HiSeq RNASeq v2  Methylation27  HiSeq miRNASeq
PAAD 178 HiSeq RNASeq v2 Methylation450 HiSeq miRNASeq
SARC 257 HiSeq RNASeq v2  Methylation450 HiSeq miRNASeq
SKCM 439 HiSeq RNASeq v2  Methylation450 HiSeq miRNASeq
STES 545 HiSeq RNASeq v2 Methylation450 HiSeq miRNASeq
TGCT 134 HiSeq RNASeq v2 Methylation450 HiSeq miRNASeq
THCA 499 HiSeq RNASeq v2  Methylation450 HiSeq miRNASeq
THYM 119 HiSeq RNASeq v2 Methylation4d50 GASeq miRNASeq
UCEC 234 GASeq RNASeq v2 Methylation4d50 HiSeq miRNASeq
uUcCSs 56 HiSeq RNASeq v2 Methylation450 HiSeq miRNASeq
UVvM 80 HiSeq RNASeq v2 Methylation450 HiSeq miRNASeq
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Table 2.2: Cox p-values of subtypes identified by SCFA, CC, SNF, iClusterBayes
(iCB), and CIMLR for 30 TCGA datasets. The cells highlighted in yellow have Cox
p-values smaller than 5%. In each row, cells highlighted in green have the most
significant p-value. SCFA outperforms other methods by having significant p-values
in most datasets (24 out of 30 datasets).

SCFA CC SNF iCB  CIMLR
ACC 3.4¢-03 5.4e-04 [43e-05 9.2¢-04 3.4c-01

BLCA 1.1e-01 1.1e-01 5.1e-01 4.7e-01
BRCA 2.9e-02 1.2e-01 2.7e-02 4.9e-03
CESC 5.8e-02 5.1e-01 2e-02 1.9e-01
DLBC 5.1e-01  7.5e-01 2.9e-01 7.4e-01
ESCA 7.7e-01  3.9e-01 7.9e-01 5.6e-01
GBM 3.2e-01 2.1e-02 1.1e-01 8.1e-02
GBMLGG 5.8e-14 1.6e-04 8e-02 6.4e-10
HINSC 5e-01 3.7¢-01 3.7¢-01 4e-01

KICH 8.7e-01 T7e-01 6.9e-01 4.6e-01
KIPAN 9.3e-08 2.1e-07 1.6e-09 9.8e-05
KIRP 4.5e-01 5.3e-03 3e-03 1.9e-02

LAML 5.8¢-04 3.9e-02 1.7e-03 9e-01

LGG 6.6e-07 1.6e-14 1.1e-01 8.3e-15
MESO 3.1e-01  4.2e-04 3.7e-02 1.1e-02
PAAD 1.1e-02 7.4e-04 2.3e-03 2e-03

SARC 2.4e-01 4.4e-02 4.3e-02 5.6e-02

SKCM 1.6e-03 6.3e-01 4.8e-01 8.4e-03
STES 3.9e-02  2e-01 1.6e-01 3.4e-02

THCA 7.9e-01 6.2e-01 7.8e-01 8.6e-03
THYM 1.5e-01 9.7e-02  9e-03 1.2e-01
UCEC 8.9e-02 1.8e-02 5.9e-02 4.6e-02
UcCs 1.6e-01  8.6e-01 9.6e-01 3.6e-01
UVM 6.1e-04 1.7e-04 6.6e-02 5.8e-04
CHOL 3.1e-01  7.9e-02 5.7e-01 9.1e-01 3.4e-01
COAD 4.7e-01 5.8e-01 1.3e-01 2.2e-01 5.6e-01
KIRC le-01 8.3e-01 6.9e-01 8.3e-01 9.1e-02
LIHC 3.8e-01 8.8e-01 3.3e-01 9.3e-02 1.9e-01
ov 4.2e-01 6.1e-01 4.4e-01 4.6e-01 5.4e-01
TGCT 3.9e-01 7.4e-01 8.4e-01 T7.1le-01 8.4e-01

#Significant 24 8 12 11 13
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CIMLR, and iClusterBayes) to integrate the molecular data (mRNA, miRNA, and
methylation) in order to determine patient subgroups. For each method, we calculate
the Cox p-value that measures the statistical significance in survival differences be-
tween the discovered subtypes. The Cox p-values of subtypes discovered by the five
methods for the 30 datasets are shown in Table 2.2. Among the 30 datasets, there
are 6 datasets (CHOL, COAD, KIRC, LIHC, OV, and TGCT) for which no method
is able to identify subtypes with significant survival differences. In the remaining 24
datasets, SCFA is able to obtain significant Cox p-values in all of them while CC,
SNF, iClusterBayes, and CIMLR have significant p-values in only 8, 12, 11, and 13
datasets, respectively. Also, SCFA has the most significant p-values in 19 out of 24
datasets. Regarding time complexity, SCFA, CC, SNF, and CIMLR are able to ana-
lyze each dataset in minutes, whereas iClusterBayes can take up to hours to analyze
a dataset.

To better understand the usefulness of data integration, we also calculated the
Cox p-values obtained from individual data types and compared them to Cox p-
values obtained from data integration (when mRNA, miRNA, and methylation are
analyzed together). For each dataset, we perform subtyping using SCFA for each
data type and report the Cox p-value of the discovered subtypes. The distributions
of Cox p-values for data integration and for individual data types using SCFA are
shown in Figure 2.3. Among 30 cancer datasets, the Cox p-values obtained from data
integration has the median —log10(p) of 2.6, compared to 1.7, 1.1, and 1.1 from gene
expression, methylation and miRNA data. Interestingly, subtypes discovered using
gene expression data have significantly different survival in 18 over 30 datasets, com-
pared to 10 and 14 of methylation and miRNA data, respectively. The figure also
shows that the Cox p-values obtained from gene expression data are more significant

than those obtained from methylation and miRNA data (p = 0.046 using one-sided
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Wilcoxon test). However, we note that miRNA and methylation also provide valu-
able information in data integration, when all data types are analyzed together. As
shown in Figure 2.3, the Cox p-values obtained from data integration are more sig-
nificant than those of any individual data type (including mRNA) with a one-sided
Wilcoxon test p-value of 0.004. This means that each of the three data types provides
meaningful contributions to the data integration.

To understand how other methods perform with respect to each data type, we
also plot the distributions of Cox p-values obtained from each data type using CC,
SNF, iClusterBayes, and CIMLR (Figure 2.4). CC is the only method that produces
comparable Cox p-values across the three data types. SNF and CIMLR perform

better using miRNA, while iClusterBayes favors mRNA and miRNA data.

2.2.2 Discovered subtypes and clinical variables

There are four important clinical variables that are available in more than 10 TCGA
datasets: age (21 datasets), gender (25 datasets), cancer stages (24 datasets), and
tumor grades (12 datasets). To understand the association between these variables
and the discovered subtypes, we perform the following analyses: (1) Fisher’s exact
test to assess the association between gender (male and female) and the discovered
subtypes; (2) ANOVA test to assess the age difference between the discovered sub-
types; and finally (3) calculate the agreement between the discovered subtypes and
known cancer stages/tumor grades using Adjusted Rand Index (ARI) and Normalized
Mutual Information (NMI) (see Appendix A).

Figure 2.5 shows the p-value distribution for gender, age, and survival analysis
(Cox p-value). Tables 2.3 and 2.4 show the p-values obtained for gender and age,
respectively. The four methods, SCFA, CC, SNF, and CIMLR, are not biased toward

gender with only some significant p-values. In contrast, iClusterBayes is subject to
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Figure 2.3: Cox p-values of subtypes identified by SCFA. To better understand the
usefulness of data integration, we calculate the Cox p-values obtained from individual
data types and compared them to Cox p-values obtained from data integration (when
mRNA, miRNA, and methylation are analyzed together). The horizontal axis shows
the data types while the vertical axis shows the minus log10 p-values. Overall the Cox
p-values obtained from data integration are significantly smaller than those obtained
from individual data types (p = 0.004 using one-sided Wilcoxon test).

gender bias with significant p-values in 12 out of 25 datasets (Table 2.3). Regarding
age, all methods have comparable p-values (Table 2.4).

Figure 2.6 and Table 2.5 show the ARI values that represent the agreement be-
tween the discovered subtypes and known cancer stages and tumor grades. The
median ARI of SCFA and SNF are comparable and they are higher than those of
CC, iClusterBayes, and CIMLR. Regarding tumor grade, the ARI values of SCFA
are higher than the rest. Figure 2.7 and Table 2.6 shows the NMI values. SCFA has
higher NMI values in both comparisons. However, for both cancer stage and tumor

grade, the ARI and NMI values of all methods are low, meaning that there is a low
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Figure 2.4: Cox p-values of subtypes identified by SCFA, SNF, iClusterBayes, CC,
and CIMLR using different data types.

agreement between the known stages/grades and the discovered subtypes using any

of the subtyping methods.

2.2.3 In-depth analysis of the Pan-Kidney (KIPAN) dataset

Figure 2.8 shows the Kaplan-Meier survival analysis [53] of the discovered subtypes
using the KIPAN dataset. SCFA discovers five subtypes, each with a very different
survival probability. Subtype 1 has the lowest survival rate while Subtype 5 has the
highest survival rate. All patients of Subtype 1 die within three years whereas 85% of
patients in Subtype 5 survive at the end of the study (after 15 years). Figure 2.9 shows
the age distribution of each subtype, in which patients in Subtype 1 (low survival)
are slightly older than patients in Subtype 5 (high survival) but there is no significant
difference in age between the two groups. Patients in Subtypes 2, 3, and 4 are older

than those of Subtype 1 (low survival) but they have higher survival probability.
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Figure 2.5: P-values obtained from comparing the discovered subtypes against gender,
age, and survival information. Fisher’s exact test was used to assess the statistical
significance in the association between the discovered subtypes and gender while
ANOVA was used to assess age difference. For survival analysis, Cox regression was
used to assess the statistical difference in survival profiles. The horizontal axis shows
the clinical variables while the vertical axis shows the minus log10 p-values.
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Figure 2.6: Adjusted Rand Index (ARI) values obtained from comparing the dis-
covered subtypes against known cancer stages (left panel) and tumor grades (right
panel).
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Figure 2.7: Normalized Mutual Information (NMI) values obtained from comparing
the discovered subtypes against known cancer stages (left panel) and tumor grades
(right panel).
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Figure 2.8: Kaplan-Meier survival analysis of the Pan-kidney (KIPAN) dataset. The

horizontal axis represents the time (day) while the vertical axis represents the esti-
mated survival probability.
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Table 2.3: P-values obtained from Fisher’s exact test that assesses the statistical
significance of the association between the discovered subtypes and gender. NA in-
dicates that there is not enough data to perform the test or all patients have the
same gender. Cells highlighted in green have p-values smaller than the significance

threshold of 0.05.

SCFA CC SNF iCB  CIMLR
ACC 4.5e-01 7.1e01 1.1e-01 3.2e-01 4.9e-01
BLCA 2.4e-01  2.3e-01  2.6e-01  4.4e-01
BRCA 7.4e-02  5.4e-02  2.1e-01 -M
CESC NA NA NA NA NA
CHOL 1.0e+00 1.1e-01  3.4e-01  1.6e-01 1.0e+00
COAD 5.7e-01  3.9e-01  7.5e-01 4.2¢-01
DLBC 1.6e-01  5.9¢-01  1.0e4+00 2.4e-06 3.1e-01
ESCA 8.8¢-01  3.0e-01  1.0e+00 6.6e-01 8.3¢-01
GBM 6.7e-01  4.6e-01  7.7e-01 3.6e-01
GBMLGG 4.9¢-01  3.7¢-01 7.5¢-01
HNSC 1.9e-01  1.9e-01 8.2e-01  6.7e-01
KICH 6.5e-01  3.1e-01 1.0e+00
KIPAN 5.8¢-02
KIRC 2.3e-01
KIRP 1.0e+00
LAML 8.0e-01  7.7e-01  4.3e-01  9.6e-02 6.3e-01
LGG 5.7¢-02  1.0e-01  3.6e-01 4.2e-01
LIHC 5.1e-01
MESO 2.2e-01  5.3e-01 7.6e-01 2.1e-01 5.8e-02
ov NA NA NA NA NA
PAAD 1.0e+00 8.1e-01 1.4e-01
SARC
SKCM 3.5e-01  6.7e-01  4.2e-01 1.2e-01 6.4e-01
STES T13602 5.9¢-02
TGCT NA NA NA NA NA
THCA 8.7e-01  7.9e-01 3.7e-01  4.8¢-01 4.6e-01
THYM 6.8¢-01  5.7e-01  6.3e-01 5.3e-01
UCEC NA NA NA NA NA
UCSs NA NA NA NA NA
UVM 5.0e-01  1.0e4+00 1.0e+00 6.2¢-02 5.2e-01
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Table 2.4: P-values obtained from ANOVA that assesses statistical significance in age
difference between the discovered subtypes. Cells highlighted in green have p-values
smaller than the significance threshold of 0.05.

SCFA CC SNF iCB CIMLR

ACC NA NA NA NA NA
BLCA 1.5e-01

BRCA 6.2¢-02  2.0e-01

CESC 4.6e-01 3.8e-01 1.3e-01
CHOL NA NA NA NA NA
COAD 9.3e-01 4.3e-01 5.4e-01 6.4e-02 3.1e-01
DLBC 8.0e-01 2.4e-01 8.6e-01 4.9e-01 8.3e-01
ESCA NA NA NA NA NA
GBM

GBMLGG 1.1e-01

HNSC 1.5e-01 1.1e-01 5.3e-01 9.2e-01 4.2¢e-01
KICH 3.2e-01 1.3e-01 3.0e-01 4.4e-01 8.1e-02
KIPAN 1.3e-01

KIRC 1.9e-01 6.8e-01 6.1e-01 9.9e-01 6.4e-01
KIRP 2.9e-01 2.3e-01 1.0e-01 9.6e-01
LAML

LGG

LIHC 6.4e-01

MESO NA NA NA NA NA
ov 4.7e-01 1.3e-01 2.1e-01
PAAD 7.6e-02  9.8e-01 5.0e-01 1.7e-01 5.5e-01
SARC NA NA NA NA NA
SKCM 1.5e-01 8.8e-01 1.1e-01
STES 6.1e-01 5.1e-01 4.5e-01 8.8e-01
TGCT NA NA NA NA NA
THCA 5.8e-01  2.7e-01 9.5e-02  6.0e-01

THYM NA NA NA NA NA
UCEC F166-031 6.0e-01
UcCs NA NA NA NA NA
UvVM NA NA NA NA NA
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Table 2.5: Adjusted Rand Index (ARI) values obtained from comparing the discovered

subtypes against known cancer stages and tumor grades.

Cancer Stage Tumor Grade
SCFA CC SNF iCB CIMLR ‘ SCFA CC SNF iCB CIMLR

ACC 0.05 0.02 0.07 0.04 0.02 NA NA NA NA NA
BLCA 0.02 0 0.03 0.03 0.02 0.03 -0.01 0.04 0.01 0.02
BRCA -0.02 0 -0.01 0 0.01 NA NA NA NA NA
CESC 0 0.01 -0.01 O 0.02 0 0 0.01 003 0
CHOL -0.02  -0.02 -0.01 0 -0.02 NA NA NA NA NA
COAD -0.03  -0.01 0 -0.01 0 NA NA NA NA NA
DLBC -0.02 001 O 0.05 -0.05 NA NA NA NA NA
ESCA 0.08 0.08 0.07 0 0.07 NA NA NA NA NA
GBM NA NA NA NA NA NA NA NA NA NA
GBMLGG NA NA NA NA NA 0.03 0.04 0.04 0.01 0.05
HNSC -0.03 0 -0.01 0 0 -0.01 0 001 0 0
KICH 0.05 0 0.11  0.05 0.04 NA NA NA NA NA
KIPAN 0.07 0.01 0.04 0.03 0.06 0.04 0 0.01 0.01 0.02
KIRC 0.02 -0.03 -0.01 -0.01 -0.01 0.06 0.02 0.02 0.05 -0.01
KIRP 0.03 0.01 0.15 0.02 0.1 NA NA NA NA NA
LAML NA NA NA NA NA NA NA NA NA NA
LGG NA NA NA NA NA 0.03 0.03 0.04 0.02 0.05
LIHC 0 0 0 0.02 0.03 0.02 0 0.01 0.03 0.01
MESO -0.01  -0.01 0.03 0 -0.02 NA NA NA NA NA
ov 0 002 0 -0.01 0.01 0.02 0 -0.01  -0.02 0.01
PAAD 0.1 -0.01 0.04 0.12 0.05 0.06 -0.01 0.06 0.06 0.05
SARC NA NA NA NA NA NA NA NA NA NA
SKCM 0.02 0 0.02 0.01 0.01 NA NA NA NA NA
STES 0.01 0.02 0.01 0.01 0.01 0 004 0 -0.02 -0.01
TGCT 0.03 0.05 0.03 0.02 0.03 NA NA NA NA NA
THCA -0.01  0.01 0.01 0.01 0.02 NA NA NA NA NA
THYM NA NA NA NA NA NA NA NA NA NA
UCEC 0.01 -0.03 0.04 0.01 0.01 0.08 0.12 0.06 0.02 0.1
ucCs 0.03 0 0.05 0.02 -0.03 NA NA NA NA NA
UVM 0.04 0.03 0.05 0.09 0.03 NA NA NA NA NA
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Table 2.6: Normalized Mutual Information (MNI) values obtained from comparing
the discovered subtypes against known cancer stages and tumor grades.

Cancer Stage Tumor Grade
SCFA CC SNF iCB CIMLR ‘ SCFA CC SNF iCB CIMLR
ACC 0.12 0.06 0.1 0.11 0.06 NA NA NA NA NA
BLCA 0.05 0.02 0.03 0.04 0.03 0.06 0.05 0.1 0.06 0.05
BRCA 0.03 0.01 0.02 0.02 0.04 NA NA NA NA NA
CESC 0.04 0.06 0.03 0.05 0.06 0.03 0.01 0.01 0.04 0.04
CHOL 0.15 0.13 0.08 0.2 0.16 NA NA NA NA NA
COAD 0.08 0.05 0.06 0.05 0.06 NA NA NA NA NA
DLBC 0.11 0.09 0.07 0.1 0.02 NA NA NA NA NA
ESCA 0.13 0.12 0.09 0.09 0.09 NA NA NA NA NA
GBM NA NA NA NA NA NA NA NA NA NA
GBMLGG NA NA NA NA NA 0.06 0.03 0.06 0.01 0.06
HNSC 0.05 0.02 0.01 0.03 0.05 0.06 0.04 0.02 0.03 0.03
KICH 0.19 0.12 0.1 0.12 0.04 NA NA NA NA NA
KIPAN 0.07 0.05 0.06 0.03 0.05 0.04 0.03 0.02 0.06 0.02
KIRC 0.04 0.07 0.04 0.01 0.01 0.12 0.11 0.1 0.08 0.04
KIRP 0.08 0.02 0.1 0.02 0.07 NA NA NA NA NA
LAML NA NA NA NA NA NA NA NA NA NA
LGG NA NA NA NA NA 0.09 0.03 0.06 0.01 0.06
LIHC 0.03 0.02 0.02 0.03 0.03 0.01 0.01 0.01 0.04 0.03
MESO 0.09 0.04 0.02 0.05 0.06 NA NA NA NA NA
ov 0.05 0.02 0.05 0.02 0.04 0.05 0.03 0.02 0.02 0.02
PAAD 0.13 0.04 0.08 0.11 0.06 0.09 0.03 0.1 0.08 0.06
SARC NA NA NA NA NA NA NA NA NA NA
SKCM 0.04 0.02 0.03 0.04 0.05 NA NA NA NA NA
STES 0.06 0.05 0.05 0.05 0.05 0 0.02 0 0.01 0.02
TGCT 0.12 0.12 0.09 0.09 0.08 NA NA NA NA NA
THCA 0.03 0.03 0.03 0.03 0.05 NA NA NA NA NA
THYM NA NA NA NA NA NA NA NA NA NA
UCEC 0.05 0.04 0.04 0.07 0.07 0.16 0.07 0.2 0.06 0.15
ucCs 0.29 0.15 0.15 0.21 0.11 NA NA NA NA NA
UVM 0.13 0.08 0.08 0.08 0.11 NA NA NA NA NA
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Figure 2.9: Age distribution for each subtype of the KIPAN dataset.

To show the molecular signature of each subtype, we also plot the heatmaps that
visualize different subtypes of KIPAN patients on important genes/features. For each
data type, we calculate the p-value for each feature using ANOVA and then choose
20 features/genes with the most significant p-value. Figure 2.10 shows the heatmap
for mRNA (left panel), methylation (middle panel) and miRNA (right panel). The
methylation data clearly differentiates Subtype 5 (highest survival probability) from
the rest. In the listed probes (DNA regions), Subtype 5 has a consistently low level
of methylation compared to other subtypes. However, methylation data alone cannot
differentiate among the rest of the patients (Subtypes 1, 2, 3, and 4). Using informa-
tion from mRNA and miRNA, SCFA can further divide the rest of the patients into
four subtypes with very different survival profiles.

We also perform variant analysis to look for mutations that are highly abundant
in the short-term survival groups but not in the long-term survival groups, as shown

in Figure 2.11. In this figure, each point represents a gene and its coordinates are
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Figure 2.10: Heatmap of subtypes discovered by SCFA for the KIPAN dataset.

the number of patients having at least a variant in that gene in each group. In
principle, we would look for mutated genes in the top left and the bottom right
corners. From this figure, we can identify four notable markers: VHL, PBRMI1,
MUC4, and FRG1B. Among these, MUC4 is known to be associated with exophytic
growth of clear cell renal cell carcinoma [54]. VHL has been reported to be linked
to a primary oncogenic driver in kidney cancers [55]. Functional studies show that
HIF is sufficient for transformation caused by loss of VHL, thereby establishing HIF
as the primary oncogenic driver in kidney cancers. PBRM1 is also a major clear cell

renal cell carcinoma (ccRCC) gene [56].

2.2.4 Risk score prediction using multi-omics data

We also use the same set of data to demonstrate the ability of SCFA in predicting risk
score of each patient. For each of the TCGA datasets, we randomly split the data into
two equal sets of patients: a training set and a testing set. We use the training set to
train the model and then predict the risk for patients in the testing set. The predicted
risk scores are then compared with the true vital status and survival information using
Cox p-value and concordance index (C-index) [57]. Concordance index represents
the probability that, for a pair of randomly chosen patients, the patient with higher
predicted risk will experience death event before the other patient. On the other hand,

Cox p-value measures how significant the difference in survival when correlating with
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Figure 2.11: Number of patients in each group for each mutated gene for KIPAN.
The horizontal axis represents the count in subtypes with low survival rate (subtype
1, 2, and 3), while the vertical axis shows the count for subtypes with high survival
(subtype 4 and 5) rate.

predicted risk scores. This process is repeated 20 times for each dataset, and the
average C-index and —logl0(p) for each dataset are calculated using results from
these 20 runs. We note that some datasets do not have enough patients with either
event (survive or death), which leads to errors for Cox regression. For that reason,
we removed five datasets (DLBC, KIRP, TGCT, THYM, UCEC) from the analysis,
and report survival prediction for only 25 datasets without errors.

Figure 2.12 shows the distributions of C-indices and Cox p-values (in minus log10
scale), while Table 2.7 shows the exact values calculated for each dataset. We calculate
the C-index and Cox p-value obtained from individual data types and compared them
to those obtained from data integration (when mRNA, miRNA, and methylation are
analyzed together). As shown in Figure 2.12a, the accuracy of the prediction using
data integration is generally higher than the accuracy obtained from individual data
types. Predictions using data integration have a median C-index of 0.62, compared
to 0.57, 0.54, and 0.57 when using mRNA, methylation, and miRNA, respectively.

Similar results are also observed in the evaluation using Cox p-values (Figure 2.12b).
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The Cox p-values obtained from data integration has the median —log10(p) of 1.9,
compared to 1.0, 0.7, and 0.9 for mRNA, methylation, and miRNA. The results
demonstrate that we can potentially predict the risk score of each patient using only
molecular data. More importantly, the prediction using multi-omics data is generally

more accurate than using individual data types.
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Figure 2.12: Evaluation of risk prediction using concordance index (C-index) and
Cox p-values. For each dataset, we calculate the C-index and Cox p-values between
predicted risk scores and known survival of patients. To better understand the use-
fulness of data integration, we calculate the C-index and Cox p-value obtained from
individual data types and compared them to those obtained from data integration.
(a) Distributions of C-indices for data integration and individual data types. (b)
Distributions of Cox p-values for data integration and individual data types. SCFA
is able to predict risk scores that are highly correlated to true survival with a median
C-index of 0.62 and Cox p-value of 0.01. In addition, the prediction is more accurate
when all data types are analyzed together. The C-indices are significantly higher and
the p-values are significantly smaller when all data types are combined (p = 0.0007
and p = 0.002 using one-sided Wilcoxon test).
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Table 2.7: Risk score prediction evaluated by concordance index (C-index) and Cox
p-values.

Dataset C-index -log10(p)

Integration mRNA Methylation microRNA ‘ Integration mRNA Methylation microRNA
ACC 0.78 0.79 0.59 0.72 3.32 3.84 0.66 2.73
BLCA 0.59 0.55 0.55 0.54 2.44 1.1 0.9 0.73
BRCA 0.62 0.55 0.52 0.51 1.38 0.77 0.28 0.14
CESC 0.68 0.63 0.54 0.64 3.42 2.15 1.4 2.02
CHOL 0.56 0.56 0.51 0.55 0.38 0.36 0.2 0.24
COAD 0.56 0.52 0.51 0.57 0.52 0.09 0.09 0.48
ESCA 0.53 0.52 0.5 0.51 0.35 0.09 0.18 0.06
GBM 0.55 0.51 0.53 0.53 2.44 0.3 1.04 1.12
GBMLGG 0.77 0.79 0.72 0.73 14.1 11.56 4.83 5.14
HNSC 0.59 0.59 0.51 0.55 1.41 1.81 0.22 0.48
KICH 0.68 0.6 0.63 0.57 1.35 0.62 2.3 1.31
KIPAN 0.79 0.77 0.73 0.74 24.42 14.53 11.65 20.54
KIRC 0.58 0.59 0.54 0.6 0.79 1.24 0.5 0.94
LAML 0.63 0.61 0.56 0.59 2.45 1.94 1.06 1.16
LGG 0.77 0.78 0.73 0.73 14.02 11.44 5.21 7.53
LIHC 0.62 0.53 0.55 0.57 1.9 0.36 0.86 0.9
MESO 0.72 0.69 0.53 0.63 4.46 3.72 0.22 2.93
ov 0.54 0.51 0.53 0.51 0.41 0.12 0.72 0.14
PAAD 0.71 0.67 0.56 0.59 3.35 2.58 0.79 1.75
SARC 0.62 0.57 0.53 0.53 1.19 0.98 0.19 0.26
SKCM 0.61 0.53 0.53 0.52 2.32 0.55 0.32 0.24
STES 0.54 0.51 0.52 0.51 0.4 0.11 0.29 0.16
THCA 0.66 0.53 0.54 0.51 1.26 0.44 0.33 0.57
ucCs 0.58 0.53 0.51 0.51 0.68 0.15 0.06 0.08
UvM 0.83 0.67 0.69 0.72 2.62 1.14 2.87 1.33
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2.3 Conclusion (SCFA)

We presented a novel method named SCFA for disease subtyping and risk assessment
using multi-omics data. The contribution of SCFA is two-fold. First, it utilizes
a robust dimension reduction procedure using autoencoder and factor analysis to
retain only essential signals. Second, it allows researchers to predict risk scores of
patients using multi-omics data — the attribute that is missing in current state-of-
the-art subtyping methods.

To evaluate the developed method, we examined data obtained from 7,973 patients
related to 30 cancer diseases downloaded from The Cancer Genome Atlas (TCGA).
SCFA was compared against four state-of-the-art subtyping methods, CC, SNF, iClus-
terBayes, and CIMLR. We demonstrate that SCFA outperforms existing approaches
in discovering novel subtypes with significantly different survival profiles. We also
demonstrate that the method is capable of exploiting complementary signals avail-
able in different types of data in order to improve the subtypes. Indeed, the Cox
p-values obtained from data integration are more significant than those obtained
from individual data types.

To further demonstrate the usefulness of the developed method, we also performed
a risk assessment using molecular data. We demonstrate that SCFA is able to predict
risk scores that are highly correlated with vital status and survival probability. The
correlation between predicted risk scores and survival information has a median of
0.62 and can be as high as 0.83. More importantly, we demonstrate that the risk

prediction becomes more accurate when more data types are involved.
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Part 11

Single-cell RN A Sequencing
(scRNA-seq): Data Mining of
High-Dimensional, Large-scale

Biological Data
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Chapter 3

Mining scRNA-seq Data:
Background, Significance, and

Current Challenges

Bulk RNA sequencing (RNA-seq) has been the primary tool to study biological sys-
tems. Despite its popularity, bulk sequencing is unable to measure the heterogeneity
inside complex tissues and cell-to-cell variability. This is due to the fact that the
measurements from bulk sequencing technologies usually reflect the average gene
expression across a cell population. Recent advances in microfluidic and sequenc-
ing technologies have allowed us to measure the expression profiles of individual
cells [58, 59]. By allowing us to monitor the biological processes at the single-cell
resolution, single-cell RNA sequencing technologies have enabled new research di-
rections in genomics and transcriptomics research. These include a various atlas
projects [60, 61] aiming at building the references of all cell types in model organ-
isms, transcriptome landscape visualization in complex tissues [62, 63], inference of

cell developmental trajectories [64], inferring gene regulatory network [65], in silico
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cellular deconvolution [66, 67], and predicting cell spatial position [68, 69].

Such comprehensive decomposition of complex tissues holds enormous potential
in both basic research and clinical applications [70-72]. By sequencing the RNA from
individual cells, Single-cell RNA sequencing (scRNA-seq) is especially useful in fast-
changing environments, such as tumor tissues or developing embryos. This allows
researchers to see which genes are active in each cell, providing a more detailed
and accurate picture of cellular function [58, 59]. scRNA-seq has also been used
to identify new cell types, study the heterogeneity of cells in different tissues, and
identify the mechanisms underlying diseases such as cancer. It has also been used to
study environments with diverse composition, such as the microbiome.

The analysis of scRNA-seq data typically involves several steps. First, the raw
data from the sequencing experiment must be processed and filtered to remove noise
and low-quality data. This preprocessing can also include the removal of unwanted
variation, such as batch effects or technical variation, or recovery of missing values
due to the dropout phenomenon through data imputation. Next, the expression levels
of genes in each cell must be normalized, allowing for comparison across cells. After
the upstream analysis, scRNA-seq data usually is available as a table containing the
gene expression levels for individual cells. Using this data, we can perform several
downstream analyses, including clustering, visualization, classification, or pseudo-
time inference, to extract useful biological insights.

Defining cell types through unsupervised learning, also known as cell segregation
or clustering, is considered the most powerful application of scRNA-seq data anal-
ysis [73]. This has led to the creation of numerous atlas projects [60, 61], which
aim to build the references for all cell types in various model organisms at multi-
ple developmental stages. Widely-used methods in this category include SC3 [74],
SEURAT [68], SINCERA [75], CIDR [76], and SCANPY [77]. Another fundamental
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analysis of scRNA-seq data is the visualization of transcriptome landscape. Computa-
tional methods in this category aim at representing the high-dimensional scRNA-seq
data in a low-dimensional space while preserving the relevant structure of the data.
Non-linear methods [63], including Isomap [78], Diffusion Map [79], t-SNE [80], and
UMAP [62], have been recognized as efficient techniques to avoid overcrowding due
to the large number of cells, while preserving the local data structure. Among these,
t-SNE is the most commonly used technique while UMAP and SCANPY are recent
methods.

Once the cellular subpopulations have been determined and validated, classifica-
tion techniques can be used to determine the composition of new datasets by classify-
ing cells into discrete types. Dominant classification methods include XGBoost [81],
Random Forest (RF) [82], Deep Learning (DL) [83], and Gradient Boosting Machine
(GBM) [84]. Given the cell subpopulations information, researchers will be able
to perform pseudo-time inference, which defines the biological progression of cells
through their maturing stages [85]. This application, namely trajectory inference,
computationally models multiple cellular processes, such as cell cycle, proliferation,
differentiation, and activation [86, 87|, by ordering the cells along developmental
trajectories. Multiple trajectory inference tools have been developed, in which Mono-
cle [88], TSCAN [89], Slingshot [64], and SCANPY [77] are considered state-of-the-art
and are widely used for pseudo-temporal ordering.

Besides, scRNA-seq techniques have limitations including the high cost of the
technology and the high rate of technical noise. This is because the process of isolating
RNA from a single cell is very complex, and it is difficult to ensure that the RNA
is not degraded during the process. This leads to a high rate of missing values in
the data, which is commonly referred to as the dropout phenomenon. One way to

address this issue is to use data imputation techniques to recover the missing values.
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However, the imputation process can be challenging, and plausibly introduce bias
into the data.

Despite its limitations, scRNA-seq remains a powerful tool with the potential to
revolutionize our understanding of cellular biology. Its widespread utilization across
various research domains, including cancer [90], immunology [91], or virology [92], has
resulted in the massive amounts of scRNA-seq data being generated each year [93].
In addition, researchers have recently developed computational methods, known as
cellular deconvolution, to obtain partial benefits of scRNA-seq analysis from existing
bulk RNA-seq data. This innovative approach enables the inference of cell-type com-
position from bulk RNA-seq data, thereby facilitating the identification of cell types
associated with diseases and other phenotypes.

Although scRNA-seq has gained wide popularity for studying the transcriptome
of individual cells, several challenges persist in the analysis and interpretation of the
data. Firstly, scRNA-seq data is high-dimensional, with thousands of genes repre-
senting each cell. This poses difficulties in visualizing and comprehending the data.
Analyzing relationships between thousands of genes and millions of cells, as required
for applications like trajectory inference or gene regulatory network inference, can
be computationally demanding and time-consuming. Secondly, scRNA-seq data is
characterized by noise and sparsity, with numerous missing values and outliers. This
makes it challenging to identify consistent patterns and trends, potentially leading
to false positives or false negatives in the results. Thirdly, technical noise is often
introduced during the sample preparation and sequencing process, stemming from
low starting material and amplification procedures. Such noise introduces inconsis-
tencies in the data and hampers comparisons across different experiments. Lastly,
scRNA-seq is expanding to measure additional modalities beyond gene expression,

such as protein expression, chromatin accessibility, and DNA methylation. Integrat-
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ing and interpreting these diverse modalities of data presents its own set of challenges.
Despite these obstacles, scRNA-seq remains a powerful tool for studying cell biology.
Ongoing technological advancements are expected to address these challenges, further
enhancing the capabilities of scRNA-seq for researchers.

One of the main challenge for scRNA-seq computational approaches is the expo-
nentially increasing in size of scRNA-seq dataset. Recently, it is becoming common
for single-cell studies to generate and publish datasets with hundreds of thousands to
millions of samples. Processing and analyzing this amount of data would prove to be
a challenging problems. Moreover, due to the large number of genes in scRNA-seq
datasets, the differences between cells in high dimensional space become more diffi-
cult to identify, this is known as the “curse of dimensionality”[47]. For researchers
to be able to take full advantage of these rich datasets, efficient computational meth-
ods are required. Current computational approaches usually apply feature selection
and/or dimension reduction techniques to reduce the noise and increase the scala-
bility. Feature selection aims to indentify the most informative genes, for example
ones with highest variance [94] or dispersion [95]. Dimension reduction methods,
including PCA [74, 96], t-SNE [97], UMAP [98], random projection [50], and autoen-
coder [99, 100], are often used by scRNA-seq data analysis methods to project the
data to lower dimensional space.

Another outstanding challenge is the “dropout” phenomenon where a gene is
highly expressed in one cell but does not express at all in another cell [101]. These
dropout events usually occur due to the limitation of sequencing technologies when
only a small amount of starting mRNA in individual cells can be captured, leading to
low sequencing depth and failed amplification [102, 103]. Since downstream analyses
of scRNA-seq heavily rely on the accuracy of expression measurement, it is crucial

to impute the zero expression values introduced by the dropout phenomenon and
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sequencing errors.

To address the challenges mentioned above, we develop four novel methods for
scRNA-seq data mining and interpretation. Chapter 4 describes a new analysis frame-
work, called single-cell Decomposition using Hierarchical Autoencoder (scDHA), that
can efficiently detach noise from informative biological signals. In one joint framework,
the scDHA software package conducts cell segregation through unsupervised learn-
ing, dimension reduction and visualization, cell classification, and time-trajectory
inference. We will show that scDHA outperforms state-of-the-art methods in all
four sub-fields: cell segregation through unsupervised learning, transcriptome land-
scape visualization, cell classification, and pseudo-time inference. Chapter 5 describes
a novel imputation method, named single-cell Imputation via Subspace Regression
(scISR), that can reliably recover the dropout values of scRNA-seq data. We will
show that scISR consistently improves the quality of cluster analysis regardless of
dropout rates, normalization techniques, and quantification schemes. Chapter 6 de-
scribes a new approach, single-cell Imputation using Neural Network (scINN), that
can reliably impute missing values from single-cell data. Chapter 7 describes another
imputation approach, single-cell Imputation using Residual Network (scIRN), that
can reliably impute missing values from single-cell data. We will demonstrate that
scINN and scIRN outperform existing imputation methods (MAGIC [104], scImpute
[105], SAVER [106], and DrImpute [107]) in improving the identification of cell sub-

populations and the quality of biological landscape.



39

Chapter 4

scDHA: Fast and Precise
Single-cell Data Analysis using a

Hierarchical Autoencoder

This chapter is based on the following publication: Duc Tran, Hung Nguyen, Bang
Tran, Carlo La Vecchia, Hung N. Luu, and Tin Nguyen. Fast and precise single-cell
data analysis using hierarchical autoencoder. Nature Communications. 2021. DOI:

10.1058/s41467-021-21312-2

A primary challenge in single-cell RNA sequencing (scRNA-seq) studies comes
from the massive amount of data and the excess noise level. To address this challenge,
we introduce an analysis framework, named single-cell Decomposition using Hierar-
chical Autoencoder (scDHA), that reliably extracts representative information of each
cell. The scDHA pipeline consists of two core modules. The first module is a non-
negative kernel autoencoder able to remove genes or components that have insignifi-
cant contributions to the part-based representation of the data. The second module is

a stacked Bayesian autoencoder that projects the data onto a low-dimensional space
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(compressed). To diminish the tendency to overfit of neural networks, we repeatedly
perturb the compressed space to learn a more generalized representation of the data.
In an extensive analysis, we demonstrate that scDHA outperforms state-of-the-art
techniques in many research sub-fields of scRNA-seq analysis, including cell segre-
gation through unsupervised learning, visualization of transcriptome landscape, cell

classification, and pseudo-time inference.

4.1 Introduction

Advances in microfluidics and sequencing technologies have allowed us to monitor
biological systems at single-cell resolution [58, 59]. This comprehensive decomposi-
tion of complex tissues holds enormous potential in both developmental biology and
clinical research [65, 108, 109]. Many computational methods have been developed
to extract valuable information available in massive single-cell RNA sequencing data.
These include methods for cell segregation, transcriptome landscape visualization,
cell classification, and pseudo-time inference.

Defining cell types through unsupervised learning, also known as cell segregation
or clustering, is considered the most powerful application of scRNA-seq data [73].
This has led to the creation of a number of atlas projects [60, 61], which aim to build
the references of all cell types in model organisms at various developmental stages.
Widely-used methods in this category include SC3 [74], SEURAT [68], SINCERA [75],
CIDR [76], and SCANPY [77]. Another fundamental application of scRNA-seq is the
visualization of transcriptome landscape. Computational methods in this category
aim at representing the high-dimensional scRNA-seq data in a low-dimensional space
while preserving the relevant structure of the data. Non-linear methods [63], including
Isomap [78], Diffusion Map [79], t-SNE [80], and UMAP [62], have been recognized

as efficient techniques to avoid overcrowding due to the large number of cells, while
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preserving the local data structure. Among these, t-SNE is the most commonly used
technique while UMAP and SCANPY are recent methods.

Visualizing transcriptome landscape and building comprehensive atlases are prob-
lems of unsupervised learning. Once the cellular subpopulations have been determined
and validated, classification techniques can be used to determine the composition of
new datasets by classifying cells into discrete types. Dominant classification meth-
ods include XGBoost [81], Random Forest (RF) [82], Deep Learning (DL) [83], and
Gradient Boosting Machine (GBM) [84]. Another important down-stream analysis
is pseudo-time inference. Cellular processes, such as cell cycle, proliferation, differ-
entiation, and activation [86, 87], can be modeled computationally using trajectory
inference methods. These methods aim at ordering the cells along developmental tra-
jectories. Among a number of trajectory inference tools, Monocle [88], TSCAN [89],
Slingshot [64], and SCANPY [77] are considered state-of-the-art and are widely used
for pseudo-temporal ordering.

As the volume of scRNA-seq data increases exponentially each year [93], the
above-mentioned methods methods have become primary investigation tools in many
research fields, including cancer [90], immunology [91], or virology [92]. However, the
ever-increasing number of cells, technical noise, and high dropout rate pose signifi-
cant computational challenges in sScRNA-seq analysis [73, 110, 111]. These challenges
affect both analysis accuracy and scalability, and greatly hinder our capability to

extract the wealth of information available in single-cell data.

4.2 Methodology

We develop a new analysis framework, called single-cell Decomposition using Hi-
erarchical Autoencoder (scDHA), that can efficiently detach noise from informative

biological signals. Figure 4.1 depicts the overall pipeline of scDHA. The first module is
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a non-negative kernel autoencoder that provides a non-negative, part-based represen-
tation of the data. Based on the weight distribution of the encoder, scDHA removes
genes or components that have insignificant contributions to the representation. The
second module is a Stacked Bayesian Self-learning Network that is built upon the
Variational Autoencoder [112] to project the data onto a low dimensional space (see
Methods section). Using this informative and compact representation, many analyses
can be performed with high accuracy and tractable time complexity (mostly linear
or lower complexity). In one joint framework, the scDHA software package conducts
cell segregation through unsupervised learning, dimension reduction and visualiza-
tion, cell classification, and time-trajectory inference. We will show that scDHA
outperforms state-of-the-art methods in all four sub-fields: cell segregation through
unsupervised learning, transcriptome landscape visualization, cell classification, and

pseudo-time inference. The details of each step are described below.
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Figure 4.1: Overview of scDHA architecture. scDHA data processing and analyzing
pipeline includes four steps: (i) Data input scaling, (ii) Data filtering using non-
negative kernel autoencoder, (iii) Data compression using Stacked Bayesian Autoen-
coder, and (iv) Downstream applications.

4.2.1 Data filtering using non-negative kernel autoencoder

The method requires an expression matrix M as input, in which rows represents

cells and columns represent genes or transcripts. Given the input M, scDHA first
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automatically performs a log transformation (base 2) to rescale the data if the range of
M is higher than 100. The goal is to prevent the domination of genes or features with
high expression. To reduce the technical variability and heterogeneous calibration
from sequencing technologies, the expression data is additionally rescaled to a range

of 0 to 1 for each cell as follow:

T man(M,) — min(M) (4.1)

where M is the input matrix and X is the log-based normalized matrix. This min-
max scaling step is to reduce standard deviation and to suppress the effect of outliers,
which is frequently used in deep learning models [113, 114]

After normalization, the data is then passed through a one-layer autoencoder to
filter out insignificant genes/features. In short, autoencoder consists of two com-
ponents: encoder and decoder. The formulation of autoencoder can be written as

follows:

(4.2)

where € R is the input of the model (x is simply a row/sample, i.e., z = X, ),
fe and fp represent the transformation by encoder and decoder layers, T is the
reconstruction of . The encoder and decoder transformations can be represented
as fg(x) = 2Wg + bg and fp(e) = eWp + bp, where W-s are the weight matrices
and b-s are the bias vectors. Encoder aims at representing the data in a much lower
dimensional space (compression) whereas decoder tries to reconstruct the original
input from the compressed data. Optimizing this process can theoretically result
in a compact representation of the original, high-dimensional data. The size of the
bottleneck layer is set to 50 nodes (not user-provided parameter). Changing this

number of nodes has no significant impact on the results of scDHA.
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In our model, the weights of the encoder (Wg in fg(-)) are forced to be non-
negative so that each latent variable is an additive combination of the original fea-
tures. By doing so, the non-negative coefficients of the less important features will be
shrunk toward zero. Based on the computed weights, the method only keeps genes
or components with high weight variances. In principle, the set of these genes can
be considered a “sufficient and necessary” set to represent the original data. These
genes are necessary because removing them would greatly damage the reversibility of
decoder, i.e., decoder cannot accurately reconstruct the original data. At the same
time, they are sufficient because encoder automatically shrinks the weights of genes
or gene groups that have similar but lesser impacts in the compression procedure. By
default, scDHA selects 5,000 genes but users can choose a different number based on

the weight distribution.

4.2.2 Data compression using Stacked Bayesian Autoencoder

After the gene filtering step using non-negative kernel autoencoder, we obtain a data
matrix in which each gene is considered critical to preserve cell heterogeneity. How-
ever, although the step has greatly reduced the number of features, the number of
genes is still in the scale of hundreds or thousands. Therefore, it is necessary to per-
form dimension reduction before conducting any analysis or visualization. For this
purpose, we developed a modified version of VAE (theorized by Kingma et al. [112]).
We name it Stacked Bayesian Autoencoder (Figure 4.2) since the model is designed
with multiple latent spaces, instead of only one latent space used in the original VAE
or any other autoencoder model.

VAE has the same basic structure as a standard autoencoder, which is a self-
learning model consisting of two components: encoder and decoder. Given the input

matrix (the filtered matrix obtained from Non-negative kernel autoencoder), VAE’s
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Figure 4.2: High-level representation of Stacked Bayesian Autoencoder. The encoder
projects input data to multiple low-dimensional latent spaces (outputs of z; to z,
layers). The decoders infer original data from these latent data. Minimizing the
difference between inferred data and original one leads to a high quality representation
of the data at bottle neck layer (outputs of u layer).

encoder constructs a low-dimensional representation of the input matrix while the
decoder aims at inferring the original data. By minimizing the difference between the
inferred and the input data, the middle bottleneck layer is considered as the “near
lossless” projection of the input onto a latent space with a low number of dimensions
(m = 15 by default). We keep the model size small to avoid over-fitting and force the
neuron network to be as compressed as possible. Also, restricting the size of latent
layer will converge cells from the same group into similar latent space manifold. At
the same time, the size of the latent layer needs to be sufficient (15 dimensions) to
keep the latent variables disentangled. Per our experience, varying m between 10 and
20 do not alter the analysis results.

Given an expression profile of a cell z, the formulation of this architecture can be
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formulated as follows:

e = [fp(z)

po= fule)

o = f.(e) (4.3)
z ~N(u,0%)

T = fp(2)

where x € R} is the input of the network, fr and fp represent the transformation by
encoder and decoder layers. In addition to the standard autoencoder, two transfor-
mations f, and f, are added on the output e of encoder to generate the parameters
wand o (u,0 € R™). The compress data z is now sampled from the distribution
N(u,0%). In contrast to the standard autoencoder, VAE uses z as the input of the
decoder instead of e. By adding randomness in generating z, VAE prevents overfit-
ting by avoiding mapping the original data to the compressed space without learning
a generalized representation of data. The perturbation process was shown to be an
effective method to increase data stability [44].

In our stacked model, to further diminish overfitting and increase the robustness,
we generate multiple compressed spaces with multiple realizations of z. For that
purpose, we use a re-parameterization trick to generate multiple realizations of z as
follows: z = 4 o % N(0,1). This re-parameterization trick is introduced to ensure
that the model can backpropagate [112].

To train our model, we use AdamW [115] as optimizer while adopting two stage
training scheme [116]: (1) a Warm-up process which uses only reconstruction loss,
and (2) the VAE stage, in which the Kullback-Leibler loss is also considered to ensure
the normal distribution of latent variables z. The warm-up process prevents the
model from ignoring reconstruction loss and only focuses on Kullback-Leibler loss.

By doing this, we avoid the pitfall of making the model fail to learn generalized
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representations of the data. This process also makes the model less sensitive to the
weight initialization. For faster convergence and better accuracy, scaled exponential
linear unit (SELU) [117] is used as the activation function.

After finishing the training stage, scDHA processes the input data through en-
coder to generate representative latent variables of original data. This compressed
representation of the data will be used for single-cell applications: (1) cell segregation
through unsupervised learning, (2) dimension reduction and visualization, (3) cell

classification, and (4) pseudo-time trajectory inference.

4.2.3 Cell segregation via clustering

Predicting the number of cell types. The number of cell types is determined
using two indices: (i) the ratio of between sum of squares over the total sum of squares,
and (ii) the increase of the within sum of squares when number of clusters increases.

The indices are formulated as follows:

SSbetween,j

Index 1 =
SStotal,j

(4.4)

SSwithin,j—i—l - SSwithin,j
SSwithin,j

Index 2 = (4.5)

where j is number of clusters.

Larger Index 1 means that members of one group are far from other groups,
i.e., the clusters are well separated. Index 2 is affected by the number of eigenvectors
generated by spectral decomposition, which is also the number of clusters. We assume
that the addition of an eigenvector that leads to the highest spike in the within sum of
squares (which is undesirable) would be the correct number of clusters. These indices
are calculated by performing k-nearest neighbor spectral clustering on a subset of

samples over a range of cluster number. Mean of the predictions from these two
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indices is set to be the final number of clusters.

Basic clustering algorithm. In order to improve the accuracy when clustering non-
spherical data while ensuring the fast running time, we apply a k-nearest neighbor
adaption of spectral clustering (k-nn SC) as the clustering method embedded in our
package. Instead of using Euclidean distance to determine the similarity between two
samples, Pearson correlation is used to improve the stability of cluster assignment.
The difference between k-nn SC and normal SC is that the constructed affinity matrix
of data points is sparse. For each data point, the distance is calculated for only its k
nearest neighbors while the distance to the rest is left at zero. The clustering process
of k-nn SC consists of 4 steps: (i) constructing affinity matrix A for all data points
to use as input graph, (ii) generating a symmetric and normalized Laplacian matrix
LM = [— D=2 AD~2 where D is the degree matrix of the graph, A is the constructed
affinity matrix and [ is the identity matrix, (iii) calculating eigenvalues for Laplacian
matrix and select those with smallest values, generating eigenvectors corresponding
to selected eigenvalues, (iv) performing final clustering using k-means on the obtained
eigenvectors.

Consensus clustering. We use the basic clustering algorithm described above to
cluster the compressed data. To achieve higher accuracy and to avoid local minima,
an ensemble of data projection models is used. We first repeat the data projection and
clustering process multiple times. We then combine the clustering results using the
Weighted-based meta-clustering (wMetaC) implemented in SHARP [50]. wMetaC
is conducted through 5 steps: (i) calculating cell-cell weighted similarity matrix W,
w;; = s;j(1 — s;;) where s, ; is the chance that cell ¢ and j are in the same cluster,
(i) calculating cell weight, which is the sum of all cell-cell weights related to this
cell, (iii) generating cluster-cluster similarity matrix |C|z|C|, where C is the union of

all the clusters obtained in each replicate, (iv) performing hierarchical clustering on
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cluster-cluster similarity matrix, and (v) determining final results by voting scheme.
Voting procedure. For large datasets, we also provide an additional option in
our package to reduce the time complexity without compromising the performance.
Instead of clustering the whole dataset, which requires a large amount of memory and
heavy computation, we can perform the clustering on a subset of the data points and
then apply a vote-counting procedure to assign the rest of the data to each cluster.
The voting process is based on the k-nearest neighbor classification. This approach

still ensures the high clustering quality without compromising the speed of method.

4.2.4 Dimension reduction and visualization

Given the compressed data (10 to 15 dimensions), we compute the distance matrix

for the cells and then perform log and z transformations as follows:

1og(Di;) — ftiog(D,
D, = 108Dis) = togip) (16)

Olog(D;.)

where D is a distance matrix. The rationale of this transformation is to make the
distribution of distances from one point to its neighbors more uniform. Next, we
calculate the probabilities p;; that are proportional to the similarity between sample

1 and j as follows:
exp(D;;)
Zk;éi exp(Di)

At the same time, using the compressed data, we build a neural network to project

Pjli = (4-7)

the data to 2-dimensional space. Using two formulas described above, we re-calculate
the probabilities g;; that are proportional to the similarity between sample ¢ and j in
the 2-dimensional space. Our goal is to learn a 2-dimensional projection of the data
that retains the probabilities p as well as possible. We achieve this by minimizing the

distance between () and P. Here, we use the Kullback-Leibler divergence to represent
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the distance between the two probability distributions, which can be formulated as:

Dij
KL(P||Q) =) pijlog—~ (4.8)
i %
By minimizing Kullback-Leibler divergence, we obtain the optimal representation
of the data in the 2-dimensional space. The algorithm can be generalized to three or

higher number of dimensions.

4.2.5 Cell classification

The problem can be described as follows. We are given two datasets of the same
tissue: the training dataset and the testing dataset. For the training dataset, we have
the cell labels. The goal is to determine the cell labels of the testing dataset.

Our classification procedure consists of the following steps: (i) concatenate the
two matrices into a single matrix, in which the rows consist of all cells from the two
datasets and columns are the common genes; (ii) normalize and compress the merged
data using the hierarchical autoencoder described above; (iii) compute the similarity
matrix for the cells using Pearson correlation; and finally (iv) determine the label of
cells from testing data using k-nearest neighbor algorithm (k-nn).

The rationale for concatenating the two datasets is to exploit the robust denoising
and dimension reduction procedure offered by the hierarchical autoencoder. Since
we normalize the data per each cell, different scaling of the two datasets (training or
testing) would not pose as a problem. At the same time, the hierarchical autoencoder
efficiently diminishes batch effect and noise, moving cells of the same type closer to one
another. We demonstrated that even with an unsophisticated classification technique
as k-nn, scDHA is proven to be better than current state-of-the-art methods, including

XGBoost, Random Forest, Deep Learning, and Gradient Boosted Machine.
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4.2.6 Pseudo-time trajectory inference

We implement a pseudo-time inference method that allows users to infer non-branching
trajectory that is correlated with the developmental stages of cells. This method re-
quires a starting point as part of the input. We note that users can easily apply any
other methods on the compressed data provided by scDHA (see Saelens et al. [85] for
a comprehensive list of pseudo-time inference methods). Given the compressed data,
our method computes the similarity distance for the cells using Pearson correlation.
Using this similarity matrix as the affinity matrix, we construct a graph in which
nodes represent cells and edges represent the distance between the cells. In order to
construct the pseudo-time trajectory, we apply the minimum spanning tree (MST)
algorithm on the graph to find the shortest path that goes through all cells. From
the MST, pseudo time is determined by distance from one point to the designated

starting point.

4.3 Validation and Analysis Results

To validate our method, we use real scRNA-seq data that are generated from human
or mouse tissues using different protocols. By validating the methods with data from
different tissue origins and protocols, we can ensure the stability of the proposed
methods. Table 4.1 shows the details of 34 single-cell datasets that will be used
in our validation. The datasets Montoro, Sanderson, Slyper, Zilionis, Karagiannis,
Orozco, and Kozareva were downloaded from Broad Institute Single Cell Portal (ht
tps://singlecell.broadinstitute.org/single_cell). The datasets Puram,
Hrvatin, and Darrah were downloaded from Gene Expression Omnibus. Tabula Muris
was downloaded from Figshare. The remaining 23 datasets were downloaded from

Hemberg Group’s website (https://hemberg-lab.github.io/scRNA.seq.dat
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asets). The only processing step we did was to perform log transformation (base
2) to rescale the data if the range of the data is larger than 100. These datasets
include the ground truth (true cell type labels) for the each sample. This allows
accurate validation of downstream analysis performance. We validate the quality of
data using downstream analyses including clustering, visualization, classification, and
time-trajectory inference.

For clustering analysis, we compare our clustering result with other state-of-the-
arts including SC3 [74], SEURAT [68], SINCERA [75], CIDR [76], and SCANPY [77].
For visualization, we compare the transcriptome landscape generated by our meth-
ods with dominant methods including t-SNE [80], UMAP [62], SCANPY [77], and
the classical principal component analysis (PCA). For classification, we compare the
accuracy of our classifier with four methods that are dominant in machine learn-
ing: XGBoost [81], Random Forest (RF) [82], Deep Learning (DL) [83], and Gradi-
ent Boosting Machine (GBM) [84]. For time-trajectory inference, we compare our
methods with state-of-the-art methods for time-trajectory inference: Monocle [88],

TSCAN [89], Slingshot [64], and SCANPY [77].

4.3.1 Cell segregation

We assess the performance of scDHA in clustering using 34 scRNA-seq datasets with
known cell types. The true class information of these datasets is only used a posterior:
to assess the results. We compare scDHA with five methods that are widely used
for single-cell clustering: SC3 [74], SEURAT [68], SINCERA [75], CIDR [76], and
SCANPY [77]. Note that SCANPY is also an all-in-one pipeline that is able to
perform three types of analysis: clustering, visualization and pseudo-time inference.
We include k-means as the reference method in cluster analysis.

Since the true cell types are known in these datasets, we use adjusted Rand index
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Table 4.1: Description of the 34 single-cell datasets used to assess the performance of
computational methods. The first two columns describe the name and tissue while
the next four columns show the number of cells, number of cell types, protocol, and

accession ID.

Dataset Tissue Size Class Protocol Accession ID Reference

1. Yan Human Embryo 90 6 Tang GSE36552 Yan et al., 2013 [118]

2. Goolam Mouse Embryo 124 5 Smart-Seq2 E-MTAB-3321  Goolam et al., 2016 [119]
3. Deng Mouse Embryo 268 6 Smart-Seq2 GSE45719 Deng et al., 2014 [120]

4. Pollen Human Tissues 301 11 SMARTer SRP041736 Pollen et al., 2014 [121]

5. Patel Human Tissues 430 5 Smart-Seq GSE57872 Patel et al., 2014 [109]

6. Wang Human Pancreas 457 7 SMARTer GSE83139 Wang et al., 2016 [122]

7. Darmanis Human Brain 466 9 SMARTer GSE67835 Darmanis et al., 2015 [123]
8. Camp (Brain) Human Brain 553 5 SMARTer GSET75140 Camp et al., 2015 [124]

9. Usoskin Mouse Brain 622 4 STRT-Seq GSE59739 Usoskin et al., 2015 [125]
10. Kolodziejczyk Mouse Embryo Stem Cells 704 3 SMARTer E-MTAB-2600  Kolodziejezyk et al., 2015 [126]
11. Camp (Liver) Human Liver 7 7 SMARTer GSE81252 Camp et al., 2017 [127]

12. Xin Human Pancreas 1,600 8 SMARTer GSE81608 Xin et al., 2016 [128]

13. Baron (Mouse) Mouse Pancreas 1,886 13 inDrop GSE84133 Baron et al., 2016 [129]

14. Muraro Human Pancreas 2,126 10 CEL-Seq2 GSE85241 Muraro et al., 2016 [130]
15. Segerstolpe Human Pancreas 2,209 14 Smart-Seq2 E-MTAB-5061 Segerstolpe et al., 2016 [131]
16. Klein Mouse Embryo Stem Cells 2,717 4 inDrop GSE65525 Klein et al., 2015 [132]

17. Romanov Mouse Brain 2,881 7 SMARTer GSE74672 Romanov et al., 2017 [133]
18. Zeisel Mouse Brain 3,005 9 STRT-Seq GSE60361 Zeisel et al., 2015 [71]

19. Lake Human Brain 3,042 16  Fluidigm C1 phs000833.v3.pl  Lake et al., 2016 [134]

20. Puram Human Tissues 5,902 10 Smart-Seq2 GSE103322 Puram et al., 2017 [135]
21. Montoro Human Pancreas 7,193 7 Smart-Seq2 GSE103354 Montoro et al., 2018 [136]
22. Baron (Human) Human Pancreas 8,569 14 inDrop GSE84133 Baron et al., 2016 [129]
23. Chen Mouse Brain 12,089 46 Drop-seq GSE87544 Chen et al., 2017 [137]

24. Sanderson Mouse Tissues 12,648 11 10X Genomics SCP916 Sanderson et al., 2020 [138]
25. Slyper Human Blood 13,316 8 10X Genomics SCP345

26. Campbell Mouse Brain 21,086 21 Drop-seq GSE93374 Campbell et al., 2017 [139]
27. Zilionis Human Lung 34,558 9 inDrop GSE127465 Zilionis et al., 2019 [140]
28. Macosko Mouse Retina 44,808 12 Drop-seq GSE63473 Macosko et al., 2015 [141]
29. Hrvatin Mouse Visual Cortex 48,266 8 inDrop GSE102827 Hrvatin et al., 2018 [142]
30. Tabula Muris Mouse Tissues 54,439 40 10X Genomics GSE109774 Schaum et al., 2018 [143]
31. Karagiannis Human Blood 72,914 12 10X Genomics GSE128879 Karagiannis et al., 2020 [144]
32. Orozco Human Eye 100,055 11 10X Genomics GSE135133 Orozco et al., 2020 [145]
33. Darrah Human Blood 162,490 14 Drop-seq GSE139598 Darrah et al., 2020 [146]
34. Kozareva Mouse Cerebellum 611,034 18 10X Genomics SCP795 Kozareva et al., 2020 [147]
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(ARI) [148] to assess the performance of the six clustering methods. Figure 4.3 shows
the ARI values obtained for each dataset, as well as the average ARIs and their
variances. scDHA outperforms all other methods by not only having the highest
average ARI, but also being the most consistent method. The average ARI of scDHA
across all 34 datasets is 0.81 with very low variability. The second best method,
CIDR, has an average ARI of only 0.5. The one-sided Wilcoxon test also indicates
that the ARI values of scDHA are significantly higher than the rest with a p-value of
2.2 x 10716, To perform a more comprehensive analysis, we calculate the normalized
mutual information (NMI) and Jaccard index (JI) for each method. Tables 4.2-4.4
show the detailed results of all methods on 34 single-cell datasets measured by the

three metrics.
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Figure 4.3: Clustering performance of scDHA, SC3, SEURAT, SINCERA, CIDR,
SCANPY, and k-means measured by adjusted Rand index (ARI) on 34 scRNA-seq
datasets. The first 34 panels show the ARI values obtained for individual datasets
while the last panel shows the average ARIs and their variance (vertical segments).
scDHA significantly outperforms other clustering methods by having the highest ARI
values (p = 2.2 x 1076 using one-sided Wilcoxon test). (b) Running time of the
clustering methods, each using 10 cores. scDHA is the fastest among the six methods.

In 34 datasets analyzed, there are 19 plate-based datasets (Fluidigm C1, Tang,
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Table 4.2: Performance of scDHA, SC3, SEURAT, SINCERA, CIDR, SCANPY, and
k-means on 34 single-cell datasets measured by adjusted Rand index (ARI). Cells with
NA values indicate that the method was not able to analyze the dataset (crashed or
out-of-memory). Cells highlighted in green have the highest ARI values. The average
ARI of scDHA is 0.81, which is much higher than the rest (CIDR is the second best
with an average ARI of 0.5). In addition, scDHA has the highest ARI values in all
but two datasets (Pollen and Puram).

Dataset Size Class scDHA SC3 SEURAT SINCERA CIDR SCANPY k-means
1. Yan 90 6 0.39 0.72 0.80 0.84 0.80
2. Goolam 124 5 0.42 0.30 0.70 0.42 0.48
3. Deng 268 6 0.29 0.70 0.51 0.34 0.60
4. Pollen 301 11 0.61 0.85 0.90 0.77 0.89
5. Patel 430 5 0.76 0.47 0.45 0.66 0.82
6. Wang 457 7 0.65 0.29 0.63 0.58 0.44
7. Darmanis 466 9 0.58 0.55 0.50 0.48 0.44
8. Camp (B) 553 5 0.65 0.59 0.34 0.53 0.48
9. Usoskin 622 4 0.66 0.38 0.82 0.39 0.23
10. Kolodziejczyk 704 3 0.45 0.46 0.43 0.43 0.48
11. Camp (L) T 7 0.71 0.49 0.61 0.61 0.53
12. Xin 1,600 8 0.42 0.16 0.57 0.32 0.44
13. Baron (M) 1,886 13 0.49 0.39 0.47 0.39 0.29
14. Muraro 2,126 10 0.57 0.32 0.22 0.46 0.34
15. Segerstolpe 2,209 14 0.44 0.40 0.37 0.31 0.29
16. Klein 2,717 4 0.54 0.61 0.68 0.62 0.29
17. Romanov 2,881 7 0.39 0.23 0.32 0.30 0.30
18. Zeisel 3,005 9 0.51 0.42 0.37 0.32 0.36
19. Lake 3,042 16 0.48 0.31 0.47 0.43 0.38
20. Puram 5,902 10 0.65 0.11 0.32 [0 0.68 0.24 0.44
21. Montoro 7,193 7 0.11 0.24 0.13 0.30 0.20 0.45
22. Baron (H) 8,569 14 0.14 0.58 0.34 0.73 0.48 0.41
23. Chen 12,089 46 0.16 0.63 0.60 0.36 0.63 0.33
24. Sanderson 12,648 11 0.03 0.08 0.06 0.15 0.06 0.11
25. Slyper 13,316 8 0.07 0.25 0.00 0.63 0.26 0.40
26. Campbell 21,086 21 0.07 0.37 0.00 0.23 0.23 0.16
27. Zilionis 34,558 9 0.11 0.36 0.02 0.53 0.38 0.48
28. Macosko 44,808 12 0.07 0.22 0.41 0.17 0.23 0.25
29. Hrvatin 48,266 8 0.26 0.44 NA NA 0.56 0.85
30. Tabula Muris 54,439 40 0.30 0.54 NA NA 0.50 0.43
31. Karagiannis 72,914 12 0.26 0.42 NA NA 0.35 0.39
32. Orozco 100,055 11 NA NA NA NA 0.23 0.43
33. Darrah 162,490 14 NA NA NA NA 0.24 0.14
34. Kozareva 611,034 18 NA NA NA NA 0.15 NA
Mean ARI _ 0.36 0.47 0.39 0.50 0.41 0.43
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Table 4.3: Performance of scDHA, SC3, SEURAT, SINCERA, CIDR, SCANPY,
and k-means on 34 single-cell datasets measured by normalized mutual information
(NMI). Cells with NA values indicate that the method was not able to analyze the
dataset (crashed or out-of-memory). Cells highlighted in green have the highest NMI
values. scDHA outperforms other methods by having the highest average NMI value.
In addition, scDHA has the highest NMI values in 31 out of 34 datasets.

Dataset Size Class scDHA SC3 SEURAT SINCERA CIDR SCANPY k-means
1. Yan 90 6 0.80 0.55 0.82 0.84 0.87 0.86
2. Goolam 124 5 0.80 0.61 0.61 0.78 0.71 0.63
3. Deng 268 6 0.73 0.53 0.73 0.74 0.70 0.78
4. Pollen 301 11 0.95 0.80 0.93 0.94 0.91 0.94
5. Patel 430 5 0.67 0.76 0.67 0.57 0.72 0.83
6. Wang 457 7 0.81 0.71 0.43 0.71 0.71 0.57
7. Darmanis 466 9 0.67 0.64 0.66 0.64 0.69 0.62
8. Camp (B) 553 5 0.68 0.70 0.62 0.49 0.69 0.55
9. Usoskin 622 4 0.79 0.74 0.54 0.80 0.65 0.31
10. Kolodziejczyk 704 3 0.68 0.68 0.54 0.57 0.67 0.51
11. Camp (L) T 7 0.81 _ 0.69 0.79 0.82 0.72
12. Xin 1,600 8 0.39 0.60 0.42 0.55 0.61 0.60
13. Baron (M) 1,886 13 0.65 0.75 0.61 0.51 0.74 0.59
14. Muraro 2,126 10 0.69 0.77 0.51 0.43 0.74 0.53
15. Segerstolpe 2,209 14 0.65 0.75 0.62 0.45 0.69 0.53
16. Klein 2,717 4 0.69 0.71 0.67 0.66 0.76 0.40
17. Romanov 2,881 7 0.43 0.60 0.31 0.34 0.58 0.35
18. Zeisel 3,005 9 0.62 0.67 0.47 0.47 0.63 0.55
19. Lake 3,042 16 0.67 0.68 [NOI73Y 0.47 0.54 0.62
20. Puram 5,902 10 0.45 0.66 0.68 0.63 0.62 0.63
21. Montoro 7,193 7 0.30 0.50 0.24 0.46 0.47 0.56
22. Baron (H) 8,569 14 0.50 0.80 0.46 0.72 0.77 0.63
23. Chen 12,089 46 0.53 0.79 0.53 0.42 0.63
24. Sanderson 12,648 11 0.21 0.43 0.29 0.12 0.40 0.40
25. Slyper 13,316 8 0.36 0.60 0.16 0.70 0.59 0.62
26. Campbell 21,086 21 0.68 0.49 0.15 0.38 0.69 0.48
27. Zilionis 34,558 9 0.41 0.70 0.08 0.58 0.66 0.62
28. Macosko 44,808 12 0.31 0.56 0.19 0.33 0.56 0.40
29. Hrvatin 48,266 8 0.59 0.74 NA NA 0.77 0.88
30. Tabula Muris 54,439 40 0.65 0.77 NA NA 0.77 0.68
31. Karagiannis 72,914 12 0.66 0.49 NA NA 0.66 0.65
32. Orozco 100,055 11 NA NA NA NA 0.60 0.70
33. Darrah 162,490 14 NA NA NA NA 0.61 0.34
34. Kozareva 611,034 18 NA NA NA NA 0.58 NA
Mean NMI [oRsm 0.60 0.68 0.50 0.58 0.68 0.60
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Table 4.4: Performance of scDHA, SC3, SEURAT, SINCERA, CIDR, SCANPY,
and k-means on 34 single-cell datasets measured by Jaccard Index (JI). Cells with
NA values indicate that the method was not able to analyze the dataset (crashed
or out-of-memory). Cells highlighted in green have the highest JI values. scDHA
outperforms other methods by having the highest average JI value. scDHA also has

the highest JI values in 31 out of 34 datasets.

Dataset Size Class scDHA SC3 SEURAT SINCERA CIDR SCANPY k-means
1. Yan 90 6 0.38 0.64 0.73 0.77 0.73
2. Goolam 124 5 0.46 0.28 0.65 0.37 0.45
3. Deng 268 6 0.33 0.65 0.46 0.28 0.55
4. Pollen 301 11 0.50 0.76 0.83 0.66 0.82
5. Patel 430 5 0.67 0.36 0.38 0.55 0.75
6. Wang 457 7 0.58 0.31 0.56 0.50 0.39
7. Darmanis 466 9 0.48 0.46 0.42 0.37 0.35
8. Camp (B) 553 5 0.57 0.55 0.30 0.44 0.44
9. Usoskin 622 4 0.58 0.35 - 0.31 0.29
10. Kolodziejczyk 704 3 0.37 0.38 0.44 0.40 0.37 0.50
11. Camp (L) e 7 0.54 0.59 0.40 0.49 0.48 0.44
12. Xin 1,600 8 0.13 0.39 0.15 0.58 0.29 0.41
13. Baron (M) 1,886 13 0.20 0.41 0.34 0.42 0.32 0.25
14. Muraro 2,126 10 0.29 0.46 0.32 0.23 0.36 0.30
15. Segerstolpe 2,209 14 0.21 0.34 0.35 0.35 0.22 0.24
16. Klein 2,717 4 0.36 0.46 0.58 0.61 0.54 0.33
17. Romanov 2,881 7 0.17 0.31 0.29 0.31 0.23 0.28
18. Zeisel 3,005 9 0.24 0.41 0.41 0.37 0.23 0.30
19. Lake 3,042 16 0.28 0.37 0.27 0.39 0.32 0.29
20. Puram 5,902 10 0.58 0.08 0.25 066  0.65 0.18 0.36
21. Montoro 7,193 7 0.11 0.23 0.13 0.29 0.19 0.43
22. Baron (H) 8,569 14 0.10 0.46 0.29 0.65 0.37 0.32
23. Chen 12,089 46 0.11 0.51 0.49 0.29 0.50 0.23
24. Sanderson 12,648 11 0.07 0.13 0.11 0.50 0.10 0.18
25. Slyper 13,316 8 0.07 0.23 0.02 0.62 0.24 0.39
26. Campbell 21,086 21 0.06 0.30 0.17 0.35 0.17 0.16
27. Zilionis 34,558 9 0.08 0.27 0.04 0.50 0.29 0.41
28. Macosko 44,808 12 0.08 0.22 0.50 0.24 0.22 0.28
29. Hrvatin 48,266 8 0.19 0.34 NA NA 0.44 0.79
30. Tabula Muris 54,439 40 0.20 0.40 NA NA 0.36 0.31
31. Karagiannis 72,914 12 0.21 0.33 NA NA 0.29 0.33
32. Orozco 100,055 11 NA NA NA NA 0.20 0.40
33. Darrah 162,490 14 NA NA NA NA 0.18 0.19
34. Kozareva 611,034 18 NA NA NA NA 0.18 NA
Mean Jaccard Index _ 0.30 0.40 0.37 0.48 0.34 0.39
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SMARTer, Smart-Seql/2, CEL-seq2, STRT-Seq) and 15 flow-cell-based datasets (in-
Drop, Drop-seq, 10X Genomics). There are four platforms that have more than
five datasets per platform: Smart-Seql/2, SMARTer, inDrop, and 10X Genomics.
We compare scDHA with other methods for the six protocol groups: plate-based (19
datasets), flow-cell-based (15 datasets), Smart-Seql/2 (six datasets), SMARTer (eight
datasets), inDrop (five datasets), and 10X Genomics (six datasets). Figure 4.4 shows
the performance of the clustering methods across the 6 platform groups. scDHA is
the only method that performs consistently well across all six platform groups. The
average ARI values of scDHA are close to 0.8 in all 6 groups. In contrast, the ARI
values of other methods greatly differ across the platform groups. The average ARI
of all methods drop when analyzing 10X Genomics data. This is partially due to
the high dropout rate of 10X Genomics (the average dropout rates of Smart-Seql/2,
SMARTer, inDrop, and 10X Genomics datasets are 72.47, 76.61, 87.55, 91.50, respec-

tively).
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Figure 4.4: Clustering performance of scDHA, SC3, SEURAT, SINCERA, CIDR,
SCANPY, and k-means across six data platforms. Data are presented as mean values
+ /- variance.

Figure 4.5 and Table 4.5 shows the running time of scDHA and other six clustering
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methods on 34 scRNA-seq datasets. scDHA and SCANPY are the fastest among the
seven methods. For the Macosko dataset with 44 thousand cells, scDHA finishes
the analysis in less than five minutes. On the contrary, it takes CIDR more than
two days (3,312 minutes) to finish the analysis of this dataset. In summary, scDHA

outperforms other clustering methods in terms of both accuracy and scalability.
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Figure 4.5: Running time of the scDHA, SC3, SEURAT, SINCERA, CIDR, SCANPY,
and k-means on 34 scRNA-seq datasets. scDHA and SCANPY are the fastest among
the seven methods.

Finally, we evaluate the consistency of scDHA with changing parameters. In the
default setting of the denoising autoencoder, the bottleneck layer is set to a fixed
size of 50 nodes. We test the model with different numbers of nodes and found that
varying this number does not have a significant impact on the performance of the
software. As shown in Figure 4.6, the average ARI value of the clustering results is
consistently at 0.8 when we vary the number of nodes from 30 to 70.

Based on the computed weights of denoising module, we choose 5,000 genes with

the highest weight variances (also the default setting). Figure 4.7a shows the nor-
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Table 4.5: Running time of scDHA, SC3, SEURAT, SINCERA, CIDR, SCANPY,
and k-means on 34 single-cell datasets. Overall, scDHA is the fastest and was able
to analyze 611,034 cells within 24 minutes.

Dataset Size scDHA SC3 SEURAT SINCERA CIDR SCANPY k-means
Yan 90 1.24 049 1.08 0.03 0.03 0.08 0.03
Goolam 124 1.52  0.46 0.92 0.05 0.04 0.03 0.13
Deng 268 1.51  0.50 0.94 0.05 0.05 0.03 0.37
Pollen 301 1.67 0.75 1.68 0.06 0.06 0.03 0.52
Patel 430 1.24  1.09 1.33 0.02 0.03 0.01 0.19
Wang 457 1.56  0.91 2.18 0.09 0.08 0.03 0.86
Darmanis 466 1.67 0.86 1.32 0.09 0.09 0.04 0.73
Camp (B) 553 1.57 1.10 2.04 0.11 0.08 0.03 0.80
Usoskin 622 1.67 144 1.97 0.17 0.17 0.03 1.09
Kolodziejczyk 704 1.89 1.71 2.59 0.29 0.23 0.05 1.79
Camp (L) T 1.91 194 1.90 0.17 0.17 0.03 0.88
Xin 1,600 2.42 12.69 3.43 1.43 0.65 0.08 3.58
Baron (M) 1,886 2.33 15.01 1.43 0.71 0.54 0.04 1.20
Muraro 2,126 2.53  4.27 1.44 1.20 0.77 0.06 1.44
Segerstolpe 2,209 2.54  4.62 3.02 1.77 1.15 0.07 4.23
Klein 2,717 2.54 10.34 4.56 2.26 1.85 0.10 4.28
Romanov 2,881 2.56  8.78 3.08 2.57 2.09 0.07 3.05
Zeisel 3,005 2.50  9.00 3.04 2.51 1.96 0.08 1.90
Lake 3,042 2.53 10.44 4.94 3.11 2.85 0.10 5.78
Puram 5,902 2.72  66.35 3.69 9.39 10.16 0.18 3.62
Montoro 7,193 2.54  59.85 5.42 29.26 18.99 0.14 15.01
Baron (H) 8,569 2.81 55.79 3.36 28.93 30.73 0.37 6.49
Chen 12,089 3.00 67.84 8.51 53.33 73.57 0.24 22.98
Sanderson 12,648 2.57 59.44 3.96 33.39 74.31 0.31 7.20
Slyper 13,316 2.92 53.89 3.91 50.44 96.38 0.90 17.50
Campbell 21,086 3.60 77.56 11.19 164.04  372.83 0.56 34.05
Zilionis 34,558 4.68 87.73 29.85 764.05 2146.26 1.24 61.36
Macosko 44,808 4.49 96.58 26.40 614.65 3312.65 1.52 86.58
Hrvatin 48,266 4.81 86.76 19.11 NA NA 1.39 40.00
Tabula Muris 54,439 11.52 89.16 19.23 NA NA 2.21 66.90
Karagiannis 72,914 12.58 60.29 41.47 NA NA 1.97 97.86
Orozco 100,055 11.80 NA NA NA NA 12.06 189.99
Darrah 162,490 14.63 NA NA NA NA 14.70 264.57

Kozareva 611,034 23.90 NA NA NA NA 35.45 NA
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Figure 4.6: Clustering performance of scDHA on 34 single-cell datasets with varying
size of bottleneck layer in the first module. Data are presented as mean values + /-
variance.

malized weight variances in which each line represents a dataset. The figure shows
that most lines are flattened at 5,000 genes. Another important note is that chang-
ing this threshold does not have a significant impact on the overall performance of
scDHA. Figure 4.7b shows the clustering performance of scDHA with varying number
of genes. The average ARI is consistently close to 0.8 when we change the number of

genes from 3,000 to 10,000.
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Figure 4.7: Effect of gene filtering cutoff on scDHA performance. (a) Normalized
weight variance of genes. (b) Performance of scDHA on 34 single-cell datasets with
varying number of selected genes. Data are presented as mean values + /- variance.
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4.3.2 Dimension reduction and visualization

Here we demonstrate that scDHA is more efficient than t-SNE, UMAP, and SCANPY,
as well as the classical principal component analysis (PCA) in visualizing single-cell
data. We test the five techniques on the same 34 single-cell datasets described above.
Again, cell type information is not given as input to any algorithm.

The top row of Figure 4.8a shows the color-coded representations of the Kolodziejczyk
dataset, which consists of three mouse embryo stem cells: 2i, a2:, and [if. The classi-
cal PCA simply rotates the orthogonal coordinates to place dissimilar data points far
apart in the two-dimensional (2D) space. In contrast, t-SNE focuses on representing
similar cells together in order to preserve the local structure. In this analysis, t-SNE
splits each of the two classes 2¢ and a2i into two smaller groups, and lif class into
three groups. The transcriptome landscape represented by UMAP is similar to that
of t-SNE, in which UMAP also splits cells of the same types into smaller groups.
According to the authors of this dataset [126], embryonic stem cells were cultured in
three different conditions: lif (serum media that has leukemia inhibitory factor), 2
(basal media that has GSK34 and Mek1/2 inhibitor), and a2i (alternative 2i that has
GSK3p and Src inhibitor). The lif cells were measured in two batches and both t-
SNE and UMAP split this cell type according to batches. Similarly, the a2i cells were
measured by two batches and the cells were separated according to batches. The 2i
cells were measured by four batches (chipl - 82 cells, chip2 - 59 cells, chip3 - 72 cells,
and chip4 - 82 cells). Both t-SNE and UMAP split the cells into two groups: chip2,
chip3 and chip4 were grouped together and were separated from chipl. SCANPY
was able to mitigate batch effects in the lif cells but still split 2 and a2i cells. In
contrast, scDHA provides a clear representation of the data, in which cells of the
same type are grouped together and cells of different types are well-separated.

The lower row of Figure 4.8a shows the visualization of the Sergerstolpe dataset
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(human pancreas). The landscapes of SCANPY, UMAP and t-SNE are better than
that of PCA. In these representations, the cell types are separable. However, the
cells are overcrowded and many cells from different classes overlap. Also, the alpha,
beta and gamma cells are split into smaller groups. According to the authors of this
dataset [131], the data were collected from different donors, which is potentially the
source of heterogeneity. For this dataset, scDHA again better represents the data by

clearly showing the transcriptome landscape with separable cell types.
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Figure 4.8: Transcriptome landscape visualization of Kolodziejczyk and Sergerstolpe
datasets using scDHA, PCA, t-SNE, and UMAP. (a) Color-coded representation of
the Kolodziejczyk and Segerstolpe datasets using scDHA, PCA, t-SNE, UMAP, and
SCANPY (from left to right). For each representation, we report the silhouette index,
which measures the cohesion among cells of the same type, as well as the separation
between different cell types. (b) Average silhouette values (bar plot) and their vari-
ance (vertical lines). scDHA significantly outperforms other dimension reduction
methods by having the highest silhouette values (p = 1.7 x 107% using one-sided
Wilcoxon test).

To quantify the performance of each method, we calculate the silhouette index
(SI) [149] of each representation using true cell labels. This metric measures the
cohesion among the cells of the same type and the separation among different cell
types. For both datasets shown in Figure 4.8a, the SI values of scDHA are much higher
than those obtained for PCA, t-SNE, UMAP, and SCANPY. The average SI values
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obtained across the 34 datasets are shown in Figure 4.8b. Overall, scDHA consistently
and significantly outperforms other methods (p = 1.7 x 107%). The visualization, and
SI values of all datasets are shown in Figures 4.9-4.17 and Table 4.6.

We also compare the methods across different data platforms: plate-based, flow-
cell-based, Smart-Seql/2, SMARTer, inDrop, and 10X Genomics. Figure 4.18 shows
the performance of the visualization methods. The silhouette values of all methods
change across the platform groups. However, scDHA consistently outperforms other
methods in each platform. Similar to clustering, the performance of all methods

dropped when analyzing 10x Genomics.

4.3.3 Cell classification

We assess scDHA’s classification capability by comparing it with four methods that
are dominant in machine learning: XGBoost [81], Random Forest (RF) [82], Deep
Learning (DL) [83], and Gradient Boosting Machine (GBM) [84].

We test these methods using five datasets: Baron (8,569 cells), Segerstolpe (2,209
cells), Muraro (2,126 cells), Xin (1,600 cells), and Wang (457 cells). All five datasets
are related to human pancreas and thus have similar cell types. In each analysis
scenario, we use one dataset as training and then classify the cells in the remaining
four datasets. For example, we first train the models on Baron and then test them
on Segerstolpe, Muraro, Xin, and Wang. Next, we train the models on Segerstolpe
and test on the rest, etc. The accuracy of each method is shown in Figure 4.19 and
Table 4.7.

Overall, scDHA is accurate across all 20 combinations with accuracy ranging from
0.88 to 1. scDHA outperforms other methods by having the highest accuracy. The
average accuracy of scDHA is 0.96, compared to 0.77, 0.69, 0.43, and 0.72 for XGB,

RF, DL, and GBM, respectively. In addition, scDHA is very consistent, while the
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Table 4.6: Silhouette values calculated for representation using scDHA, PCA, t-SNE,
UMAP, and SCANPY. Cells with NA values indicate that the method was not able
to analyze the dataset (out-of-memory). Cells highlighted in green have the highest
silhouette values. scDHA has the highest average silhouette value. It outperforms
other methods in 25 out of 34 datasets.

Dataset Size scDHA PCA t-SNE UMAP SCANPY
Yan 90 0.52  0.54 0.45 0.47

Goolam 124 0.31 0.28 0.27 -0.02
Deng 268 0.50 0.60  0.49 067 0.45
Pollen 301 0.30 0.61 0.58 0.65
Patel 430 0.17 0.52 0.52 0.31
Wang 457 -0.07 0.13 0.21 0.27
Darmanis 466 0.01 0.31 0.34 0.25
Camp (B) 553 0.07 0.36 0.30 0.34
Usoskin 622 0.07 0.40 0.51 0.45
Kolodziejczyk 704 0.30 0.43 0.54 0.50
Camp (L) T 0.17 0.42 0.50 0.41
Xin 1,600 0.08 0.25 0.17 0.36
Baron (M) 1,886 -0.23 0.05 0.10 0.43
Muraro 2,126 -0.20 0.24 0.46 0.24
Segerstolpe 2,209 -0.22 0.01 0.24 0.22
Klein 2,717 0.24 0.48 0.69 0.69
Romanov 2,881 0.03 0.24 0.34 0.27
Zeisel 3,005 0.03 0.31 0.55 0.34
Lake 3,042 -0.11 0.25 0.32 0.29
Puram 5,902 0.23 0.05 0.24
Montoro 7,193 0.16 0.24 0.09 0.22
Baron (H) 8,569 -0.14 0.20 0.46 0.50
Chen 12,089 -0.07 0.09 0.35 0.40
Sanderson 12,648 0.09  0.06 0.04 0.14

Slyper 13,316 044 022  0.16 0.44

Campbell 21,086 0.01 -0.31  -0.05 -0.08

Zilionis 34,558 0447 0.00 022 0.42 0.29
Macosko 44,808 0.27  0.11 0.09 [0:36 0.27
Hrvatin 48,266 036 0.26 0.59 0.46
Tabula Muris 54,439 -0.24 -0.14 -0.07 -0.17
Karagiannis 72,914 0.05 -0.08  0.05 007 0.11
Orozco 100,055 0.69  -0.15 0.02 0.22
Darrah 162,490 036 -0.15 0.17 0.13
Kozareva 611,034 NA NA NA 0.50

Mean 04T 008 021 0.33 0.32
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Figure 4.9: Representation of the Yan, Gollam, Deng, and Pollen datasets (top to
bottom) using scDHA, PCA, t-SNE, UMAP, and SCANPY (left to right). Different
colors code for different cell types.
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Figure 4.10: Representation of the Patel, Wang, Darmanis, and Camp (Brain)
datasets (top to bottom) using scDHA, PCA, t-SNE, UMAP, and SCANPY (left
to right). Different colors code for different cell types.
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Figure 4.11: Representation of Usoskin, Kolodziejczyk, Camp (Liver), and Xin
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to right). Different colors code for different cell types.
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Figure 4.14: Representation of Montoro, Baron (Human), Chen, and Sanderson
datasets (top to bottom) using scDHA, PCA, t-SNE, UMAP, and SCANPY (left
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Figure 4.15: Representation of Slyper, Campbell, Zilionis, and Macosko datasets (top
to bottom) using scDHA, PCA, t-SNE, UMAP, and SCANPY (left to right). Different
colors code for different cell types.
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Figure 4.16: Representation of Hrvatin, Tabula Muris, Karagiannis, and Orozco
datasets (top to bottom) using scDHA, PCA, t-SNE, UMAP, and SCANPY (left
to right). Different colors code for different cell types.
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Table 4.7: Classification performance measuring by accuracy of scDHA, XGBoost,
Random Forest (RF), Deep Learning (DL), and Gradient Boosting Machine (GBM)
approach on single cell evaluation pairs.

Training Dataset Predicting Dataset scDHA XGBoost RF DL GBM

Baron (Human) Segerstolpe 0.32 0.60 0.39
Baron (Human) Muraro 0.79 0.72 0.74
Baron (Human) Xin 0.49 0.03 0.84
Baron (Human) Wang 0.28 0.01 0.60
Segerstolpe Baron (Human) 0.71 0.21 049
Segerstolpe Muraro 0.88 0.73 0.74
Segerstolpe Xin 0.97 0.46 0.99
Segerstolpe Wang 0.93 0.22 097
Xin Baron (Human) 0.60 0.77 0.46
Xin Segerstolpe 091 0.78 0.92
Xin Muraro 0.82 0.57 0.42
Xin Wang 0.58 0.58 0.96
Muraro Baron (Human) 0.78 0.16 0.85
Muraro Segerstolpe 0.65 0.65 0.72
Muraro Xin 0.89 0.06 0.84
Muraro Wang 0.64 0.01 0.73
Wang Baron (Human) 0.38 0.30 0.38
Wang Segerstolpe 0.75 044 091
Wang Muraro 0.55 046 0.52
Wang Xin 0.90 0.76  0.96
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Figure 4.17: Representation of Darrah, and Kozareva datasets (top to bottom) using
scDHA, PCA, t-SNE, UMAP, and SCANPY (left to right). Different colors code for
different cell types. For Kozareva dataset, only scDHA and SCANPY can generate
the 2D representation.
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performance of existing methods fluctuates from one analysis to another, especially

when the testing dataset is much larger than the training dataset. For example,
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Figure 4.19: Classification accuracy of scDHA, XGBoost, Random Forest (RF),
Deep Learning (DL), Gradient Boosted Machine (GBM) using five human pancre-
atic datasets. In each scenario (row), we use one dataset as training and the rest as
testing, resulting in 20 train-predict pairs. The accuracy values of scDHA are signifi-
cantly higher than those of other methods (p = 2.1 x 107 using Wilcoxon one-tailed
test).

when the testing set (Baron) is 20 times larger than the training set (Wang), the
accuracy of existing methods is close to 30%, while scDHA achieves an accuracy of
0.93. The one-sided Wilcoxon test also confirms that the accuracy values of scDHA

are significantly higher than the rest (p = 2.1 x 107%).

4.3.4 Time-trajectory inference

Here we compare the performance of scDHA with state-of-the-art methods for time-
trajectory inference: Monocle [88], TSCAN [89], Slingshot [64], and SCANPY [77].

We test scDHA and these methods using three mouse embryo development datasets:
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Yan, Goolam, and Deng. The true developmental stages of these datasets are only
used a posteriori to assess the performance of the methods.

Figure 4.20a shows the Yan dataset in the first two t-SNE components. The
smoothed lines shown in each panel indicate the time-trajectory of scDHA (left)
and Monocle (right). The trajectory inferred by scDHA accurately follows the true
developmental stages: it starts from zygote, going through 2cell, 4cell, 8cell, 16cell,
and then stops at the blast class. On the contrary, the trajectory of Monocle goes
directly from zygote to 8cell before coming back to 2cell. Figure 4.20b shows the cells
ordered by pseudo-time. The time inferred by scDHA is strongly correlated with the
true developmental stages. On the other hand, Monocle fails to differentiate between
zygote, 2cell, and 4cell. To quantify how well the inferred trajectory explains the
developmental stages, we also calculate the R-squared value. scDHA outperforms
Monocle by having a higher R-squared value (0.93 compared to 0.84).

Figure 4.20c,d show the results of the Goolam dataset. scDHA correctly recon-
structs the time-trajectory whereas Monocle fails to estimate pseudo-time for 8cell,
16cell, and blast cells (colored in gray). Monocle assigns an “infinity” value for these
cell classes. Figure 4.20e,f show the results obtained for the Deng dataset. Similarly,
the time-trajectory inferred by scDHA accurately follows the developmental stages
whereas Monocle cannot estimate the time for half of the cells. The results of TSCAN,
Slingshot, and SCANPY are shown in Figures 4.20 and 4.20. scDHA outperforms all

three methods by having the highest R-squared values in every single analysis.
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Pseudo-time inference of three mouse embryo development datasets

(Yan, Goolam, and Deng) using scDHA and Monocle. (a) Visualized time-trajectory
of the Yan dataset in the first two t-SNE dimensions using scDHA (left) and Monocle
(right). (b) Pseudo-temporal ordering of the cells in the Yan dataset. The horizontal
axis shows the inferred time for each cell while the vertical axis shows the true de-
velopmental stages. (c,d) Time-trajectory of the Goolam dataset. Monocle is unable
to estimate the time for most cells in 8-cell, 16-cell, and blast (colored in gray). (e,f)
Time-trajectory of the Deng dataset. Monocle is unable to estimate the pseudo time

for most blast cells.
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Figure 4.21: Pseudo-time inferred by scDHA, Monocle, TSCAN, Slingshot, and
SCANPY for the Yan, Goolam, and Deng datasets. R-squared values shown in each
panel represent the correlation between the true developmental stages and inferred
pseudo-time. Points with gray color indicate cells with infinite pseudo-time.
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4.4 Conclusion (scDHA)

The ever-increasing number of cells, technical noise, and high dropout rate pose signif-
icant computational challenges in scRNA-seq analysis. These challenges affect both
analysis accuracy and scalability, and greatly hinder our capability to extract the
wealth of information available in single-cell data. To detach noise from informative
biological signals, we have introduced scDHA, a powerful framework for scRNA-seq
data analysis. We have shown that the framework can be utilized for both upstream
and downstream analyses, including de novo clustering of cells, visualizing the tran-
scriptome landscape, classifying cells, and inferring pseudo-time. We demonstrate
that scDHA outperforms state-of-the-art techniques in each research sub-field. Al-
though we focus on single-cell as an example, scDHA is flexible enough to be adopted
in a range of research areas, from cancer to obesity to aging to any other area that
employs high-throughput data.

In contrast to existing autoencoders, such as scVI [150] that was developed for
data imputation, scDHA provides a complete analysis pipeline from feature selection
(first module) to dimension reduction (second module) and downstream analyses (vi-
sualization, clustering, classification, and pseudo-time inference). The scVI package
itself is not capable of clustering, visualization, classification, and pseudo-time in-
ference. Even for the implementation of autoencoder, there are two key differences
between scDHA and scVI. First, scDHA implements a hierarchical autoencoder that
consists of two modules: the first autoencoder to remove noise (denoising), and the
second autoencoder to compress data. The added denoising module (first module)
filters out the noisy features and thus improves the quality of the data. Second, we
modify the standard variational autoencoder (VAE, second module) to generate mul-
tiple realizations of the input. This step makes the VAE more robust. Indeed, our

analysis results show that scDHA and its second module consistently outperform scVI
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when scVTI is used in conjunction with downstream analysis methods implemented in
scDHA and other packages (see Supplementary Section 6 and Fig. 25-32).

In summary, scDHA is user-friendly and is expected to be more accurate than ex-
isting autoencoders. Users can apply scDHA to perform downstream analyses without
installing additional packages for the four analysis applications (clustering, visualiza-
tion, classification, and pseudo-time trajectory inference). At the same time, the
hierarchical autoencoder and the modified VAE (second module of scDHA) are ex-

pected to be more efficient than other autoencoders in single-cell data analysis.
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Chapter 5

scISR: A Novel Method for

Single-cell Data Imputation using

Subspace Regression

This chapter is based on the following publication: Duc Tran, Bang Tran, Hung
Nguyen, and Tin Nguyen. A novel method for single-cell data imputation using

subspace regression. Scientific Reports, 2022. DOI: 10.1038/s41598-022-06500-4

Recent advances in biochemistry and single-cell RNA sequencing (scRNA-seq)
have allowed us to monitor the biological systems at the single-cell resolution. How-
ever, the low capture of mRNA material within individual cells often leads to in-
accurate quantification of genetic material. Consequently, a significant amount of
expression values are reported as missing, which are often referred to as dropouts.
To overcome this challenge, we develop a novel imputation method, named single-cell
Imputation via Subspace Regression (scISR), that can reliably recover the dropout
values of scRNA-seq data. The scISR method first uses a hypothesis-testing tech-

nique to identify zero-valued entries that are most likely affected by dropout events
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and then estimates the dropout values using a subspace regression model. Our com-
prehensive evaluation using 25 publicly available scRNA-seq datasets and various
simulation scenarios against five state-of-the-art methods demonstrates that scISR is
better than other imputation methods in recovering scRNA-seq expression profiles via
imputation. scISR consistently improves the quality of cluster analysis regardless of
dropout rates, normalization techniques, and quantification schemes. The source code

of scISR can be found on CRAN at https://cran.r-project.org/package=scISR.

5.1 Introduction

Bulk RNA sequencing (RNA-seq) has been the primary tool to study biological sys-
tems. Despite its popularity, bulk sequencing is unable to measure the heterogeneity
inside complex tissues and cell-to-cell variability. Recently, advances in microfluidics
and sequencing technologies have allowed us to measure the expression profiles of
individual cells [58, 59]. By allowing us to monitor the biological processes at the
single-cell resolution, single-cell technologies (scRNA-seq) have enabled new research
directions in genomics and transcriptomics research. However, scRNA-seq data also
comes with additional challenges [73]. One of the challenges is that sequencing mRNA
within individual cells requires artificial amplification of DNA materials, leading to
disproportionate distortions of relative transcript abundance and gene expression.
Another outstanding challenge is the “dropout” phenomenon where a gene is highly
expressed in one cell but does not express at all in another cell [101]. These dropout
events usually occur due to the limitation of sequencing technologies when only a
small amount of starting mRNA in individual cells can be captured, leading to low
sequencing depth and failed amplification [102, 103]. Since downstream analyses of
scRNA-seq heavily rely on the accuracy of expression measurement, it is crucial to

impute the zero expression values introduced by the dropout phenomenon and se-
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quencing errors.

There have been a number of computational methods developed to impute single-
cell data. These imputation methods can be classified into two categories: i) model-
based methods and ii) model-free methods. Methods in the first category model the
data using a mixture of two different distributions: one distribution represents the
actual gene expression while the other accounts for the dropout events. Next, they
estimate the model parameters and true expression values using the Expectation-
Maximization (EM) algorithm [151]. Methods in this category include scImpute [105],
SAVER [106], and BISCUIT [152]. scImpute uses a Gaussian distribution to model
the actual expression and a Gamma distribution to model the dropout events. It es-
timates the model parameters and dropout values using the EM algorithm. Similarly,
SAVER [106] models read counts as a mixture of Poisson-Gamma distribution and
then uses a Bayesian approach to estimate the true expression values. BISCUIT [152]
uses the Dirichlet process mixture model [153] to perform data normalization, cells
clustering, and dropouts imputation by simultaneously inferring clustering param-
eters, estimating technical variations (e.g., library size), and learning co-expression
structures of each cluster.

Methods in the second category typically assume that expression values from
the same dataset follow a certain data structure (manifold), whereas dropout events
move the values away from the underlying structure. These methods use regression
techniques to infer missing values from genes or cells that have similar expression pat-
terns. Methods in this category include MAGIC [104], DrImpute [107], scScope [154],
DCA [155], and DeepImpute [156]. MAGIC imputes zero values using heat diffu-
sion [157]. The method first computes the affinity matrix between cells using a
Gaussian kernel and then constructs the Markov transition matrix by normalizing

and smoothing the computed affinity matrix. Finally, the method multiplies the
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exponentiated Markov matrix with the original data to obtain the imputed data.
DrImpute [107] uses a cluster ensemble strategy and consensus clustering to separate
data into groups of similar cells and then imputes missing data by averaging expres-
sion values of similar cells. The other three methods (scScope, Deeplmpute, and
DCA) rely on deep neural networks to denoise the data and to impute the missing
values. scScope uses a recurrent network layer to iteratively impute the zero-valued
entries while DeepImpute randomly splits genes into subsets and builds sub-neural
networks to estimate the missing values. DCA, on the other hand, extends the stan-
dard autoencoder to account for sparse count data by incorporating a noise model
into their loss function.

The quality of data imputed by methods in the first category (statistical meth-
ods) is determined by the validity of the assumption of the distribution models. In
addition, these methods usually require excessive computational power, which makes
them slow in processing big datasets. Therefore, these statistical methods often rely
on gene filtering steps to ease the computational burden. For methods in the second
category (regression approaches), their major drawbacks include i) relying on many
parameters to fine-tune their models, which can lead to overfitting, and ii) tending
to over-smoothen and remove the cell-to-cell stochasticity that represents meaningful
biological variations in gene expression. More importantly, in addition to the limita-
tions mentioned above, methods in both categories attempt to alter the expression
of all zero-valued entries, including those not affected by dropout events. This may

introduce false signals and further weaken their reliability.

5.2 Methodology

Here we propose a new approach, scISR, that can reliably impute missing values from

single-cell data. Our method consists of three modules. The first module performs



87

hypothesis testing to identify the values that are likely to be impacted by the dropout
events. By not altering the true zero values, we can avoid false imputations. The
second module utilizes a data perturbation technique [44] to automatically group
genes with similar patterns into smaller groups. The third module imputes missing
values affected by dropout events (identified in the first module) by learning the gene
patterns in each gene group (identified in the second module). This strategy ensures
that the true missing values are imputed by using only highly relevant information.
In an extensive analysis using simulation and 25 real scRNA-seq datasets, we demon-
strate that scISR improves the quality of clustering analysis of single-cell data while
preserving the transcriptome landscape.

The schematic pipeline of scISR is shown in Figure 5.1. Our method consists of
three modules. The first module performs hypothesis testing to identify the values
that are likely to be impacted by the dropout events. By not altering the true zero
values, we can avoid false imputations. The second module utilizes a data perturba-
tion technique [44] to automatically group genes with similar patterns into smaller
groups. The third module imputes missing values affected by dropout events (identi-
fied in the first module) by learning the gene patterns in each gene group (identified in
the second module). This strategy ensures that the true missing values are imputed
by using only highly relevant information. The details of each module are provided

in the the following subsections.

5.2.1 Hyper-geometric testing (Module 1)

The first module aims at determining whether each zero value observed is the result
of dropouts. Our hypothesis is that dropout events happen randomly for a gene
affected by this phenomenon. By treating each cell as an instance of the population,

we also assume that the ratio of zero values (dropout probability) reported for each
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Figure 5.1: Single-cell Imputation using Subspace Regression (scISR). (A) Input data
visualized in cell/sample space. (B) Hypergeometric test to determine whether each
zero value is induced by dropout. Based on the computed p-values for each entry, we
separate the original data into two sets of data: training data and imputable data. (C)
Training data in which none of the values is induced by dropout events. (D) Imputable
data in which each gene has at least one entry that is likely to be induced by dropout
events. (E) Gene subspaces determined by perturbation clustering. We perturb the
training data to discover the natural structure of the genes. Based on the pair-wise
similarity between genes, we separate genes into groups that share similar patterns.
(F) Subspace regression. We assign each gene in the imputable data to the closest
subspace and then perform a generalized linear regression on the subspace to estimate
the zero-valued entries that are impacted by dropouts. (G) Output expression matrix
obtained by concatenating the training data and imputed data.
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cell differ from each other. Using dropout probabilities from both genes and cells, we
can calculate how likely each zero values is affected by dropout. If zero values caused
by dropout are over-represented in a gene, we conclude that this gene is affected by
dropout events.

Given a zero-valued entry, let us denote p; and psy as the probability of observing a
zero value in the corresponding gene and cell, respectively. It follows that the chances
of having zero values in a gene and in a cell follow binomial distributions denoted
by X~ Bin(n, p;) and Y~ Bin(m, ps), respectively. n is the number of measured
values for a gene, and m is the number of measured values for a cell. Under the null,
we have p = p; = py. If X and Y are independent, we have X +Y ~ Bin(n+m,
p). Therefore, the conditional distribution of X, P(X = z|X +Y = r), is a hyper-
geometric where z is the number of observed zero values in the gene and r is the total
number of observed zero values in the selected pair of gene and cell. The probability

mass function of the hyper-geometric distribution can be written as follows:

PX=z-1X+Y=r—1)= (Z:D(TTQ;)

<”+r71’1_ 1) (5.1)

Note that X and Y have an overlapping entry for each gene and cell pair. There-
fore, we remove the overlapping entry from the hypergeometic formula by using: i)
n+m —1 (instead of n+m) as the total number of of observed values in the selected
pair of gene and cell, ii) n — 1 (instead of n) as the number of measured values for the
gene, and iii) x — 1 (instead of z) as the number of zero values observed in the gene.

Applying Equation (5.1), we calculate the p-value for every zero-valued. We per-
form two different kinds of tests: an under-representation and over-representation
analysis with a significance threshold set to 0.01 for both analyses. An entry with

a significant p-value in the over-representation analysis is considered untrustworthy
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and should be imputed (imputable). An entry with a significant p-value in the under-
representation analysis is considered trustworthy. An entry that is neither trustworthy
nor untrustworthy should be left alone. These values will not be imputed, nor be used
to impute other values. A gene is trustworthy if all of its entries are trustworthy. A
gene is imputable when at least one of its values is imputable. Based on this hypoth-
esis testing procedure, we obtain a set of genes that can be used for training (training

data), and a set of genes that needed to be imputed (imputable data).

5.2.2 Identifying gene subspaces (Module 2)

It is crucial that the missing values of a gene are inferred using related genes that
share similar expression patterns. Therefore, this module aims at identifying gene
groups of the training data, i.e., gene subspaces that share similar patterns. For this
purpose, we utilize the perturbation clustering [44, 45] that we recently developed.
The method is based on the observation that small changes in quantitative assays will
be inherently presented even when there is no significant difference between genes. If
distinct gene groups do exist, they must be stable with respect to small degrees of data
perturbation. This is indeed the case, as we have demonstrated in our previous work
that the pair-wise connectivity between data points of the same group is preserved
when the data are perturbed.

We will describe this approach using an illustrative example shown in Figure 5.2.
In this simulated dataset, we have three distinct classes of genes in which the expres-
sions of genes in each class are generated using a standard normal distribution. This
distribution for the first class is A(0,1), for the second class is N'(1,1) to simulate
up-regulated genes, and for the third class is N'(—1,1) to simulate down-regulated
genes.

Assuming that we do not know the number of classes in this dataset, we set k = 2
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(number of clusters) and then partition the genes. The upper panel in Figure 5.2B
shows the connectivity between genes after clustering: green when they belong to
the same cluster, and white otherwise. Note that two of the three true classes are
wrongfully grouped together due to the wrong number of clusters. Now we repeatedly
perturb the molecular measurements (by adding Gaussian noise) and partition the
genes again (still with k& = 2). The lower panel in Figure 5.2B shows the average
connectivity between genes when the data is perturbed. The perturbed connectiv-
ity matrix suggests that the larger cluster is not stable. Similarly, the discordant
connectivity in Figure 5.2C states that the partitioning using £ = 5 is not correct
either. The perturbed connectivity matrices (Figure 5.2B, C) suggest that there are
three distinct classes of genes. Finally, when we set & = 3, the perturbed and original
connectivity matrices are identical (Figure 5.2D).

The perturbed connectivity matrices suggest that there are three distinct classes
of genes. This demonstrates that for truly distinct gene groups the true connectivity
between genes within each class is recovered when the data is perturbed, no matter
how we set the value of k. This resilience of pair-wise connectivity occurs consistently
regardless of the clustering algorithm being used (e.g., k-means, hierarchical cluster-
ing, or partitioning around medoids), or the distribution of the data. When there
are no truly distinct subgroups, the connectivity is randomly distributed. When the
number of true classes changes, the perturbed connectivity always reflects the true
structure of the data.

To identify the optimal partitioning, we calculate the absolute difference between
the original and the perturbed connectivity matrices and compute the empirical cu-
mulative distribution functions of the entries of the difference matrix (CDF-DM). In
the ideal case of perfectly stable clusters, the original and perturbed connectivity

matrices are identical, yielding a difference matrix of 0s, a CDF-DM that jumps from
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Figure 5.2: The resilience of pair-wise connectivity. (A) The dataset consists of three
classes of genes: the first class has expression values of N (0,1), the second has ex-
pression values of N'(1,1), and the third class has expression values of N'(—1,1). (B)
The original connectivity matrix (upper panel) and perturbed connectivity matrix
(lower panel) for k& = 2. (C) The connectivity matrices for k = 5. (D) The connectiv-
ity matrices for k = 3. The perturbed connectivity matrices clearly reveal the true
structure of the data.

0 to 1 at the origin, and an area under the curve (AUC) of 1 [44, 45]. We choose
the partitioning with the highest AUC and then partition the genes into subgroups
that are strongly connected in those perturbation scenarios. We note that the idea
of determining subspaces can be realized for both genes and cells simultaneously. We
do not focus on such simultaneous clustering in this manuscript, but it is of great

interest.

5.2.3 Subspace regression (Module 3)

In the first module, we divide the genes into two sets: i) a set I in which all of the

genes are likely to be affected by dropouts (imputable set), and ii) a set 7" that have
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accurate gene expression that does not need to impute (training set). In the second
module, we segregate T' into smaller groups of genes (gene subspaces) that share
similar expression patterns. In this third module, we will impute dropout values in
group I using a generalized linear regression model on gene subspaces.

Given a gene in the imputable set g € I, we calculate the Euclidean distance
between the gene to the centroid of each gene subspaces. Based on the calculated
distances, we assign the gene to the closest subspace (with the smallest Euclidean
distance). In order to impute dropout values in g, we train a generalized linear
model using only highly-correlated genes within the assigned subspace in T'. The
linear regression process consists of two steps. The first step is to select genes from
the training set that are highly correlated with the gene we need to impute. In the
second step, we train the linear model using these highly correlated genes and then
estimate the missing values [158].

Denoting y C ¢ as the non-zero part of g, S as the gene subspace in T' that g
was assigned to, {s; € S} are expression vectors of genes in S; and {z; C t;} are the
parts of {t;} that correspond with y. We calculate the Pearson correlation between
y and x; and then select the 10 genes {t1,...,t;0} in T with the highest correlation
coefficients. We train a linear model in which {z1, ..., x10} are the predictor variables
and y is the outcome variable. In our implementation, we adopt the [m function that
is available in the stats R package. Next, we use the trained linear model to estimate
the missing values in ¢ \ y, using {t1\z1,...,t10\z10} as the predictors, where ¢;\z;
is the part of t; that does not belong to x;. To avoid adding excessive weight to
genes with high expression values, we always rescale the data to an acceptable range

(default is [0,100]) using log transformation (base 2).
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5.3 Validation and Analysis Results

To assess the performance of scISR, we use both real scRNA-seq data and simula-
tion. We compare scISR with five popular methods, MAGIC [104], scImpute [105],
SAVER [106], scScope [154], and scGNN [159]. SAVER and sclmpute are statistical
approaches that impute the missing values using mixture models; MAGIC is a math-
ematical approach that relies on Markov transition to estimate the missing values.
scScope uses a recurrent network layer to iteratively perform imputations on zero-
valued entries of input scRNA-seq data. scGNN formulates and aggregates cell—cell
relationships with graph neural networks and models heterogeneous gene expression
patterns using a left-truncated mixture Gaussian model. scGNN uses the cell-cell
relationships to impute the dropouts.

First, we apply the six methods on 25 real scRNA-seq datasets with known cell
types. Table 5.1 shows the details of 25 single-cell datasets that will be used in our
validation. The cell labels are only used a posteriori to assess whether the imputation
enhances the cell segregation, i.e., making the cell types more separable without
drastically altering the transcriptome landscape. Second, we simulate 46 single-cell
expression datasets whose values follow different distributions and dropout rates. We
then apply the six imputation methods, scISR, MAGIC, scImpute, SAVER, scScope,
and scGNN on the masked dataset to recover the missing values. Since we know
exactly the missing entries and values, we can accurately assess the reliability of each

method in terms of both sensitivity and specificity.
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Table 5.1: Description of the 25 single-cell datasets used to assess the performance of
imputation methods. The first three columns describe the name, accession ID, and
tissue, while the following seven columns show the sequencing protocol, cell isolation
technique, quantification scheme, normalized unit, dropout rate, number of cell types,
and number of cells.

Dataset Accession Tissue Sequencing Cell Quant. Norm. Drop. Class Size
ID Protocol Isolation Scheme Unit Rate
1. Fan [160] GSE53386 Mouse Embryo SUPeR-seq Plate Reads ~ FPKM 0.584 6 69
2. Treutlein [161] GSE52583 Mouse Tissues SMARTer Plate Reads ~ FPKM 0.902 5 80
3. Yan [118] GSE36552 Human Embryo Tang Plate Reads RPKM 0.456 6 90
4. Goolam [119] E-MTAB-3321 Mouse Embryo Smart-Seq2 Plate Reads CPM  0.685 5 124
5. Deng [120] GSE45719 Mouse Embryo Smart-Seq Plate Reads ~ RPKM 0.605 6 268
6. Pollen [121] SRP041736 Human Tissues SMARTer Plate Reads ~ TPM  0.671 4 301
7. Darmanis [123] GSE67835 Human Brain SMARTer Plate Reads CPM  0.808 9 466
8. Usoskin [125] GSE59739 Mouse Brain STRT-Seq Plate Reads ~ RPM  0.846 3 622
9. Camp [124] GSE75140 Human Brain SMARTer Plate Reads ~ FPKM 0.801 7 734
10. Klein [132] GSE65525 Mouse Embryo inDrop Droplet UMI RPM  0.658 4 2,717
11. Romanov [133] GSE74672 Human Brain SMARTer Plate UMI - 0.878 7 2,881
12. Segerstolpe [131] E-MTAB-5061 Human Pancreas Smart-Seq2 Plate Reads RPKM 0.823 15 3,514
13. Manno [162] GSE76381 Human Brain STRT-Seq Plate UMI - 0.86 56 4,029
14. Marques [163] GSE75330 Mouse Brain Fluidigm C1  Plate Reads FPKM 0.891 13 5,053
15. Baron [129] GSE84133 Human Pancreas inDrop Droplet UMI TPM  0.906 14 8,569
16. Sanderson [138] SCP9I16 Mouse Tissues 10X Genomics Droplet — Reads - 0.764 11 12,648
17. Slyper SCP345 Human Blood 10X Genomics Droplet UMI - 0.956 8 13,316
18. Zilionis (Mouse) [140] GSE127465 Mouse Lung inDrop Droplet ~ UMI RPM  0.976 7 15,939
19. Tasic [164] GSE115746 Mouse Visual Cortex SMART-Seq  Plate Reads CPM  0.798 6 23,178
20. Zyl (Human) [165] SCP780 Human Eye inDrop Droplet ~ UMI - 0.913 19 24,023
21. Zilionis (Human) [140] GSE127465 Human Lung inDrop Droplet ~ UMI RPM  0.982 9 34,558
22. Wei [166] SCP469 Human Synovium 10x Genomics Droplet UMI TPM  0.915 9 41,565
23. Cao [167] SCP454 Sea Squirt Embryos  10x Genomics Droplet ~ UMI - 0.821 7 90,579
24. Orozco [145] GSE135133 Human Eye 10X Genomics Droplet UMI RPKM 0.964 12 100,055
25. Darrah [146] GSE139598 Human Blood Drop-seq Droplet ~ UMI - 0.947 14 162,490

L UMI: Unique Molecular Identifier; CPM: Counts Per Million; RPM: Reads Per Million; RPKM:
Reads Per Kilobase of transcript, per Million mapped reads; FPKM: Fragments Per Kilobase of
transcript, per Million mapped reads.
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5.3.1 Cluster analysis of 25 scRNA-seq datasets using k-

means

We use the known cell types of the 25 scRNA-seq datasets to assess whether the
imputation helps separate cells of different types in cluster analysis. We compare
scISR against MAGIC, scImpute, SAVER, scScope, and scGNN using three assess-
ment metrics: Adjusted Rand Index (ARI) [148], Jaccard Index (JI) [168], and Purity
Index (PI) [169].

Given a dataset (raw data), we use k-means to cluster the cells using the true
number of cell types k as the number of clusters. We calculate the Adjusted Rand
Index (ARI) [148] to compare k-means partitioning against the known cell labels.
Rand Index (RI) measures the agreement between a given clustering and the ground
truth. The ARI is the corrected-for-chance version of the RI. The ARI takes values
from -1 to 1, with the ARI expected to be 1 for a perfect agreement, and 0 for random
partitionings. Next, we apply each of the six imputation methods to the raw data
to obtain the imputed data. Again, we use k-means to partition the imputed data
and calculate the ARI values using the true cell labels. We expect that by imputing
the raw data, we obtain better data in which the cells of different types are more
separable. Therefore, we assess the performance of each method by comparing the
ARI of the imputed data against the ARI obtained from the raw data. We repeat
the whole procedure for all 25 datasets to assess how well each imputation method
performs.

Table 5.2 and Figure 5.3 show the ARI values obtained for the 25 datasets. For
each row, a cell of a method is highlighted in green if the imputed ARI is higher than
the raw ARI. The maximum memory permitted for each analysis was set to 100 GB
of RAM. scISR and MAGIC are the only methods able to analyze all datasets. scIm-

pute runs out of memory when analyzing datasets with 23,178 cells (Tasic) or larger.
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SAVER crashes when analyzing the Tasic dataset, and it runs out of memory when
analyzing datasets with 90,579 cells (Cao) or larger. scScope runs out of memory
when analyze the biggest dataset (Darrah). scGNN ran out of memory when ana-
lyzing the datasets Cao, Orozco, and Darrah. For 25 real datasets, scISR is able to
improve the ARI values 21 out of 25. The average ARI value of scISR is 0.571, which
is the highest compared to those of raw data and data imputed by MAGIC, scImpute,
SAVER, scScope, and scGNN (0.504, 0.461, 0.286, 0.423, 0.165, and 0.279, respec-
tively). Overall, scISR increases the ARI values by 13.3% across all datasets. For the
two datasets Zyl (Human) (24,023 cells) and Zilionis (Human) (34,558 cells), scISR
increases the ARI values significantly (11.3% and 14.5%, respectively). For Orozco
and Darrah datasets with more than 100,000 cells, scISR increases the ARI values
by 13.6% and 77.2%, respectively. A one-sided Wilcoxon test also confirms that the
ARI values of scISR are significantly higher than those of raw data (p = 3.2 x 1079)
and of other imputation methods (p = 9.8 x 1079).

To perform a more comprehensive analysis, we also compare the methods using
two other metrics: Jaccard Index (JI) [168] and Purity Index (PI) [169]. The detailed
results for each dataset and method are reported in Table 5.2-5.4. Overall, scISR
is the only method that has better clustering accuracy on average when comparing
with using the raw data. The results are similar for analyses using JI and PI. Among
all methods, scISR has the highest average JI values (Table 5.3). Its average JI value
is 0.531, compare to 0.468, 0.453, 0.276, 0.403, 0.243 and 0.273 of the raw data,
MAGIC’s, scImpute’s, SAVER’s, scScope’s, and scGNN’s. A one-sided Wilcoxon test
also confirms that the JI values of scISR are significantly higher than those of raw
data (p = 3.2 x 107°) and of all other methods (p = 4.8 x 107°). Table 5.4 shows
the PI values obtained from raw and imputed data. It is the only method that has

the average PI value higher than that of the raw data. All other methods have an
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average PI less than that of the raw data. scISR improves cluster analysis by having
PI values higher than those of the raw data in 15 out of 25 datasets. A one-sided
Wilcoxon test also confirms that the PI values of scISR are significantly higher than
those of raw data (p = 0.007) and of all other methods (p = 9.9 x 107°).

Next, to assess the performance of each method with respect to different cell iso-
lation techniques, quantitative schemes, and normalized units, we divide the datasets
into multiple overlapping groups: (1) 14 plate-based and 11 droplet-based datasets;
(2) 12 with UMI and 13 with read count; and (3) 7 without normalization, 11 with
transcript length-normalization (RPKM/FPKM/TPM), and 7 with transcript-depth
normalization (CPM/RPM). Figure 5.3 shows the ARI values obtained for raw data
and data imputed by four imputation methods. The ARI values of scISR are con-
sistently higher than those of raw data and of other methods in each grouping. In-
terestingly, the ARI values of raw data are comparable across quantification schemes
(UMI/read) but differ greatly across different normalization units (Figure 5.4A). Well-
known normalization techniques developed for bulk RNA-seq (RPKM/FPKM/TPM)
improve raw data’s cluster analysis (better than no normalization), but they have ap-
parent disadvantages compared to CPM/RPM. The ARI values of scISR follow the
same trend but are always higher than those of raw data. Similarly, Figures 5.4B and
Figure 5.4C show the JI and PI values obtained for the cluster analysis. Regardless
of the assessment metrics, cluster analysis in conjunction with scISR has a notable
advantage over other imputation methods.

To understand the impact of data scaling on the performance of the imputation
methods, we also perform the same analysis without log transformation applied to the
input data. We repeat the same process as the previous analysis, the only difference
is we do not perform log transformation on the raw data before applying imputation

method on it. The clustering results are also assessed using three different metrics
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Figure 5.3: Adjusted Rand Index (ARI) obtained from raw and imputed data. The
x-axis shows the names of the datasets while the y-axis shows ARI value of each
method. scISR improves cluster analysis by having ARI values higher than those of
the raw data in 21 out of 25 datasets.
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Table 5.2: Adjusted Rand Index (ARI) obtained from raw and imputed data. In each
row, a cell is highlighted in green if the ARI value is higher than that of the raw data.
scISR improves cluster analysis by having ARI values higher than those of the raw
data in 21 out of 25 datasets. A one-sided Wilcoxon test also confirms that the ARI
values of scISR are significantly higher than those of raw data (p = 3.2 x 107°) and
of all other methods (p = 9.8 x 107°).

Dataset Size Raw MAGIC scImpute SAVER scScope scGNN scISR
Fan 69 0.081 0.000 0.000

Treutlein 80 0.699 0.295 0.509 0.014 0.383

Yan 90 0.603 0.000 0.253

Goolam 124 0.533 0.512 0.291 0.1

Deng 268 0.549 0.182 0

Pollen 301 0.955 0.931 0.932 0.885 0.012 0.955
Darmanis 466 0.665 0.465 0.644 0

Usoskin 622 0.736 0.144 OSSO 0

Camp 734 0.460 0.402 0.341 0.429 0

Klein 2,717 0.984 0.963 0.423 0.019

Romanov 2,881 0.507 _ 0.356 0.507 0

Segerstolpe 3,514 0.437 0.430 0.405 0.004

Manno 4,029 0.266 0.236 0.082

Marques 5,053 0.206 0.169 0.202 0

Baron 8,569 0.557 0.410 0.415 0.528 0.467 0.258 0.557
Sanderson 12,648  0.155 0.134 0.104 0.053
Slyper 13,316  0.409 0.392 0.201
Zilionis (Mouse) 15,939  0.665 0.404 0.455 0.349

Tasic 23,178 0.439 N/A N/A 0 0.387

Zyl (Human) 24,023 0.381 N/A 0.366 0.285
Zilionis (Human) 34,558 0.620 N/A 0 0.204

Wei 41,565  0.616 N/A 0.473 0.578 0.341

Cao 90,579  0.426 N/A N/A 0.35 N/A
Orozco 100,055 0.375 N/A N/A N/A
Darrah 162,490 0.298 - N/A N/A N/A N/A

Mean ARI 0.504 0.461 0.286 0.423 0.165 0.279 0BT

1 N/A: Out of memory or error.
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Table 5.3: Jaccard Index (JI) obtained from raw and imputed data. In each row, a
cell value is highlighted in green if the JI value is higher than that of the raw data.
scISR improves cluster analysis by having JI values higher than those of the raw data
in 21 out of 25 datasets. A Wilcoxon test also confirms that the JI values of scISR are
significantly higher than those of raw data (p = 3.2 x 107°) and of all other methods

(p=4.8x1079).

Dataset Size Raw MAGIC sclmpute SAVER scScope scGNN scISR
Fan 69 0.195 [N0223] 0.156 0.177 0.172

Treutlein 80 0.673 0.433 0.482 0.316 0.377

Yan 90 0.524 0.194 0.245

Goolam 124 0.513 0.496 0.359 0.195

Deng 268 0.524 0.333 0.293

Pollen 301 0.923 0.885 0.886 0.816 0.112

Darmanis 466 0.563 0.379 0.541 0.169

Usoskin 622 0.679 0.264 0.273

Camp 734 0.395 0.368 0.306 0.390 0.211

Klein 2,717 0.977 0.948 0.430 0.275 0.977
Romanov 2,881 0.451 0.316 0.249

Segerstolpe 3,514 0.363 0.356 0.330 0.330 0.228

Manno 4,029 0.167 0.147 0.056

Marques 5,053 0.168 0.149 0.106 0.107  0.168
Baron 8,569 0.445 0.324 0.326 0.418 0.374 0.207  0.445
Sanderson 12,648  0.243 0.225 0.2 0.120

Slyper 13,316  0.393 0.381 0.232
Zilionis (Mouse) 15,939  0.601 0.354 0.337

Tasic 23,178  0.431 N/A N/A 0.134 0.389

Zyl 24,023  0.287 N/A 0.281 0.215
Zilionis (Human) 34,558  0.530 N/A 0.09 0.211

Wei 41,565  0.535 N/A 0.400 0.499 0.317  0.535
Cao 90,579  0.374 N/A N/A 0.326 N/A
Orozco 100,055 0.375 N/A N/A 0.364 N/A
Darrah 162,490 0.369 N/A N/A N/A N/A

Mean 0.468 0.453 0.276 0.403 0.243 0.273 |03

1 N/A: Out of memory or error.
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Table 5.4: Purity Index (PI) obtained from raw and imputed data. In each row, a
cell value is highlighted in green if the JI value is higher than that of the raw data.
scISR improves cluster analysis by having PI values higher than those of the raw data
in 15 out of 25 datasets. A Wilcoxon test also confirms that the PI values of scISR
are significantly higher than those of raw data (p = 0.007) and of all other methods

(p=9.9x1077).

Dataset Size Raw MAGIC sclmpute SAVER scScope scGNN scISR
Fan 69 0.485 0.424 0.379 0.379

Treutlein 80 0.800 0.662 0.538

Yan 90 0.811 0.356 %_

Goolam 124 0.823 0.815 0.758 0.774

Deng 268 0.806 0.660 0.795 0.795  0.507

Pollen 301 0.963 0.920 0.924 0.870 0.236 0.963
Darmanis 466 0.841 0.820 0.702 0.830 0.283

Usoskin 622 0.830 [NOR7IN 0.524 0.378

Camp 734 0.738 0.651 0.614 0.655 0.307

Klein 2,717 0.991 0.979 0.650 [IN0N994 0.351 0.991
Romanov 2,881 0.845 0.800 0.760 0.817 0.35 0.732
Segerstolpe 3514 0.840 0.822 0.773 0.377 0.666 -
Manno 4,029 0.506 0.463 0.467 0.266 0.282  0.506
Marques 5,053 0.445 0.440 0.19 0.345 0.445
Baron 8,569  0.947 0.856 0.833 0.935 0.888 0.703  0.947
Sanderson 12,648  0.936 0.858 0.877

Slyper 13,316 0.907 0.906 0.895 0.882  0.867 0.762 -
Zilionis (Mouse) 15,939 0.976 0.970 0.887 0.976  0.853 0.762  0.973
Tasic 23,178 0.912 0.907 N/A N/A 0485 0.874  0.856
Zyl 24,023 0.861 N/A 0.787 0.780
Zilionis (Human) 34,558 0.918 N/A 0.37 0.663

Wei 41,565  0.768 N/A 0.719 0.748 0.559  0.768
Cao 90,579 0.776 N/A N/A 0712 N/A 0761
Orozco 100,055 0.918 N/A N/A 0911 N/A
Darrah 162,490  0.924 N/A N/A N/A N/A

Mean 0.823 0.778 0.521 0.659 0.525 0.593 [IN0I8350

1 N/A: Out of memory or error.
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Figure 5.4: Assessment results of each imputation method with respect to cell iso-
The analysis is per-
formed with a log transformation of the data. Panel (A) shows the results using
Adjusted Rand Index (ARI), while panels (B) and (C) show the results using Jaccard
Index (JI) and Purity Index (PI). scISR consistently outperforms other methods in

lation techniques, quantification schemes, or normalized units.

every grouping by having the highest ARI, JI, and PI values.
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Adjusted Rand Index (ARI), Jaccard Index (JI) and Purity Index (PI). With the
exception of scISR, a decrease in performance is observed for all imputation methods
due to the dominance of genes with large values. This leads to a wider accuracy gap
between scISR and other imputation methods.

Figure 5.5A shows the ARI values obtained for data without log transformation.
Again, the ARI values of scISR are consistently higher than those of raw data and of
other methods in each grouping. Note that the ARI values of the raw data decrease
(in comparison with ARI values obtained with log transformation). The reason is
that the range of the data is very large. For example, the Deng dataset has a max
RPKM value of 155,847 whereas the mean RPKM of the dataset is only 35. Without
log transformation, genes with large values dominate the clustering analysis results,
which is undesirable. A decrease in performance is observed for other imputation
methods too (except scISR).

Table 5.5 shows the ARI values obtained for the raw data and the data inferred by
the six imputation methods. In this analysis, scISR improves the clustering analysis
in 24 out of 25 datasets by having the ARI values higher than those of the raw
data. Among all methods, scISR has the highest average ARI values. Its average
ARI value is 0.571, compare to 0.374, 0.356, 0.219, 0.307, 0.101 and 0.306 of the raw
data, MAGIC’s, scImpute’s, SAVER’s, scScope’s, and scGNN’s. A Wilcoxon test also
confirms that the ARI values of scISR are significantly higher than those of raw data
(p=6.3 x 107°) and of all other methods (p = 1.9 x 1077).

Table 5.6 shows the JI values obtained for the raw data and the data inferred
by the six imputation methods. In this analysis, scISR also improves the clustering
analysis in 23 out of 25 datasets by having the JI values higher than those of the
raw data. Among all methods, scISR has the highest average JI values. Its average

JI value is 0.531, compare to 0.392, 0.399, 0.245, 0.308, 0.223, and 0.304 of the raw
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data, MAGIC’s, scImpute’s, SAVER’s, scScope’s, and scGNN’s. A Wilcoxon test also
confirms that the JI values of scISR are significantly higher than those of raw data
(p = 0.0001) and of all other methods (p = 4.4 x 1079).

Table 5.7 shows the PI values obtained from raw and imputed data. The results
are similar to the analysis using ARI and JI. It is the only method that has the average
PI value higher than that of the raw data. All other methods have an average PI
less than that of the raw data. scISR improves cluster analysis by having PI values
higher than those of the raw data in most datasets (21 out of 25). A Wilcoxon test
also confirms that the PI values of scISR are significantly higher than those of raw

data (p = 0.0001) and of all other methods (p = 2.4 x 1077).

5.3.1.1 Cluster analysis of 25 scRNA-seq datasets using Seurat

To further assess the performance of imputation methods, we perform an additional
clustering analysis using Seurat [68]. This method can automatically determine the
number of cell types from the input data. We first used Seurat to cluster the raw and
imputed data of the 25 real scRNA-seq datasets. We then compared the clustering
results against true cell types using Adjusted Rand Index (ARI). Figure 5.6 and
Table 5.8 show the ARI values obtained from the raw data and the data obtained
from the six imputation methods. scISR is able to improve the cluster analysis in
14 out of 25 datasets. MAGIC, scImpute, SAVER, scScope, and scGNN improve the
cluster analysis in 5, 3, 5, 4, and 5 datasets, respectively. The mean ARI value of
scISR is 0.499 which is higher than the mean ARI values of all other methods (the
mean ARI values for MAGIC, sclmpute, SAVER, scScope, and scGNN are 0.315,
0.283, 0.324, 0.155, and 0.186, respectively). scISR is the only method that has mean

ARI higher than that of the raw data.
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lation techniques, quantification schemes, or normalized units. The analysis is per-
formed without a log transformation of the data. Panel (A) shows the results using
Adjusted Rand Index (ARI) while panels (B) and (C) show the results using Jaccard
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Table 5.5: Adjusted Rand Index (ARI) obtained from raw and imputed data. In each
row, a cell value is highlighted in green if the ARI value is higher than that of the
raw data. scISR improves cluster analysis by having ARI values higher than those of
the raw data in 24 out of 25 datasets. A Wilcoxon test also confirms that the ARI
values of scISR are significantly higher than those of raw data (p = 6.3 x 107°) and
of all other methods (p = 1.9 x 10~7). The analysis is performed on data without log

transformation.
Dataset Size Raw MAGIC sclmpute SAVER scScope scGNN scISR
Fan 69 0.008 0 0 _ 0.003
Treutlein 80 0.699 0.056 0 0 0.072 0.195
Yan 90 0.460 0.155
Goolam 124 0.629 0.17 0.281 0.379 0.112
Deng 268 0.359 0.263 0
Pollen 301 0.822 0.631 0.822 0.009
Darmanis 466 0.404 0.396 0
Usoskin 622 0.008 0.007 0.008 0.003
Camp 734 0.460 0.349 0.351 0.006
Klein 2,717 0.643 0.016
Romanov 2,881 0.193 0
Segerstolpe 3,514 0.079 0.003
Manno 4,029 0.167 0
Marques 5,053 0.100 0.001
Baron 8,569 0.276 0.008
Sanderson 12,648  0.155 N/A 0.122 0.119
Slyper 13,316  0.409
Zilionis (Mouse) 15,939  0.419 N/A 0
Tasic 24,023  0.818 N/A N/A
Zyl (Human) 23,178  0.381 N/A 0.379 0.378 0.268
Zilionis (Human) 34,558  0.424 N/A N/A 0 0.261
Wei 41,565 0.616 N/A 0.537 0.514 0.292
Cao 90,579  0.426 0.316 N/A N/A 0.269 N/A
Orozco 100,055 0.390 0.376 N/A N/A _ N/A
Darrah 162,490 0.000 JOMOSIN N/A N/A N/A N/A
Mean ARI 0.374  0.356 0.219 0.307 0.101 0.306  FOBTIN

1 N/A: Out of memory or error.
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Table 5.6: Jaccard Index (JI) obtained from raw and imputed data. In each row, a
cell value is highlighted in green if the JI value is higher than that of the raw data.
scISR improves cluster analysis by having JI values higher than those of the raw data
in 23 out of 25 datasets. A Wilcoxon test also confirms that the JI values of scISR
are significantly higher than those of raw data (p = 0.0001) and of all other methods
(p = 4.4 x 107%). The analysis is performed on data without log transformation.

Dataset Size Raw MAGIC scImpute SAVER scScope scGNN scISR
Fan 69 0.187 0.182 0.181 0.187 0.183 0.182
Treutlein 80 0.673 0.333 0.312 0.312 0.337 0.288

Yan 90 0.418 0.235

Goolam 124 0.634 0.403 0.434 0.401 0.355

Deng 268 0.387 0.278

Pollen 301 0.728 0.11

Darmanis 466 0.364 0.146

Usoskin 622 0.188 0.188

Camp 734 0.395 0.359 0.358 0.212

Klein 2,717 0.606 0.283

Romanov 2,881 0.268 0.246

Segerstolpe 3,514 0.243 0.227

Manno 4,029 0.108 0.03

Marques 5,053 0.134 0.107

Baron 8,569 0.259 0.199

Sanderson 12,648  0.243 N/A 0.22 0.217

Slyper 13,316  0.393

Zilionis (Mouse) 15,939  0.372 N/A 0.372 0.11

Tasic 24,023  0.809 0.735 N/A N/A 0.134

Zyl 23,178 0.287 N/A JOR9TIN0288 0.206

Zilionis (Human) 34,558 0.389 N/A N/A 0.083 0.257

Wei 41,565  0.535 N/A 0.455 0.439 0.278 0.535
Cao 90,579  0.374 0.321 N/A N/A 0.273 N/A

Orozco 100,055 0.370 0.355 N/A N/A 0.37 N/A

Darrah 162,490 0.444 JOMTORIN N/A N/A N/A N/A

Mean 0.392 0.399 0.245 0.308 0.223 0.304 O3

1 N/A: Out of memory or error.
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Table 5.7: Purity Index (PI) obtained from raw and imputed data. In each row, a
cell value is highlighted in green if the PI value is higher than that of the raw data.
scISR improves cluster analysis by having PI values higher than those of the raw data
in 21 out of 25 datasets. A Wilcoxon test also confirms that the PI values of scISR
are significantly higher than those of raw data (p = 0.0001) and of all other methods
(p=2.4 x 1077). The analysis is performed on data without log transformation.

Dataset Size Raw MAGIC scImpute SAVER scScope scGNN scISR
Fan 69 0.394 0.364 0.364 0.364 0.364
Treutlein 80 0.800 0.55 0.538 0.538 0.562 0.638

Yan 90 0.767 0.544

Goolam 124 0.823 0.613 0.702 0.782 0.565

Deng 268 0.713 0.608  JONM2INONT650 0.504

Pollen 301 0.870 0.761 0.87 0.87 0.233

Darmanis 466 0.674 0.624 0.296

Usoskin 622 0.376 0.376

Camp 734 0.738 0.396 0.54

Klein 2,717 0.803

Romanov 2,881 0.578

Segerstolpe 3,514 0.518

Manno 4,029 0.394

Marques 5,053 0.353

Baron 8,569 0.752  0.741 0.747

Sanderson 12,648 0.936 0.927 N/A 0.914

Slyper 13,316  0.907 0.903 0.894 0.899 0.85

Zilionis (Mouse) 15,939  0.873 N/A 0.873 0.503

Tasic 24,023  0.931 0.922 N/A N/A 0.485

Zyl 23,178  0.861 0.854 N/A 0.784 0.8

Zilionis (Human) 34,558 0.749 N/A N/A 0.37

Wei 41,565  0.768 N/A 0.75 0.743 0.561 0.768
Cao 90,579  0.776 0.669 N/A N/A 0.595 0 0.761
Orozco 100,055 0.935 N/A N/A 098 o

Darrah 162,490 0.710 - N/A N/A N/A 0

Mean 0.720 0.700 0.407 0.563 0.464 0.604 O3

1 N/A: Out of memory or error.
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Figure 5.6: Adjusted Rand Index (ARI) obtained from raw and imputed data using
Seurat as the clustering method. The x-axis shows the names of the datasets while
the y-axis shows ARI value of each method.

5.3.1.2 Preservation of the transcriptome landscape

The purpose of this analysis is to assess whether the imputation alters the transcrip-
tome landscape. Preferably, life scientists impute the data in order to improve the
quality of downstream analyses. At the same time, imputation should not completely
change the data because of falsely introduced signals, leading to wrong or compro-
mised findings. In the above sections, we have demonstrated that scISR significantly
improves the quality of downstream analyses (e.g., cluster analysis). In this section,
we will demonstrate that scISR preserves the transcriptome landscape of the data
as well. For this purpose, we will visualize the transcriptome landscape of the raw
and imputed data using t-SNE [170] and UMAP [62]. We will also quantify the sim-
ilarity between the imputed and original landscapes using the distance correlation
index [171].

First, we use t-SNE [170] to generate the 2D transcriptome landscapes of the raw
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Table 5.8: Adjusted Rand Index (ARI) obtained from raw and imputed data using
Seurat as the clustering method. scISR improves cluster analysis by having ARI
values higher than those of the raw data in 14 out of 25 datasets. Cells with N/A
value indicate that the method failed to run due to out of memory or error.

Dataset Size Raw MAGIC scImpute SAVER scScope scGNN scISR
Fan 69 0.000 0 0 0 0 0.079 0
Treutlein 80 0.000 0 0 0 0 0.003 O
Yan 90 0.392 0.691 0.392 0.562 0 0.307 0.392
Goolam 124 0.605 0.345 0.582 0.297 0 0.116 0.387
Deng 268 0.749 0.351 0.74 0.624 0.071 0.443 0.749
Pollen 301 0.722 0.775 0.721 0.276 0.026 0.138 0.668
Darmanis 466 0.668 0.321 0.359 0.632 0 0.208 0.706
Usoskin 622 0.734 0.535 0.165 0903 O 0.046 0.737
Camp 734 0.470 0.222 0.336 0.256 0 0.354 0.479
Klein 2,717  0.827 0.757 0.654 0.742 0.023 0.224 0.824
Romanov 2,881  0.611 0.476 0.558 0.555 0.004 0.301 0.629
Segerstolpe 3,014  0.586 0.271 0.469 0.323 0.006 0.208 0.607
Manno 4,029  0.254 0.144 0.343 0.243 0.061 0.037 0.226
Marques 5,053  0.212 0.133 0.178 0.172 0 0.085 0.307
Baron 8,569  0.855 0.328 0.591 0.606 0.728 0.243 0.882
Sanderson 12,648 0.194 0.098 0.226 0.161 0.163 0.377 0.196
Slyper 13,316 0.310 0.39 0.397 0.393 0.498 0.337 0.614
Zilionis (Mouse) 15,939 0.667 0.667 0.367 0.01 0.658 0.197 0.63
Tasic 23,178 0.559 0.027 N/A N/A 0 0.167 0.463
Zyl (Human) 24,023 0.108 0.236 N/A 0.176  0.187 0.258 0.106
Zilionis (Human) 34,558 0.708 0.416 N/A 0.698 0 0.219 0.822
Wei 41,565 0.476 0.321 N/A 0.479 0.768  0.305 0.643
Cao 90,579 0.247 0.368 N/A N/A 0.254 N/A 0.282
Orozco 100,055 0.590 0 N/A N/A 0.438 N/A 0.763
Darrah 162,490 0.337 0 N/A N/A N/A N/A 0.359
Mean ARI 0.475 0.315 0.283 0.324 0.155 0.186 0.499

and imputed data. The 2D visualizations of the 25 datasets are shown in Figures 5.7—
5.11. Overall, MAGIC, SAVER, and scISR produce landscapes that are similar to
those of the raw data for every single dataset analyzed. The same cannot be said
about sclmpute, scScope, and scGNN. For the Manno dataset (second last row in
Figure 5.9), sclmpute, scScope, and scGNN completely alter the landscape. scImpute
tends to split cells into smaller groups while scScope and scGNN mix cells from

different cell types together. This can be clearly observed in datasets such as Camp,
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Segerstolpe, Manno (Human).

To perform a more comprehensive analysis, we also generate the 2D transcriptome
landscapes of the 25 datasets using UMAP [62]. The visualizations are shown in Fig-
ures 5.12-5.16. Again, except for sclmpute, scScope, and scGNN, other methods
preserve the landscape very well. For scImpute, scScope, and scGNN, the differ-
ence between the original and imputed landscape becomes more obvious in UMAP
visualization.

To quantify the similarity between the imputed and original landscapes, we calcu-
late the distance correlation index (dCor) [171] for each imputed landscape generated
by t-SNE and UMAP. Given X and Y as the 2D representation of the raw and im-

puted data, dCor is calculated as dCor = \/d‘fco(q;é;’;) % where dCov(X,Y) is the

distance covariance between X and Y while dVar(X) and dVar(Y') are distance vari-
ances of X and Y. Specifically, the method first calculates the pair-wise distances
for X by computing the distance between each pair of cells, resulting in a square
matrix. Second, it calculates the pair-wise distances for Y. Finally, it compares the
two matrices using the formula described above to obtain the distance correlation.
The dCor coefficient takes a value between 0 and 1, with the dCor is expected to be 1
for a perfect similarity. In our analysis, when we rotate the transcriptome landscape,
dCor does not change. In contrast to Pearson correlation, this metric measures both
the linear and nonlinear associations between X and Y [171].

The dCor values are displayed in each panel in Figures 5.7-5.11. We also plot
the dCor distributions in Figure 5.17. In this figure, the left panel shows the values
obtained from t-SNE while the right panel shows the values obtained from UMAP
representations. The mean correlations using t-SNE for MAGIC, scImpute, SAVER,
scScope, scGNN, and scISR are 0.78, 0.46, 0.68, 0.36, 0.48, and 0.88, respectively.

The bar plot shows that scISR has the highest mean correlation, as well as the small-
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Klein datasets (top to bottom) using t-SNE. Different colors code for different cell
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ilarity between the new landscape (from imputed data) and the original landscape
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Figure 5.11: Transcriptome landscape for the Zillionis (Human), Wei (Human), Cao,
Orozco and Darrah datasets (top to bottom) using t-SNE. Different colors code for

different cell types.

The distance correlation calculated for each imputed dataset

shows the similarity between the new landscape (from imputed data) and the original

landscape (from raw data).



UMAP2

Fan

118

scISR (dCor = 0.719)

Raw MAGIC (dCor = 0.942) scimpute (dCor = 0.866) SAVER (dCor = 0.776) scScope (dCor = 0.347) scGNN (dCor = 0.655)
° o
. e v, oy
.
KA o° o % ° . . -
E H TS = e i:a,. 2 | PO )
%= "% g’ LA NN ]
% T ~
UMAP1 UMAP1 UMAP1 UMAP1
Celltypes © 16cell © 2cell o 4cell © 8cel blast  zygote
Treutlein

sclmpute (dCor = 0.52)
‘3

SAVER (dCor = 0.601)
°

scScope (dCor = 0.573)

sCISR (dCor = 0.734)
.

30,
g LI A gy gy g
< < . < < < <
= = . = = = =
=] =1 e 8,00 5 =} =} =]
. og®
Xy ¥ N
UMAP1 UMAP1
Celltypes © AT1 o AT2 o BP e cilated Clara
Yan
Raw MAGIC (dCor = 0.829) sclmpute (dCor = 0.854) SAVER (dCor = 0.746) scScope (dCor = 0.429) ScGNN (dCor = 0.656) scISR (dCor = 0.766)
°
» LA e T i
| N N - I N N © N AR N -
o s o ~ o o . o '. o [ o . & \r o
<| o0 < [ < < L g0 >, . < X < oy
s s S|w = f » S| 8. %00 = s
S S L 3 S 5 ! S o S 3% . Sl
L
deq ¢° o o ¥
® L) e Y Pl ~
UMAP1 UMAP1 UMAP1 UMAP1 UMAP1 UMAP1 UMAP1
Celltypes © 16cell © 2cell o dcel o 8cel blast ® zygote
Goolam
Raw MAGIC (dCor = 0.728) scimpute (dCor = 0.864) SAVER (dCor = 0.647) scScope (dCor = 0.558) scISR (dCor = 0.769)
.t P o~ . .o
. J
o (" o o ) o ¥ t 2 o ", o o o on’
a 'l a £ a LY Fi o o o o ’,.
L™ Ih SE 3 oF 0 S g g Lo
o T
5 a: ? 5 < 5 8 : 5 - 5 5 5 \*
o
° » S
v ¥ » “w ‘s
UMAP1 UMAP1 UMAP1 UMAP1 UMAP1
Celltypes © f16cell © 2cell o 4cell © 8cel blast
Deng
Raw MAGIC (dCor = 0.791) scimpute (dCor = 0.752) SAVER (dCor = 0.836) scScope (dCor = 0.246) scGNN (dCor = 0.782) scISR (dCor = 0.777)
° . Y ° o
L
N N ’ o L o I\ I\ N ’
a a . a o o o rd a|®
< < < < < <| & <
5 V3 5 3 @ .3 5 5 -
o
R . r . e, 7'y h.?.'«. " - °
« =3 P 1 ) ° .. i . o
UMAP1 UMAP1 UMAP1 UMAP1 UMAP1 UMAP1 UMAP1
Celltypes © f16cell © 2cell o 4cell o 8cel blast  zygote

Figure 5.12: Transcriptome landscape for the Fan, Treutlein, Yan, Goolam and Deng
datasets (top to bottom) using UMAP. Different colors code for different cell types.
The distance correlation calculated for each imputed dataset shows the similarity
between the new landscape (from imputed data) and the original landscape (from

raw data).



119

Pollen
Raw MAGIC (dCor = 0.599) scimpute (dCor = 0.652) SAVER (dCor = 0.716) scScope (dCor = 0.223) scGNN (dCor = 0.592) scISR (dCor = 0.765)
4 [ . o [ ] ° e
] | IR 8 8 g
< c Zle < < s ° < < a < ¢
= = = = 6 = . = = 'Y [}
S - . S 0 S W?® e = Sle IR ] P z S . L) ..
ol 0 & (fw P
@ L 4
O ° [ °
UMAP1 UMAP1 UMAP1 UMAP1 UMAP1 UMAP1 UMAP1
Celltypes © 2338 o 2339 e BJ e GWI6 GW21+43 e hiPSC HL60 e K562 e Kera © NPC
Darmanis
Raw MAGIC (dCor = 0.835) sclmpute (dCor = 0.75) SAVER (dCor = 0.857) scScope (dCor = 0.263) scGNN (dCor = 0.744) scISR (dCor = 0.932)
¢ 2 w ° 4 L B I
‘ J - 8 ¢
gl €. g 1 e £|eg gIme T T g 8l . g 3
< < < < < EROTR > e 3
= * = = o, = = = g 3¢ =
=) =) W O » 9 5|, =] =] CL gy =) »
. = o ™~
. 9. A d e .
UMAP1 UMAP1 UMAP1 UMAP1 UMAP1 UMAP1 UMAP1
Cell types © astrocytes o endothelial ® fetal_quiescent @ fetal_replicating hybrid ®  microglia neurons @ oligodendrocytes ® OPC
Usoskin
Raw MAGIC (dCor = 0.865) sclmpute (dCor = 0.515) SAVER (dCor = 0.905) scScope (dCor = 0.129) scGNN (dCor = 0.68) scISR (dCor = 0.919)
L L ° 4 [}
] L4
I I I o o o |
o ‘ﬁ. o o ] ® o ‘ o o o %
< < oty <|a ® | @ < < <
s s S|® - = s ° s s
S ’ S ” ‘ S , N 5 Sle ‘ ° 5 S -*-
° ° .
' o
‘;h . - e o.b ° .
UMAP1 UMAP1 UMAP1 UMAP1 UMAP1 UMAP1 UMAP1
Celltypes ® NF o NP e PEP o TH
Camp
Raw MAGIC (dCor = 0.912) scimpute (dCor = 0.783) SAVER (dCor = 0.902) scScope (dCor = 0.166) scGNN (dCor = 0.75) scISR (dCor = 0.937)
N ®
1&2 2 a\ i af * '; ‘g aN
o ogam, & o P o o o o N o
g £ <G g & . & & g
s & W s s & % s d %‘" Sle & s I\ e " ?b
=] =] - =] =} 4 =} . =} =] R
o g o ) L
e ¢ 2
P J . g ”.4 ) . . @ .”, > M
UMAP1 UMAP1 UMAP1 UMAP1 UMAP1 UMAP1 UMAP1
Cell types ® dosalcortexneuron  © dosal cortex progenitor ~ ® mesenchyme @ neuron Unknown @  ventral progenitor
Klein
Raw MAGIC (dCor = 0.932) scimpute (dCor = 0.812) SAVER (dCor = 0.912) scScope (dCor = 0.186) scGNN (dCor = 0.876) scISR (dCor = 0.974)
r') > ]
N N N N N -] ) N N
L)
o o o o o o o
< ‘ < < < ‘ < 9 = < _‘
S | mte = = ' = = [} = =
2 ‘ 2 2 ’ ] ] ‘ ] 2

N S g
3 7::‘

.

UMAP1

UMAP1

UMAP1

Celltypes © do o d2 e d4 e d7

Figure 5.13: Transcriptome landscape for the Pollen, Darmanis, Usoskin, Camp and
Klein datasets (top to bottom) using UMAP. Different colors code for different cell
types. The distance correlation calculated for each imputed dataset shows the sim-
ilarity between the new landscape (from imputed data) and the original landscape
(from raw data).
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Figure 5.14: Transcriptome landscape for the Romanov, Segerstolpe, Manno (Hu-
man), Marques and Barron (Human) datasets (top to bottom) using UMAP. Differ-
ent colors code for different cell types. The distance correlation calculated for each
imputed dataset shows the similarity between the new landscape (from imputed data)
and the original landscape (from raw data).



121

Sanderson
Raw MAGIC (dCor = 0.727) scimpute (dCor = 0.864) SAVER (dCor = 0.863) scScope (dCor = 0.666) scGNN (dCor = 0.61) scISR (dCor = 0.804)
& [ [} (Y [ )
® » ™ ‘~ = L] -
g g fo (M, ¢ & : 8y § an o
S S S E: 2 E{ E: - 3 .
=1 .’ =] » ‘ =] S| o » 2| 5 W 3 o
S . ) H . - ‘
4 P a . - - °
0 o [ ] - - ®
UMAP1 UMAP1 UMAP1 UMAP1 UMAP1 UMAP1 UMAP1
Celltypes © Bcell © Denditc © Epithelial ® Fibroblast Macrophage @ Microglia Neutrophil @ NK e Osteoclasts © Tcell
Slyper
Raw MAGIC (dCor = 0.766) sclmpute (dCor = 0.78) SAVER (dCor = 0.781) scScope (dCor = 0.607) scGNN (dCor = 0.49) scISR (dCor = 0.869)
. . .
-l T i c” o« e o
- .
I I I Qq Qq Qq Iy I
o o o o o o o
< < < < < < <
= = = = = = =
=] =] =] =] =] =] =]
<
-
o ~ -« L . ‘.o v &® ] o oo w .
UMAP1 UMAP1 UMAP1 UMAP1 UMAP1 UMAP1 UMAP1
Cell types ® 1.T e 2.CD14+Monocyte ® 3.NK e 4. MemoryB cell 5.DC e 6.CD16+ Monocyte 7.Naive Bcell @ 8. Ambiguous / Potential Doublets
Zilionis (Mouse)
Raw MAGIC (dCor = 0.954) sclmpute (dCor = 0.779) SAVER (dCor = 0.972) scScope (dCor = 0.871) scGNN (dCor = 0.841) scISR (dCor = 0.952)
N g o« g I o) ' I I N I -2
18> SO oledl B (ol z :
= S| = ’. 5 5 3|® =
R, ; ¢
‘ > & e 4
UMAP1 UMAP1 UMAP1 UMAP1 UMAP1 UMAP1 UMAP1
Celltypes © Bcels © Basophils © MoMacDC @ Neutrophils NKcells e pDC T cells
Tasic
Raw MAGIC (dCor = 0.841) scScope (dCor = 0.024) scGNN (dCor = 0.461) scISR (dCor = 0.762)
o C R Y
I\ I\ A I\ I I I I\
o o o o o o o
|-y o ¢ % “ £ = = = 2|0 o Py
Sle » = = = = Y = >
=) « f =) Q> =) =) =) S\n [N
el v | vy
° ° d ®
UMAP1 UMAP1 UMAP1 UMAP1 UMAP1 UMAP1 UMAP1
Celltypes © Endothelial © GABAergic © Glutamatergic ® Low Quality NoClass ® Non-Neuronal
Zyl (Human)
Raw MAGIC (dCor = 0.738) SAVER (dCor = 0.852) scScope (dCor = 0.698) scGNN (dCor = 0.564) scISFl (dCor = 0.854)
.
» ° 3 s,
[ ] ,0 ) L4
-
S Rgmels Lot alte & 8 g e gle ® @y 2o
< k“ A < < & % L (Y -
= I 3 % we 3|® &7 iy S 3
> B - &s Py t Py e
r. ®.® 0 [ X
. o . r ®
. o ] o
UMAP1 UMAP1 UMAP1 UMAP1 UMAP1 UMAP1 UMAP1
Celltypes ® BeamCella © BeamCelb e CiliaryMuscle © i i CribiformJCT ~ ®  Fibroblast Macrophage ® Melanocyte ® NKT © SchwannCell-nmy

Figure 5.15: Transcriptome landscape for the Sanderson, Slyper, Zilionis (Mouse),
Tasic and Zyl (Human) datasets (top to bottom) using UMAP. Different colors code
for different cell types. The distance correlation calculated for each imputed dataset
shows the similarity between the new landscape (from imputed data) and the original
landscape (from raw data).
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Figure 5.16: Transcriptome landscape for the Zillionis (Human), Wei (Human), Cao,
Orozco and Darrah datasets (top to bottom) using UMAP. Different colors code
for different cell types. The distance correlation calculated for each imputed dataset
shows the similarity between the new landscape (from imputed da