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Abstract

Cancer is an umbrella term that includes a range of disorders, from those that are

aggressive and life-threatening to indolent lesions with low or delayed potential for

progression to death. After 20 years of cancer screening, the chance of a person being

diagnosed with prostate or breast cancer has nearly doubled. However, this has only

marginally reduced the number of patients with advanced disease, suggesting that

screening has resulted in the substantial harm of excess detection and over-diagnosis.

At the same time, 30 to 50% of patients with non-small cell lung cancer (NSCLC) de-

velop recurrence and die after curative resection, suggesting that a subset of patients

would have benefited from more aggressive treatments at early stages. Although not

routinely recommended as the initial course of treatment, adjuvant and neoadjuvant

chemotherapy have been shown to significantly improve the survival of patients with

advanced early-stage disease. The ability to prognosticate outcomes would allow us

to manage these diseases better: patients whose cancer is likely to advance quickly or

recur would receive the necessary treatment. The important challenge is to discover

the molecular subtypes of disease and subgroups of patients. To address this impor-

tant challenge, we develop a novel approach named Subtyping via Consensus Factor

Analysis (SCFA) that can efficiently remove noisy signals from consistent molecu-

lar patterns in order to reliably identify cancer subtypes and accurately predict risk

scores of patients. In an extensive analysis of 7,973 samples related to 30 cancers that

are available at The Cancer Genome Atlas (TCGA), we demonstrate that SCFA out-

performs state-of-the-art approaches in discovering novel subtypes with significantly

different survival profiles. We also demonstrate that SCFA accurately predicts risk

scores that strongly correlate with patient survival and vital status. More impor-

tantly, the accuracy of subtype discovery and risk prediction improves when more

data types are integrated into the analysis.

More recently, advancements in single-cell RNA sequencing (scRNA-seq) have

revolutionized our ability to study biological systems at the single-cell level. The

widespread utilization of scRNA-seq across various research domains, such as can-

cer, immunology, and virology, has resulted in the generation of massive amounts of

scRNA-seq data each year. However, the analysis of scRNA-seq data poses signif-

icant computational challenges due to the increasing number of cells and technical

noise. First, scRNA-seq data is high-dimensional, with thousands of genes repre-

senting each cell. This poses difficulties in visualizing and comprehending the data.

Analyzing relationships between thousands of genes and millions of cells, as required



ii

for applications such as trajectory inference or gene regulatory network inference,

can be computationally demanding and time-consuming. Second, scRNA-seq data is

characterized by noise and sparsity, with numerous missing values and outliers. This

makes it challenging to identify consistent patterns and trends, potentially leading

to false positives or false negatives in the results. Third, technical noise is often in-

troduced during the sample preparation and sequencing process, stemming from low

starting material and amplification procedures. Such noise introduces inconsistencies

in the data, hindering comparisons across different experiments.

To address the challenges associated with scRNA-seq data mining, we establish

four innovative computational methods that effectively extract biological information

from the noisy and massive single-cell data. First, we introduce an analysis frame-

work, named single-cell Decomposition using Hierarchical Autoencoder (scDHA), that

reliably extracts representative information of each cell. In one joint framework, the

scDHA software package conducts cell segregation through unsupervised learning, di-

mension reduction and visualization, cell classification, and time-trajectory inference.

Second, we develop three novel imputation methods: single-cell Imputation via Sub-

space Regression (scISR), single-cell Imputation using Neural Network (scINN), and

single-cell Imputation using Residual Network (scIRN). These methods effectively

recover missing data caused by dropout events in scRNA-seq data. We validate the

performance of the four methods using extensive real-world data, including 43 scRNA-

seq datasets with over a million cells. We demonstrate that the proposed methods

outperform state-of-the-art techniques in several research sub-fields of scRNA-seq

analysis, including cell segregation through unsupervised learning, visualization of

transcriptome landscape, cell classification, and pseudo-time inference.

The dissertation is divided into three parts. In the first part, I introduce the sig-

nificance of molecular subtype discovery and then detail the proposed method, SCFA,

for cancer subtyping and risk prediction. In the second part, I provide an overview of

single-cell data (scRNA-seq), together with the opportunities and the computational

challenges. Next, I describe the four methods we developed for single-cell analysis,

scDHA, scISR, scINN, and scIRN. Each method is accompanied with extensive val-

idation and extensive analyses. In the third part, I summarize the dissertation and

discuss future research directions that I will potentially pursue.
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Part I

Machine Learning in Cancer

Subtype Discovery and Risk

Prediction of Patients
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Chapter 1

Cancer Subtyping: Significance

and Challenges

After 20 years of cancer screening, the chance of a person being diagnosed with

prostate or breast cancer has nearly doubled [1–4]. However, this has only marginally

reduced the number of patients with advanced disease, suggesting that screening

has resulted in the substantial harm of excess detection and over-diagnosis. At the

same time, 30-50% of patients with non-small cell lung cancer (NSCLC) develop

recurrence and die after curative resection [5], suggesting that a subset of patients

would have benefited from more aggressive treatments at early stages. Although not

routinely recommended as the initial course of treatment, adjuvant and neoadjuvant

chemotherapy have been shown to significantly improve the survival of patients with

advanced early-stage disease [6–8]. The ability to prognosticate outcomes would allow

us to manage these diseases better: patients whose cancer is likely to advance quickly

or recur would receive the necessary treatment. The important challenge is to discover

the molecular subtypes of disease and subgroups of patients [9–12].

Cluster analysis has been a basic tool for subtype discovery using gene expression

data. These include hierarchical clustering (HC), neural networks [13–17], mixture
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model [18–20], matrix factorization [21, 22], and graph-theoretical approaches [23–

25]. Arguably, the state-of-the-art approach in this area is Consensus Clustering

(CC) [26, 27], which is a resampling-based methodology of class discovery and cluster

validation [28–30]. However, these approaches are not able to combine multiple data

types. Although analyses on a single data type could reveal some distinct character-

istics for different subtypes, it is not sufficient to explain the mechanism that happens

across multiple biological levels.

With the advancement of multi-omics technologies, recent subtyping methods have

shifted toward multi-omics data integration. The goal is to differentiate among sub-

types from a holistic perspective, that can take into consideration phenomena at

various levels (e.g., transcriptomics, proteomics, epigenetics). These methods can

be grouped into three categories: simultaneous data decomposition methods, joint

statistical models, and similarity-based approaches. Methods in the first category

(data decomposition) include md-modules [31], intNMF [32], and LRAcluster [33].

These methods assume that there exist molecular patterns that are shared across

multiple types of data. Therefore, these methods aim at finding a low dimensional

representation of the high-dimensional multi-omics data that retains those patterns.

For example, both md-modules and intNMF utilize a joint non-negative matrix fac-

torization to simultaneously factorize the data matrices of multiple data types. In

their design, the basis vectors are shared across all data types while the coefficient

matrices vary from data type to data type. These two methods, md-modules and

intNMF, only differ in the way they iteratively estimate the coefficient matrices. An-

other method is LRAcluster, which applies the low-rank approximation and singular

vector decomposition to generate low dimensional representations of the data and

then performs k-means clustering to identify the subtypes. These methods strongly

rely on the assumption that all molecular signals can be linearly and simultaneously



4

reconstructed.

Methods in the second category (statistical modeling) include BCC [34], MDI [35],

iClusterBayes [36], iClusterPlus [37], and iCluster [38, 39]. These methods assume

that each data type follows a mixture of distributions and then integrate multiple

types of data using a joint statistical model. The parameters of the mixture models

are estimated by maximizing the likelihood of observed data. These methods strongly

depend on the correctness of their statistical assumptions. Also, due to a large num-

ber of parameters and iterations involved, the computation complexity of statistical

methods is usually extensive. Therefore, these methods often rely on pre-processing

and gene filtering to ease the computational burden.

Methods in the third category (similarity-based) typically construct the pair-wise

connectivity between patients (that represents how often the patients are grouped

together) for each data type and then integrate multiple data types by fusing the

individual connectivity matrices. As these methods perform data integration in the

sample space, their computational complexity depends mostly on the number of pa-

tients, not the dimensions of features/genes. Therefore, these methods are capable of

performing subtyping on a genomic scale. Methods in this category include SNF [40],

rMKL-DR [41], NEMO [42], CIMLR [43], and PINS [44, 45]. SNF creates a patient-

to-patient network by fusing connectivity matrices and then partitions the network

using spectral clustering [46]. rMKL-DR projects samples into a lower-dimensional

subspace and then partitions the patients using k-means. NEMO follows a similar

strategy with the difference is that it incorporates only partial data into the inte-

grative analysis. Though powerful, these methods do not account for the noise and

unstable nature of quantitative assays. PINS and CIMLR follow two different strate-

gies to address noise and instability. PINS introduces Gaussian noise to the data in

order to obtain subtypes that are robust against data perturbation. CIMLR combines
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multiple gaussian kernels per data type to measure the similarity between each pair

of samples. The resulted similarity matrix is then subjected to dimension reduction

and k-means to determine the subtypes. Though powerful, the similarity metrics used

in these methods (i.e., Gaussian kernel, Euclidean distance) make them susceptible

to noise and the “curse of dimensionality”[47] from the high-dimensional multi-omics

data.
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Chapter 2

SCFA: A Novel Method for Cancer

Subtyping and Risk Prediction

Using Consensus Factor Analysis

This chapter is based on the following publication: Duc Tran, Hung Nguyen, Uyen

Le, Hung N. Luu, and Tin Nguyen. A novel method for cancer subtyping and risk

prediction using consensus factor analysis. Frontiers in Oncology, 2020. DOI:

10.3389/fonc.2020.01052

To address the challenges in cancer subtyping, we develop a novel approach named

Subtyping via Consensus Factor Analysis (SCFA) that can efficiently remove noisy

signals from consistent molecular patterns in order to reliably identify cancer subtypes

and accurately predict risk scores of patients. In an extensive analysis of 7,973 samples

related to 30 cancers that are available at The Cancer Genome Atlas (TCGA), we

demonstrate that SCFA outperforms state-of-the-art approaches in discovering novel

subtypes with significantly different survival profiles. We also demonstrate that SCFA

is able to predict risk scores that are highly correlated with true patient survival and
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vital status. More importantly, the accuracy of subtype discovery and risk prediction

improves when more data types are integrated into the analysis. The SCFA software

and is publicly available on Bioconductor: https://www.bioconductor.org/packa

ges/SCFA/.

2.1 Methodology

The high-level workflow of SCFA for subtyping is shown in Figure 2.1. The input of

the subtyping module is a list of data matrices (e.g., mRNA, methylation, miRNA)

in which rows represent patients while columns represent genes/features. For each

matrix, the method first performs a filtering step using an autoencoder and then

repeatedly performs factor analysis [48] to represent the data with different numbers

of factors. By representing data with different numbers of factors, we can improve on

situations where the projected data do not accurately represent the original data due

to noise. Using an ensemble strategy, SCFA combines all of the factor representations

to determine the final subtypes.

Figure 2.1: SCFA pipeline for cancer subtyping. For each of the data matrix, SCFA
repeatedly performs factor analysis to generate multiple data representations with
different numbers of factors. For each representation, SCFA clusters the data to
construct a connectivity matrix. The method next merges all connectivity matrices
using an ensemble strategy to obtain the final clustering.

In the following subsections, we will describe in detail the techniques used in the

SCFA framework: (i) dimension reduction and factor analysis, and (ii) the ensemble

https://www.bioconductor.org/packages/SCFA/
https://www.bioconductor.org/packages/SCFA/
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strategy for subtyping.

2.1.1 Dimension reduction and factor analysis

The method start with dimension reduction and factor analysis. The purpose of

dimension reduction is to remove features/genes that play no role in differentiating

between patients. Briefly, we utilize a non-negative kernel autoencoder which consists

of two components: encoder and decoder. The encoder aims at representing the

data in a low dimensional space whereas the decoder tries to reconstruct the original

input from the compressed data. By forcing the weights of the network to be non-

negative, we capture the positive correlation between the original features and the

representative features. Selecting features with high variability in weights would result

in a set of features that are informative, non-redundant, and capable of representing

the original data.

After the filtering step using the non-negative autoencoder, we perform another

dimension reduction step using Factor Analysis (FA) [48]. In general, factor analysis

aims at minimizing the difference of feature-feature correlation matrix between the

latent space and original data. Correlation is a standardized metric, where it takes

into account the number of observations and variance of the features during the cal-

culation process. This makes factor analysis robust against scaling and high number

of dimensions compared to traditional decomposition such as principle component

analysis (PCA), which uses Euclidean distance as the distance metric. To further

improve the performance of factor analysis, we adjust the objective of FA to maintain

the patient-patient correlation.

Starting with the original correlation matrix, FA finds k (number of factors) largest

principle components and tries to reproduce the original matrix using those principal

components (model matrix). FA iteratively fits the model matrix to the original ma-
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trix using optimization algorithms. In our model, we employ the Minimum Residual

(MINRES) optimization because it copes better with the small and medium sam-

ple size of the input data [49]. Also, instead of preserving the relationship between

variables, we aim to maintain the overall patient-patient relationships by preserv-

ing their Pearson correlations in the representations. By changing the objective, the

computational power required is significantly lower as the number of patients (in the

scale of hundreds) is much lower than the number of features (in the scale of tens of

thousands). Moreover, maintaining the distance between patients in the low dimen-

sional representation would be more beneficial for our desired applications. To avoid

overfitting, we repeatedly perform factor analysis with different numbers of factors,

resulting in multiple representations of each input matrix. Clustering results using all

factor representations of all data types (data matrices) are combined together using

an ensemble strategy to determine the subtypes.

2.1.2 Subtyping using consensus ensemble

Given a collection of factor representations from all data types, we aim at finding

patient subgroups that are consistently observed together in all representations (Fig-

ure 2.1). For each representation, we first determine the optimal number of clusters

using two indices: (i) the ratio of between sum of squares over the total sum of squares,

and (ii) the increase of within sum of squares when the number of cluster increases.

After the optimal number of clusters is determined, we use k-means to cluster the

underlying factor representation to build a connectivity matrix. To avoid the con-

vergence to a local minimum, we perform k-means clustering using multiple starting

points and choose the results with the smallest sum of square error. This process is

repeated for all of the representations to obtain a collection of connectivity matrices

for all data types.
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Finally, we use the Weighted-based meta-clustering algorithm [50] to combine all

clustering results from each data representation to determine the final subtyping. In

short, the meta-clustering first calculates the weight for each pair of patients regard-

ing their chance to be grouped together. Next, it assigns a weight for each patient by

accumulating the weights of all pairs containing this patient. It then computes the

weighted cluster-to-cluster similarity from all connectivity matrices. Finally, it parti-

tions the cluster-to-cluster similarity matrix using hierarchical clustering to determine

the final subtypes.

2.1.3 Risk score prediction

The goal of this module is to calculate the risk score of new patients using their molec-

ular data. The high-level workflow for risk score prediction is shown in Figure 2.2.

This is a supervised learning method that learns from a training set in order to pre-

dict the risk scores each patient in the testing set. More specifically, the training set

consists of a set of patients with molecular data (e.g., mRNA, methylation, miRNA)

and known survival information while the testing set consists of patients with only

molecular data. By default, we provide TCGA datasets in our package as training

data, but users are free to provide training data if necessary. Using the training data,

this module will train the Cox regression model that can be used to predict the risk

scores of new patients. Below is the description of the method for one data type and

for multi-omics data.

Given a single data type as input, we merge the testing data with training data

and then perform dimension reduction and factor analysis to generate multiple rep-

resentations of this data. For each representation, we use the training data to train

the Cox regression model. This model aims at estimating a coefficient βi for each

corresponding predictor xi of the input data. After the model is trained, the risk
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Figure 2.2: Overall pipeline for risk prediction using SCFA. The method will be able
to learn from training data (patients with survival information) in order to predict risk
scores of patients in testing data (patients without survival information). SCFA first
merges training and testing sets together and then performs factor analysis. Using the
factor representations of the training set, the method trains a Cox regression model,
which will be utilized to predict risk factor of patients in the testing set

scores for new patients can be calculated as exp(
∑n

i=1 βixi), where n is the number

of features in the factor representation. In the Cox model, the risk score is defined

as h(t)
h0(t)

, where h(t) is the expected hazard at time t, and h0(t) is the baseline hazard

when all the predictors are equal zero. Patients with a higher risk score are likely to

suffer the event of interest (e.g., vital status or disease recurrence) earlier than the

one with a lower risk score. Here we use elastic net [51] implemented in the R-package

“glmnet” [52] to fit the model to better cope with the dynamic number of predictors.

Elastic net linearly combines Lasso and Ridge penalty during the training process to

select only the most relevant predictors that have important effects on the response

(the risk scores in this case). We use five-fold cross-validation to select the parameters

for the model. The final risk score for each patient is the geometric average of the

risk scores resulted from all representations.

In the case of multi-omics data, we repeat the same process (described above)

for each data type. We perform factor analysis to produce multiple representations,

resulting in a collection of representations from all data types. For a new patient, each

representation will produce an estimated risk score. The final risk score for the patient

is calculated as the geometric average of all predictions from all representations.
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2.2 Validation and Analysis Results

Here we assess the performance of SCFA using data obtained from 7,973 patients from

30 different cancer diseases downloaded from The Cancer Genome Atlas (TCGA). For

each of the 30 cancer datasets, we downloaded mRNA, miRNA, and methylation data.

Table 2.1 shows the details of each dataset. We also downloaded the clinical data for

these patients, which includes vital status and survival information. Using clinical

information, we comprehensively assess the ability of SCFA over existing methods

in unsupervised subtyping, clinical variable association analysis, and supervised risk

prediction.

2.2.1 Subtypting on 30 TCGA datasets

Here we compare the performance of SCFA with four state-of-the-art methods: Con-

sensus Clustering (CC) [26, 27], Similarity Network Fusion (SNF) [40], Cancer In-

tegration via Multikernel LeaRning (CIMLR) [43], and iClusterBayes (iCB) [36].

CC is a resampling-based approach, while SNF and CIMLR are graph-theoretical

approaches. The fourth method, iClusterBayes is a model-based approach and is

the enhanced version iClusterPlus. These methods were selected to represent three

distinctively different subtyping strategies. Among these methods, CC is the only

method that cannot integrate multiple data types. For CC, we concatenate the three

data types for the integrative analysis. We demonstrate that SCFA outperforms these

methods in identifying subtypes with significantly different survival profiles.

Note that here we focus on unsupervised learning, in which each dataset is par-

titioned independently without using any external information. For example, when

analyzing the glioblastoma multiforme (GBM) dataset, we use only the molecular

data (mRNA, miRNA, and methylation) of this dataset to determine the subtypes.

For each cancer dataset, we first use each of the five methods (SCFA, CC, SNF,
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Table 2.1: Description of 30 cancer datasets from The Cancer Genome Atlas (TCGA)
that will be used for validation of the proposed method SCFA.

Dataset #Samples mRNA Methylation miRNA

ACC 79 HiSeq RNASeq v2 Methylation450 HiSeq miRNASeq

BLCA 404 HiSeq RNASeq v2 Methylation450 GASeq miRNASeq

BRCA 622 HiSeq RNASeq v2 Methylation450 HiSeq miRNASeq

CHOL 36 HiSeq RNASeq v2 Methylation450 HiSeq miRNASeq

CESC 304 HiSeq RNASeq v2 Methylation450 HiSeq miRNASeq

COAD 220 HiSeq RNASeq v2 Methylation450 HiSeq miRNASeq

DBLC 47 HiSeq RNASeq v2 Methylation450 HiSeq miRNASeq

ESCA 183 HiSeq RNASeq Methylation450 HiSeq miRNASeq

GBM 273 HT HG-U133A Methylation27 HiSeq miRNASeq

GBMLGG 510 HiSeq RNASeq v2 Methylation450 HiSeq miRNASeq

HNSC 228 HiSeq RNASeq Methylation450 HiSeq miRNASeq

KICH 65 HiSeq RNASeq v2 Methylation450 HiSeq miRNASeq

KIPAN 654 HiSeq RNASeq Methylation450 HiSeq miRNASeq

KIRC 124 HiSeq RNASeq Methylation27 GASeq miRNASeq

KIRP 271 HiSeq RNASeq v2 Methylation450 HiSeq miRNASeq

LAML 164 GASeq RNASeq Methylation27 GASeq miRNASeq

LGG 510 HiSeq RNASeq v2 Methylation450 HiSeq miRNASeq

LIHC 366 HiSeq RNASeq v2 Methylation450 HiSeq miRNASeq

MESO 86 HiSeq RNASeq v2 Methylation450 HiSeq miRNASeq

OV 286 HiSeq RNASeq v2 Methylation27 HiSeq miRNASeq

PAAD 178 HiSeq RNASeq v2 Methylation450 HiSeq miRNASeq

SARC 257 HiSeq RNASeq v2 Methylation450 HiSeq miRNASeq

SKCM 439 HiSeq RNASeq v2 Methylation450 HiSeq miRNASeq

STES 545 HiSeq RNASeq v2 Methylation450 HiSeq miRNASeq

TGCT 134 HiSeq RNASeq v2 Methylation450 HiSeq miRNASeq

THCA 499 HiSeq RNASeq v2 Methylation450 HiSeq miRNASeq

THYM 119 HiSeq RNASeq v2 Methylation450 GASeq miRNASeq

UCEC 234 GASeq RNASeq v2 Methylation450 HiSeq miRNASeq

UCS 56 HiSeq RNASeq v2 Methylation450 HiSeq miRNASeq

UVM 80 HiSeq RNASeq v2 Methylation450 HiSeq miRNASeq
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Table 2.2: Cox p-values of subtypes identified by SCFA, CC, SNF, iClusterBayes
(iCB), and CIMLR for 30 TCGA datasets. The cells highlighted in yellow have Cox
p-values smaller than 5%. In each row, cells highlighted in green have the most
significant p-value. SCFA outperforms other methods by having significant p-values
in most datasets (24 out of 30 datasets).

SCFA CC SNF iCB CIMLR

ACC 3.4e-03 5.4e-04 4.3e-05 9.2e-04 3.4e-01
BLCA 7.2e-03 1.1e-01 1.1e-01 5.1e-01 4.7e-01
BRCA 3.2e-04 2.9e-02 1.2e-01 2.7e-02 4.9e-03
CESC 9.4e-03 5.8e-02 5.1e-01 2e-02 1.9e-01
DLBC 4.3e-06 5.1e-01 7.5e-01 2.9e-01 7.4e-01
ESCA 7.3e-05 7.7e-01 3.9e-01 7.9e-01 5.6e-01
GBM 2.3e-03 3.2e-01 2.1e-02 1.1e-01 8.1e-02
GBMLGG 5.8e-14 1.6e-04 4.8e-14 8e-02 6.4e-10
HNSC 4e-02 5e-01 3.7e-01 3.7e-01 4e-01
KICH 2.3e-13 8.7e-01 7e-01 6.9e-01 4.6e-01
KIPAN 1.4e-19 9.3e-08 2.1e-07 1.6e-09 9.8e-05
KIRP 1.7e-03 4.5e-01 5.3e-03 3e-03 1.9e-02
LAML 5.8e-04 3.9e-02 1.7e-03 9e-01 1.4e-04
LGG 6.5e-15 6.6e-07 1.6e-14 1.1e-01 8.3e-15
MESO 1.6e-04 3.1e-01 4.2e-04 3.7e-02 1.1e-02
PAAD 6.9e-04 1.1e-02 7.4e-04 2.3e-03 2e-03
SARC 3.3e-03 2.4e-01 4.4e-02 4.3e-02 5.6e-02
SKCM 1.6e-03 6.3e-01 4.8e-01 8.4e-03 7.4e-05
STES 3.9e-02 2e-01 1.6e-01 4.1e-03 3.4e-02
THCA 7.8e-03 7.9e-01 6.2e-01 7.8e-01 8.6e-03
THYM 8.1e-04 1.5e-01 9.7e-02 9e-03 1.2e-01
UCEC 6.5e-03 8.9e-02 1.8e-02 5.9e-02 4.6e-02
UCS 3.4e-02 1.6e-01 8.6e-01 9.6e-01 3.6e-01
UVM 1.3e-06 6.1e-04 1.7e-04 6.6e-02 5.8e-04
CHOL 3.1e-01 7.9e-02 5.7e-01 9.1e-01 3.4e-01
COAD 4.7e-01 5.8e-01 1.3e-01 2.2e-01 5.6e-01
KIRC 1e-01 8.3e-01 6.9e-01 8.3e-01 9.1e-02
LIHC 3.8e-01 8.8e-01 3.3e-01 9.3e-02 1.9e-01
OV 4.2e-01 6.1e-01 4.4e-01 4.6e-01 5.4e-01
TGCT 3.9e-01 7.4e-01 8.4e-01 7.1e-01 8.4e-01

#Significant 24 8 12 11 13
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CIMLR, and iClusterBayes) to integrate the molecular data (mRNA, miRNA, and

methylation) in order to determine patient subgroups. For each method, we calculate

the Cox p-value that measures the statistical significance in survival differences be-

tween the discovered subtypes. The Cox p-values of subtypes discovered by the five

methods for the 30 datasets are shown in Table 2.2. Among the 30 datasets, there

are 6 datasets (CHOL, COAD, KIRC, LIHC, OV, and TGCT) for which no method

is able to identify subtypes with significant survival differences. In the remaining 24

datasets, SCFA is able to obtain significant Cox p-values in all of them while CC,

SNF, iClusterBayes, and CIMLR have significant p-values in only 8, 12, 11, and 13

datasets, respectively. Also, SCFA has the most significant p-values in 19 out of 24

datasets. Regarding time complexity, SCFA, CC, SNF, and CIMLR are able to ana-

lyze each dataset in minutes, whereas iClusterBayes can take up to hours to analyze

a dataset.

To better understand the usefulness of data integration, we also calculated the

Cox p-values obtained from individual data types and compared them to Cox p-

values obtained from data integration (when mRNA, miRNA, and methylation are

analyzed together). For each dataset, we perform subtyping using SCFA for each

data type and report the Cox p-value of the discovered subtypes. The distributions

of Cox p-values for data integration and for individual data types using SCFA are

shown in Figure 2.3. Among 30 cancer datasets, the Cox p-values obtained from data

integration has the median −log10(p) of 2.6, compared to 1.7, 1.1, and 1.1 from gene

expression, methylation and miRNA data. Interestingly, subtypes discovered using

gene expression data have significantly different survival in 18 over 30 datasets, com-

pared to 10 and 14 of methylation and miRNA data, respectively. The figure also

shows that the Cox p-values obtained from gene expression data are more significant

than those obtained from methylation and miRNA data (p = 0.046 using one-sided
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Wilcoxon test). However, we note that miRNA and methylation also provide valu-

able information in data integration, when all data types are analyzed together. As

shown in Figure 2.3, the Cox p-values obtained from data integration are more sig-

nificant than those of any individual data type (including mRNA) with a one-sided

Wilcoxon test p-value of 0.004. This means that each of the three data types provides

meaningful contributions to the data integration.

To understand how other methods perform with respect to each data type, we

also plot the distributions of Cox p-values obtained from each data type using CC,

SNF, iClusterBayes, and CIMLR (Figure 2.4). CC is the only method that produces

comparable Cox p-values across the three data types. SNF and CIMLR perform

better using miRNA, while iClusterBayes favors mRNA and miRNA data.

2.2.2 Discovered subtypes and clinical variables

There are four important clinical variables that are available in more than 10 TCGA

datasets: age (21 datasets), gender (25 datasets), cancer stages (24 datasets), and

tumor grades (12 datasets). To understand the association between these variables

and the discovered subtypes, we perform the following analyses: (1) Fisher’s exact

test to assess the association between gender (male and female) and the discovered

subtypes; (2) ANOVA test to assess the age difference between the discovered sub-

types; and finally (3) calculate the agreement between the discovered subtypes and

known cancer stages/tumor grades using Adjusted Rand Index (ARI) and Normalized

Mutual Information (NMI) (see Appendix A).

Figure 2.5 shows the p-value distribution for gender, age, and survival analysis

(Cox p-value). Tables 2.3 and 2.4 show the p-values obtained for gender and age,

respectively. The four methods, SCFA, CC, SNF, and CIMLR, are not biased toward

gender with only some significant p-values. In contrast, iClusterBayes is subject to
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Figure 2.3: Cox p-values of subtypes identified by SCFA. To better understand the
usefulness of data integration, we calculate the Cox p-values obtained from individual
data types and compared them to Cox p-values obtained from data integration (when
mRNA, miRNA, and methylation are analyzed together). The horizontal axis shows
the data types while the vertical axis shows the minus log10 p-values. Overall the Cox
p-values obtained from data integration are significantly smaller than those obtained
from individual data types (p = 0.004 using one-sided Wilcoxon test).

gender bias with significant p-values in 12 out of 25 datasets (Table 2.3). Regarding

age, all methods have comparable p-values (Table 2.4).

Figure 2.6 and Table 2.5 show the ARI values that represent the agreement be-

tween the discovered subtypes and known cancer stages and tumor grades. The

median ARI of SCFA and SNF are comparable and they are higher than those of

CC, iClusterBayes, and CIMLR. Regarding tumor grade, the ARI values of SCFA

are higher than the rest. Figure 2.7 and Table 2.6 shows the NMI values. SCFA has

higher NMI values in both comparisons. However, for both cancer stage and tumor

grade, the ARI and NMI values of all methods are low, meaning that there is a low
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Figure 2.4: Cox p-values of subtypes identified by SCFA, SNF, iClusterBayes, CC,
and CIMLR using different data types.

agreement between the known stages/grades and the discovered subtypes using any

of the subtyping methods.

2.2.3 In-depth analysis of the Pan-Kidney (KIPAN) dataset

Figure 2.8 shows the Kaplan-Meier survival analysis [53] of the discovered subtypes

using the KIPAN dataset. SCFA discovers five subtypes, each with a very different

survival probability. Subtype 1 has the lowest survival rate while Subtype 5 has the

highest survival rate. All patients of Subtype 1 die within three years whereas 85% of

patients in Subtype 5 survive at the end of the study (after 15 years). Figure 2.9 shows

the age distribution of each subtype, in which patients in Subtype 1 (low survival)

are slightly older than patients in Subtype 5 (high survival) but there is no significant

difference in age between the two groups. Patients in Subtypes 2, 3, and 4 are older

than those of Subtype 1 (low survival) but they have higher survival probability.
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Figure 2.5: P-values obtained from comparing the discovered subtypes against gender,
age, and survival information. Fisher’s exact test was used to assess the statistical
significance in the association between the discovered subtypes and gender while
ANOVA was used to assess age difference. For survival analysis, Cox regression was
used to assess the statistical difference in survival profiles. The horizontal axis shows
the clinical variables while the vertical axis shows the minus log10 p-values.
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Figure 2.6: Adjusted Rand Index (ARI) values obtained from comparing the dis-
covered subtypes against known cancer stages (left panel) and tumor grades (right
panel).
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Figure 2.7: Normalized Mutual Information (NMI) values obtained from comparing
the discovered subtypes against known cancer stages (left panel) and tumor grades
(right panel).
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horizontal axis represents the time (day) while the vertical axis represents the esti-
mated survival probability.
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Table 2.3: P-values obtained from Fisher’s exact test that assesses the statistical
significance of the association between the discovered subtypes and gender. NA in-
dicates that there is not enough data to perform the test or all patients have the
same gender. Cells highlighted in green have p-values smaller than the significance
threshold of 0.05.

SCFA CC SNF iCB CIMLR

ACC 4.5e-01 7.1e-01 1.1e-01 3.2e-01 4.9e-01
BLCA 2.4e-01 2.3e-01 2.6e-01 4.4e-01 4.1e-02
BRCA 7.4e-02 5.4e-02 2.1e-01 5.3e-02 9.0e-02
CESC NA NA NA NA NA
CHOL 1.0e+00 1.1e-01 3.4e-01 1.6e-01 1.0e+00
COAD 5.7e-01 3.9e-01 7.5e-01 7.6e-45 4.2e-01
DLBC 1.6e-01 5.9e-01 1.0e+00 2.4e-06 3.1e-01
ESCA 8.8e-01 3.0e-01 1.0e+00 6.6e-01 8.3e-01
GBM 6.7e-01 4.6e-01 7.7e-01 8.1e-03 3.6e-01
GBMLGG 5.7e-06 4.9e-01 3.7e-01 6.2e-52 7.5e-01
HNSC 1.9e-01 1.9e-01 9.6e-03 8.2e-01 6.7e-01
KICH 6.5e-01 3.1e-01 2.0e-01 8.2e-03 1.0e+00
KIPAN 7.4e-03 7.0e-04 3.8e-02 7.1e-15 5.8e-02
KIRC 1.4e-02 2.3e-01 2.7e-01 5.8e-01 9.3e-15
KIRP 1.2e-02 1.0e+00 1.1e-03 5.5e-08 7.0e-05
LAML 8.0e-01 7.7e-01 4.3e-01 9.6e-02 6.3e-01
LGG 5.7e-02 1.0e-01 3.6e-01 3.9e-14 4.2e-01
LIHC 5.1e-01 9.0e-04 2.9e-05 3.1e-04 5.7e-06
MESO 2.2e-01 5.3e-01 7.6e-01 2.1e-01 5.8e-02
OV NA NA NA NA NA
PAAD 1.0e+00 4.5e-03 6.7e-03 8.1e-01 1.4e-01
SARC 1.6e-05 5.4e-03 2.5e-05 5.6e-12 1.2e-03
SKCM 3.5e-01 6.7e-01 4.2e-01 1.2e-01 6.4e-01
STES 1.3e-02 5.9e-02 6.0e-04 9.9e-05 1.8e-03
TGCT NA NA NA NA NA
THCA 8.7e-01 7.9e-01 3.7e-01 4.8e-01 4.6e-01
THYM 6.8e-01 5.7e-01 6.3e-01 5.5e-06 5.3e-01
UCEC NA NA NA NA NA
UCS NA NA NA NA NA
UVM 5.0e-01 1.0e+00 1.0e+00 6.2e-02 5.2e-01
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Table 2.4: P-values obtained from ANOVA that assesses statistical significance in age
difference between the discovered subtypes. Cells highlighted in green have p-values
smaller than the significance threshold of 0.05.

SCFA CC SNF iCB CIMLR

ACC NA NA NA NA NA
BLCA 2.1e-03 1.5e-01 6.6e-03 4.6e-03 2.5e-02
BRCA 1.3e-02 6.2e-02 2.0e-01 6.7e-05 1.4e-04
CESC 4.6e-01 4.0e-02 3.8e-01 1.2e-07 1.3e-01
CHOL NA NA NA NA NA
COAD 9.3e-01 4.3e-01 5.4e-01 6.4e-02 3.1e-01
DLBC 8.0e-01 2.4e-01 8.6e-01 4.9e-01 8.3e-01
ESCA NA NA NA NA NA
GBM 5.8e-05 3.1e-02 1.4e-02 2.0e-05 2.9e-02
GBMLGG 9.5e-13 1.7e-02 1.2e-17 1.1e-01 2.8e-16
HNSC 1.5e-01 1.1e-01 5.3e-01 9.2e-01 4.2e-01
KICH 3.2e-01 1.3e-01 3.0e-01 4.4e-01 8.1e-02
KIPAN 3.0e-08 1.3e-06 1.2e-08 1.3e-01 8.8e-08
KIRC 1.9e-01 6.8e-01 6.1e-01 9.9e-01 6.4e-01
KIRP 3.7e-03 2.9e-01 2.3e-01 1.0e-01 9.6e-01
LAML 6.9e-03 2.4e-06 6.1e-05 7.9e-02 5.2e-06
LGG 4.3e-11 3.8e-04 1.9e-18 3.4e-01 3.9e-16
LIHC 6.4e-01 2.1e-05 3.3e-05 9.3e-04 1.9e-03
MESO NA NA NA NA NA
OV 1.9e-02 4.7e-01 1.3e-01 1.8e-06 2.1e-01
PAAD 7.6e-02 9.8e-01 5.0e-01 1.7e-01 5.5e-01
SARC NA NA NA NA NA
SKCM 1.5e-01 8.8e-01 6.1e-03 1.2e-03 1.1e-01
STES 6.1e-01 2.6e-02 5.1e-01 4.5e-01 8.8e-01
TGCT NA NA NA NA NA
THCA 5.8e-01 2.7e-01 9.5e-02 6.0e-01 1.3e-02
THYM NA NA NA NA NA
UCEC 1.6e-03 6.0e-01 1.3e-07 8.4e-03 1.4e-04
UCS NA NA NA NA NA
UVM NA NA NA NA NA
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Table 2.5: Adjusted Rand Index (ARI) values obtained from comparing the discovered
subtypes against known cancer stages and tumor grades.

Cancer Stage Tumor Grade

SCFA CC SNF iCB CIMLR SCFA CC SNF iCB CIMLR

ACC 0.05 0.02 0.07 0.04 0.02 NA NA NA NA NA
BLCA 0.02 0 0.03 0.03 0.02 0.03 -0.01 0.04 0.01 0.02
BRCA -0.02 0 -0.01 0 0.01 NA NA NA NA NA
CESC 0 0.01 -0.01 0 0.02 0 0 0.01 0.03 0
CHOL -0.02 -0.02 -0.01 0 -0.02 NA NA NA NA NA
COAD -0.03 -0.01 0 -0.01 0 NA NA NA NA NA
DLBC -0.02 0.01 0 0.05 -0.05 NA NA NA NA NA
ESCA 0.08 0.08 0.07 0 0.07 NA NA NA NA NA
GBM NA NA NA NA NA NA NA NA NA NA
GBMLGG NA NA NA NA NA 0.03 0.04 0.04 0.01 0.05
HNSC -0.03 0 -0.01 0 0 -0.01 0 0.01 0 0
KICH 0.05 0 0.11 0.05 0.04 NA NA NA NA NA
KIPAN 0.07 0.01 0.04 0.03 0.06 0.04 0 0.01 0.01 0.02
KIRC 0.02 -0.03 -0.01 -0.01 -0.01 0.06 0.02 0.02 0.05 -0.01
KIRP 0.03 0.01 0.15 0.02 0.1 NA NA NA NA NA
LAML NA NA NA NA NA NA NA NA NA NA
LGG NA NA NA NA NA 0.03 0.03 0.04 0.02 0.05
LIHC 0 0 0 0.02 0.03 0.02 0 0.01 0.03 0.01
MESO -0.01 -0.01 0.03 0 -0.02 NA NA NA NA NA
OV 0 0.02 0 -0.01 0.01 0.02 0 -0.01 -0.02 0.01
PAAD 0.1 -0.01 0.04 0.12 0.05 0.06 -0.01 0.06 0.06 0.05
SARC NA NA NA NA NA NA NA NA NA NA
SKCM 0.02 0 0.02 0.01 0.01 NA NA NA NA NA
STES 0.01 0.02 0.01 0.01 0.01 0 0.04 0 -0.02 -0.01
TGCT 0.03 0.05 0.03 0.02 0.03 NA NA NA NA NA
THCA -0.01 0.01 0.01 0.01 0.02 NA NA NA NA NA
THYM NA NA NA NA NA NA NA NA NA NA
UCEC 0.01 -0.03 0.04 0.01 0.01 0.08 0.12 0.06 0.02 0.1
UCS 0.03 0 0.05 0.02 -0.03 NA NA NA NA NA
UVM 0.04 0.03 0.05 0.09 0.03 NA NA NA NA NA
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Table 2.6: Normalized Mutual Information (MNI) values obtained from comparing
the discovered subtypes against known cancer stages and tumor grades.

Cancer Stage Tumor Grade

SCFA CC SNF iCB CIMLR SCFA CC SNF iCB CIMLR

ACC 0.12 0.06 0.1 0.11 0.06 NA NA NA NA NA
BLCA 0.05 0.02 0.03 0.04 0.03 0.06 0.05 0.1 0.06 0.05
BRCA 0.03 0.01 0.02 0.02 0.04 NA NA NA NA NA
CESC 0.04 0.06 0.03 0.05 0.06 0.03 0.01 0.01 0.04 0.04
CHOL 0.15 0.13 0.08 0.2 0.16 NA NA NA NA NA
COAD 0.08 0.05 0.06 0.05 0.06 NA NA NA NA NA
DLBC 0.11 0.09 0.07 0.1 0.02 NA NA NA NA NA
ESCA 0.13 0.12 0.09 0.09 0.09 NA NA NA NA NA
GBM NA NA NA NA NA NA NA NA NA NA
GBMLGG NA NA NA NA NA 0.06 0.03 0.06 0.01 0.06
HNSC 0.05 0.02 0.01 0.03 0.05 0.06 0.04 0.02 0.03 0.03
KICH 0.19 0.12 0.1 0.12 0.04 NA NA NA NA NA
KIPAN 0.07 0.05 0.06 0.03 0.05 0.04 0.03 0.02 0.06 0.02
KIRC 0.04 0.07 0.04 0.01 0.01 0.12 0.11 0.1 0.08 0.04
KIRP 0.08 0.02 0.1 0.02 0.07 NA NA NA NA NA
LAML NA NA NA NA NA NA NA NA NA NA
LGG NA NA NA NA NA 0.09 0.03 0.06 0.01 0.06
LIHC 0.03 0.02 0.02 0.03 0.03 0.01 0.01 0.01 0.04 0.03
MESO 0.09 0.04 0.02 0.05 0.06 NA NA NA NA NA
OV 0.05 0.02 0.05 0.02 0.04 0.05 0.03 0.02 0.02 0.02
PAAD 0.13 0.04 0.08 0.11 0.06 0.09 0.03 0.1 0.08 0.06
SARC NA NA NA NA NA NA NA NA NA NA
SKCM 0.04 0.02 0.03 0.04 0.05 NA NA NA NA NA
STES 0.06 0.05 0.05 0.05 0.05 0 0.02 0 0.01 0.02
TGCT 0.12 0.12 0.09 0.09 0.08 NA NA NA NA NA
THCA 0.03 0.03 0.03 0.03 0.05 NA NA NA NA NA
THYM NA NA NA NA NA NA NA NA NA NA
UCEC 0.05 0.04 0.04 0.07 0.07 0.16 0.07 0.2 0.06 0.15
UCS 0.29 0.15 0.15 0.21 0.11 NA NA NA NA NA
UVM 0.13 0.08 0.08 0.08 0.11 NA NA NA NA NA
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Figure 2.9: Age distribution for each subtype of the KIPAN dataset.

To show the molecular signature of each subtype, we also plot the heatmaps that

visualize different subtypes of KIPAN patients on important genes/features. For each

data type, we calculate the p-value for each feature using ANOVA and then choose

20 features/genes with the most significant p-value. Figure 2.10 shows the heatmap

for mRNA (left panel), methylation (middle panel) and miRNA (right panel). The

methylation data clearly differentiates Subtype 5 (highest survival probability) from

the rest. In the listed probes (DNA regions), Subtype 5 has a consistently low level

of methylation compared to other subtypes. However, methylation data alone cannot

differentiate among the rest of the patients (Subtypes 1, 2, 3, and 4). Using informa-

tion from mRNA and miRNA, SCFA can further divide the rest of the patients into

four subtypes with very different survival profiles.

We also perform variant analysis to look for mutations that are highly abundant

in the short-term survival groups but not in the long-term survival groups, as shown

in Figure 2.11. In this figure, each point represents a gene and its coordinates are
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mRNA

GGT1|2678
SLC28A1|9154
GALNT14|79623
FLT1|2321
NDUFA4L2|56901
ELTD1|64123
TBC1D14|57533
BSND|7809
KLK15|55554
HEPACAM2|253012
ATP6V1G3|127124
CLNK|116449
FOXI1|2299
FBN3|84467
DMRT2|10655
INPP5J|27124
CYP2J2|1573
SLC6A3|6531
GPR4|2828
PCSK6|5046

Methylation

cg27436324
cg02354388
cg05489292
cg11774624
cg14659678
cg08435683
cg14078335
cg18236877
cg25043496
cg10998884
cg22015277
cg11061946
cg24686845
cg26584983
cg01020475
cg03170036
cg01741038
cg25228995
cg04725041
cg20202112

microRNA

hsa−mir−122
hsa−mir−195
hsa−mir−1180
hsa−mir−224
hsa−mir−497
hsa−mir−221
hsa−mir−222
hsa−mir−200c
hsa−mir−126
hsa−mir−455
hsa−mir−145
hsa−mir−210
hsa−mir−204
hsa−mir−891a
hsa−mir−874
hsa−mir−141
hsa−mir−187
hsa−mir−21
hsa−mir−10b
hsa−mir−143

Figure 2.10: Heatmap of subtypes discovered by SCFA for the KIPAN dataset.

the number of patients having at least a variant in that gene in each group. In

principle, we would look for mutated genes in the top left and the bottom right

corners. From this figure, we can identify four notable markers: VHL, PBRM1,

MUC4, and FRG1B. Among these, MUC4 is known to be associated with exophytic

growth of clear cell renal cell carcinoma [54]. VHL has been reported to be linked

to a primary oncogenic driver in kidney cancers [55]. Functional studies show that

HIF is sufficient for transformation caused by loss of VHL, thereby establishing HIF

as the primary oncogenic driver in kidney cancers. PBRM1 is also a major clear cell

renal cell carcinoma (ccRCC) gene [56].

2.2.4 Risk score prediction using multi-omics data

We also use the same set of data to demonstrate the ability of SCFA in predicting risk

score of each patient. For each of the TCGA datasets, we randomly split the data into

two equal sets of patients: a training set and a testing set. We use the training set to

train the model and then predict the risk for patients in the testing set. The predicted

risk scores are then compared with the true vital status and survival information using

Cox p-value and concordance index (C-index) [57]. Concordance index represents

the probability that, for a pair of randomly chosen patients, the patient with higher

predicted risk will experience death event before the other patient. On the other hand,

Cox p-value measures how significant the difference in survival when correlating with



27

●
●● ●●

●

●

●
●
●

●

●

●●

●

●

●

●●●
● ●●
●● ●

●

●●
●

●
●

●
●

● ●

●

● ●

●

●●●●

●

●●
●●

●

●

●●●●●●●
●

●●●

●

●

●

●●
●
●●●●● ●

●
●

●●
●●●

●●●●●●●
●●●

●

●
●●

●
● ●

●●●●●●●●

●

● ●●
●

●●●●

●

●

●

●
●

●●●
●●
●

●
●

●
●●

●
●
●

●
●

●

●●

● ●

●
●●

●

● ●●

●
●●

● ●●

●

●
●●●● ●●●

●

●
●
●●

●

●●
●

●

●
●

●
●

●
●

●

●

●

●
●
●●●
●

●
●●

●
●

●●●●

●

●●

●

●
●

●
●
●●● ●● ●

●

●
●●

●

●●●
●
●

●●

●
●

●●

●
●

●
●●●
●
●

● ●
●

●

●

●

●
●●
●

●
●

●

●

●●●●
●
●●●●

●
●

●
●
●

●●

●

●
●

●●
●
●●● ●●●●

●
●● ●

●
●●●● ●● ●●●●

● ●
●●●● ●●

●
●

●
●●

●
●

●

●

●●
●

●
●

● ●●●●
●
●

●
●

●

●
●

●

●●●●●
●

●●●●●●●

●
●

●

●
●

●
●

●
●●
● ●●●
●

●
●

● ●●

●

●●

●

●

●●

●

●
●●● ●●●●●
●

●
●●

●
●
●
●

●
●
●●●●●●●●

●

●●
●●●●

●
●●

●●
● ●

●
●●●● ●●

●
●●
●●●●

●

●●

●

●●●●●●
●
●●●
●

●

●

●

●

●

●●●●
●
●
●

● ●●●●

●

● ●
●

●
●

●

●●●

●
●●

●●●

●

●

●

●
●

●●

●
●

●
●

●●
●● ●

●

●

●

●

●●

●

●●● ●●●●●●●●●●●●

●

●● ●●●
●
●
●
●●

●
●

●
●

●

●

●

●
●

●●●
●

●
●
● ●

●

●●●
●

●●●●

●●

●
●

● ●●●●●

●

●●●●●
●

● ●

●

●

●
●

●

●●

●

●

●

●

●

●●● ●
●

●
●

●●●

●
●

●●

●

●
●
●●●●●●●●
●

●
●●●●

●
●

●
●
●

●

●●●●

●●

●
●
●●
●

●
●

●

●

●●
●
●
●

●
● ●
●●●●●
●

●●●
●

●●

●
●

●●
●

●
●

●
●●●●

●● ●
●●●●●●

●●

●

●

●
●●

●●●●●● ●●
●

●●

●

● ●
●

●

●●●●●●●
●
●

●

●●●
●●

●

●

●●● ●
●●●

●●

●

●
●

●

●

●●
●
●●
●
●●●

●

●
●
●●

●

●
●●

●

●●● ●●●●●●●

●

●
●●

●

●●●
●

●●●●●●
●●

●
●

●
●

●●●
●

●●●●●●●●●● ●●
●

●●●●●●●● ●●●●
●
●●●●●●●●●●●

●●●●●
●●●●

●

●●●
●●

●●●●●

●

●●

●

●●●●●●
●●
●● ●●●●
●

●● ●●●●●●●●
●
●●

● ●

●●●●●
●
●
●

●

●

●
●●

●●●●●●
●

●

●
●

● ●●
●

●●●●●● ●
●

●●●●
●
●

●
● ●●●●●●●●●●●●●●●●●

●
●●

●
●

●
●

● ●

●

●

●

● ●

●

●

●
●

●

●

●●
●

● ●
●●

●●●●
●●

●
●

●●●●●●●

●

●

●

●●●●●

●
●● ●

●
●

●
●

●●●●● ●
●

●●
●

●●

●

●●●●

●

●●●

●

●● ●
●

●
●

●●●●●
●

●●
●

●●●

●

●●●
●

●

● ●
●●●●
●●●●●

●

●
●

●●●
●

●

●
●●●●
●
●●

● ●●●
●●●●●●●●●●

●
●●
●
●●●

●●

●●● ●●●●
●
●
●

●
●●
●● ●●

●
●●
●
●

●

●
●●

●●●● ●

●

●
●●●●

●
●●●

●
●●●
●

●●●
●
●●●●●

● ●
●

●
●●

●
●●

●

●
●

●●●●●●●●●●●
●
●●

●
●●● ●

●

●●●●●
●
●
●●

●

●
●●

●●●●

●
●

●
●
●●●●●●●●

●

●
●

●●
●

●●●●●●
●

●

●

●
●

●
●

●

●
●

●
●●

●●●●
●

●

●●●
●

●
● ●

●
●

●
●

●●
●●● ●●

●
●●●●
●

●●
●

●
●

●●

●●● ●
●

●

● ●●●●●●●

●●●●
●

●

● ● ●●
●

●
●

●
●●

●●
●
●●

●
●
●●●●●●●●

●
●
●
●
●

● ●●
●

●●●●●
●

●

●

●●
●

●
●
●

●●●●
●

●●●●●●

●
● ●●●
●●

●
●●●●●●

●●
●

●
●●●

●

●

●●● ●●●
●

●●●
●●

● ●●
● ●

●●●

●
●
●

●

●●●●●●

●

●
●●

●

●●● ●
●●

●●●●●●●●●

●
●

●●●●●●●
● ●
●
●

●

●

●● ●

●

●
●

●
●

● ●
●●

●●
●

●● ●●

●

●

●

●●

●

●
●

●
● ●

●

● ●●●● ●●
●●

●
●●

●
●●

●

●

●
●●

● ●●
●●●●●●●● ●●●●●●●●
●●
●●●●
●

● ●●
●

●●

●

●●
●
●●●●

●

●● ●●●
●
●
●
●●●● ●

●
●

●

●
●●
●
●●●

●
●

●●●●●

●

●●●●
●

●

●●●●●●

●

●
●●

● ●●

●

●

●

●

●

● ●

●

●
●

●

●

●
● ●
●●●●

●

●●
●

●●●●●
●

●●

●
●
●● ●● ●●

●

●●●
●
●

●

●

●
●

●

●

●

●

●

●●●●●●●● ●

●

●●●●●●●●●
●

●●●

●

● ●●
●
●●●●●

● ●
●

●
●

●

●
●
●
●● ●●●
●
●●●●●

●

●●●●●

●

●●●●●
●
●

●
●●● ●

●
●●

●
●●●●

●

●
●
●●●●●

●

●

●
●
●●

●

●
●

●
●

●●● ●●●
●
●
●
●●

●
●

●

●● ●●●●●●●
●●

●

●●

●

●●●
●
●

●●
●

●
●

●
●

●
●
●●●●●● ●●●●
●

●
●

●●
●●

●●●●●●
●

●
●
●
●●
●
●●
●

●●
●● ●●●●

●
●●
●

● ●

●

●

●
●
●

●

●

●●

●

●
●
●●

●
● ●
●

●
●

●
● ●●●
●
●●

●
●●

●
●●

●
●●

●
●

● ●●●
●

●
●●

●

●

●

●

●

●
●

●

●
●

●

●

●
●●
●
●●●●

●

●

●
●

●
●●●●●
●
●

●

●

●

●

●
●

●

●
●●●

●
●

●●

●

●
●

●
●●

●●
●

●● ●
●

●

●
●●

●●●●●
●

●
●

●●●●
●

●●●●●
●

●

●

●

● ●●

●●

●

●

●

●

●

●●

●

● ●

●
●

●● ●●●●●

●

●●●●
●
●● ●

●

●

●

●●●●●●●●

●

●●
●
●
●
●

●

●

●●●●

●

●● ●●● ●●●●●
●

●●
●●

●

●●

●

●●●●
●

●●●●●●
●

●●
●
●●● ●●●● ●●

●

●
●

●●●
●

●● ●●●●●●●●●

●

●●●●
●●
● ●
●

●
●●

●
●

●
●

●●●●●●●●●●●● ●●●

●

●●

●

●
●
●●
●
●

●
●●

●●

●●●●●●
●

●
●●●

● ●
●

●●
● ●●

●●

●
●
●●

●

●
●

● ●

●
● ●●

●

●

●

●
●

●
●

●
●

● ●●●●●

●
●

●●

●
●●

●●●●
●
●

●

●

●

●●●

●
●
●●●

●

●
●●●
●
●●●●●●
●
●● ●●●

●

●●●
●

●

●●●
●
●

●●●
●●

●

●
●● ●●●●●

●

●
●

●
●●

●●
●●●
●

●●●
●

●

●

●●●
●

●●
●

●

●
●

●

●
●
●
●
●

●●
●●

●●●●●
●

●●● ●

●
●

●
●

●

●●
●
●●●●●●

●
●

●
●●
●
●

●●

●

●●●●
●●
●

●
●●

●
●

●
●

●
●●

●●
●

●
● ●●

●
●●● ●

●
●
●
●

●

●●
●

● ●
●
●●●●

●

●
●

●●●

●

●
●

●

●

●●

●● ●● ●

●

●●●●●

●

●
●

●
●

●
●

●●

●
●
●● ●● ●
●

●●
●
●●● ●

●

●●

●

●
●●

●●

●

●
●●● ●

●
●●●●●

●

●●
●
●

●●
●
●
●
●●● ●●●●●●● ●

●●
●

●

●●●

●

●
●

●● ●●●● ●
●●
●
● ●
●

●

●

●
●

●
●

●

●

●
●

●

●
●

●
●

●●

●

●●
●
●
●

●●●●

●

●

●
●
●

●●●●●
●
●●●●●●

● ●
●●●●

●●
●●● ●

●

●

●

●

●

●
●

●
●

●●●●

●

●●
●

●

●●
●
●●

●
●

●
●●● ●
●●●
●●

●

●
●●
●●●●●●●

●●
●●●

●●
●●●

●

●
●
●●
●●●●●●●
●●●
●●

●
●
●●●●

●
●

●

●
●●●
●

●●
●

●
●

●●●

●
●

● ●
●
●

●

●●●● ●
●●

●
●

●● ●●●
●

●●
●●

●●

●

●●●●●●●●●●
●

●●●

●
●

●
●

●●
●

●

●●●●●●●

●
●●

●
●●●

●●●●●
●●

●●
●●●

●●●
●

●●
●

●●●

●

●●●
●

●●●● ●●●●
●

●●●●●●
●

●

●●
●

●

●

●●●
●
●

●

●●
●●

●●● ●●●●●●●
●

●

●●●●● ●
●
●

●●●●

●

●●● ●●● ●
●●

●●

●

●
●●

●
●
●●●●●●●

●

●

●
●●●●●●●

●
●

●
●●
●

●●●●
●

●

●●●● ●

●

● ●●
●

●

●

●●
●
● ●

●● ●●●

●

●●
● ●●● ●
●●● ●

●
●

●●●●●●●●

●

●●●●●
●
●
●

●
●

●● ●●●
●
●
●

● ●●●●●●
●●●
●●●●●
●
●●●

●●

● ●●●●●
●●

●●●
●

●●
●
●●●

●
●
●●●

●

●●

●

●●
●

●●

●

●
●

●

●●

●

●●●

●

●

●●
●● ●

●

●

●
●

●
●

●
●

●
●●
●

●
●

●●●
●
●●●●
●

●

●

●●
●●

●

●

●●●●●●●●●●●●●● ●
●
●●

●
●

●

●●
●●
●●

●●

●●

●

●

●●
●
●

●
●

●
●

●
●

●●

●

●
●●
●●●●
●
●●●

●
●
●

●

●●
●
●

●

●
●

●
●

●●●
●●

●

●●●●●●●

●

●●
●
●●
●●

●●●

●
●

●
●
●

●

●●●●●●
●
●●●●●●●●●
● ●

●

●
● ●●●●

●
●●●

●

●

●●●●●●

●

●●

●

●
●

●●●●
●●

●●

●

●
●

●●●

●

●●●●
●

●●
●
●●●●●● ●●

●

●
●

●

●

●●

●

●●● ●● ●● ●

●

●
●

●

●●

●

●
●●●●

●

●
●

●● ●

●

●● ●
●

●

●●

●

●
●●

●●●●●
●

●
●

●●

●

●

●

●●

●

●●

●

●

●●●
●
●● ●●

●●
●
●
●●

●
●

●

●

●●●●●
●
●● ●●●●

●●●
●●●

●
●
●●

●
●
●
●●

●●●
●

●
●●

●
●

●●
●

● ●
● ●

●
●●●
●

●

●
●●●

●●

●●●●●● ●

●
●

● ●
●
●●●●

●

●● ●
●
●

●
●●●

●●

●●●●

●

●

●

●●

●

●●
●●●

●

●●
●

●●●●●● ●●●
●
●●●●●●

●

●

●

●●●●
●●

● ●

●

●
●

●

●
●

● ●

●
●●

●

●
●
●●

●

●●
●

●● ●

●

●
●●

●●
●

●●●●

●

●

●

●

●

●

●●
●

●●

●

● ●

●

● ●●
●
●

● ●
●●

●●● ●●
●●

●

●

●

●

●
●●

●
●
●

●

●●●

●

●

●

●●

●

●●

●

●●
●

●

●
●
●

●

●
●

●
●

●
●

●
● ●●

●
●

●
●● ●

●●
●●

●
●●
●●●●

●

●●●●●●
●

●● ●●●●●●

●
●

●●

●

●●● ●●●●● ●●
●●
●●

●
●●●●●●●

●

●

●

●

●

●

●

●
●●●● ●

●
●

●
● ●●
●
●
●●

●

●●●
●

●●●
●
●

●●●●
●●

●●

●

●●●
●●

●

●
●

●●
●
●

●

●●
●

●●●●●

●

●●

●

●
●

●

●

●

●
●●

●

●●●●
● ●
●●

●
●●●

●
●

●
●

●

●
●
●

●
●●

●
●

●
●●

●

●
●

●●●
●

●

●

●
●● ●

●●
●
●●
●●
●●

●
●
● ●●●●●

●

●● ●●●●●●●●●

●●

●●●●● ●●

●
●
●

●
●

●

●
●

●
●

●
●

●●●● ●●
●●

●●●●
●●

●●
● ●●
●●●●●●

●
●
●

●●● ●●●●●●

●
● ●
●●

●

●●● ●

●

●
●●●●

●

●●●●●

●
●
●

●

●

●

●

●
●

●
●

●

●
●

●

●
●

●●
●
●●●
●

●
●●
●

●
●●●●●●●●●●●●●

●

●

●

●●●
●

●

●●●●●● ●●●
●●

●●

●

●
● ●●

● ●●● ●
●●
●●●●●

●
●●
●
●●
●

●

●
●

●
●

●●●●●●●●

●

●
●●●●●●●

●
●

●
●●● ●●●

●

●
●

● ●● ●
●

●●
●●

●●
●● ●

●●●●●●

●
●

●●
●●

●
●

●●●●
●

●●●●
●

● ●
●
●●

●

●
●

●●● ●
●
●●●
●

●●●●

●
●

●
●
●●
●

●

●

●

●
●

●
●
● ●

●
●●●●

●

● ●●●

●

●●

●

●
●

●

●● ●

●

●●●●
●
●●

●

●

●

● ●
●

●●
● ●●

●●

●

●●●
●

●●●●●
●
● ●●

●

●
●
●●

●
●

●●

●

●

●● ●
●●

●●

●
●

●●

●●●●●●●●●●●

●
●

●
●

●

●

●●●●

●●

●
●

●●●●● ●
●●
●

●●
●●
●
● ●●●●●●●●●●●●●

●

●●
●● ●●●

●

● ●
●●
●
●
●

●
●
●●

●●
●
●

●●● ●●
●●

●●●●●●● ●
●●●
●●●●●●●● ●●●●

●

●
●

●●●

●

●●

●

●

●●

●

●

●

●

●●

●

●●

●
●
●●●●● ●●●●●

●
●
●●●●●●

●

●●●●
●

●

●

●

●●●

●

●●

●

●

●

●

●

●

● ●

●

●●●
●

● ●●●●●

●

●●
●

●

●
●

●●●●●●●
●
●
●

● ●

●

●

●

●
●
●
●●●

●
●

●

●

●
●

●

●●●

●

●
●

●●●

●

●●
●

●

●
●

●

●
●

●
●●

●

●

●

●
●●●
●●
●

●●
●

●●
●

●●

●●
●
●●●●● ●
●
●●●●●●● ●

●

● ●●
●
●

●●
●

●

●
●

●

●

●

●●
●

●
●

●

●

●

●

●
●●
●

● ●●
●●●

●

●

●
● ●

●

●
●
●●

●

●●●●●
●●●

●●●●●

●

●

●

●

●

●●●
●

●

●●
●

●

●
●●

●

● ●● ●●
●
●●

●

●

●
●●

●

● ●

●
●●

●●
●

●●● ●
●

●●●●●
●
●

●
●●

●
●

●

●

●●
●

●●●●
●

●

●●●● ●
●
●● ●

●

●●
●

●
●●
●

●
●

●
●
●
●

●
●

●
●●● ●●

●
● ●

●

●

●

●●
●

●●●●● ●●●● ●

●

●

●

●

●●●●●●●●●
●

●●●
●

●●
●
●

● ●
●

●

●●●●
● ●●
●●●●●
●

●
●

●●

●

●●
●
●

●
●

●
●

●

●●●●●
●●

●

●

●
●

●
●

●●●
●

●●●●●
●

●●

●
●
●

●
●●

●
●

●●

●

●●●●●
●

●

●●

● ●

●
●

●

●
●●

●

●●
●

●
●●●●
●●
●

●●●
●●

●

● ●
●
●

●

●

●

●●●●●●●●●
●

●

●
●●

●

●●●●●●●
●

●●

●

●
●

●
●●
●●● ●●●

●

●●●

●●

●●
●

●●●●●●●●●●● ●

●

●●● ●●●●●●●●

●●●

●●
●●

●●●●

●

●

● ●●●●●● ●●●●

●
●
●

●

●
●●

●●●●●●● ●●●●●● ●●●●●●
●
●●● ●●●

●

●

●

●
●
●

●●
●●●●●●●●●●●●●●●●
●●●

●

●

●● ●●●●●●●●●

●

●●●
●●

●●●
● ●
●

●

●

●●●
●●

●●●●●● ●●●●●
●

●●●●
●

●●

●
●

●
●
●● ●●

●

●●●●●
●

●
●
●●

●
●

●

●
●
●●●

●

●●

●

●
●
●● ●●

●

●
●

●

●
●

●

●

●
●●

●●●●

●
●

●● ●●●●
●
●●

●

●
●● ●

●

●●●

●●

●

●

●
●●

●

●
●

●●
●

●

●

●

●●
●●●
●

●
●●

●
●●
●

●● ●●●

●

●●●●

●

●

●
● ●●
●
●

●
●●
●

●●●●●●●●●
●
●
●●

●

●
●

●●●●
●

● ●
●

●●●●●●●
●●

●●

●●
●

●
●
●●

●●
●●●

●

●

●●

●

●●
●●●●

● ●●
●●

●●●●●

●

●●●●● ●

●●

●●●●
●
● ●●
●

●

●
●

●
●

●●

●
●

●
●●

●

●●●

●
●

●●
●

●● ●●●●

●

●●●●●
●

●●
●
●

●
●

●
●

●

●

●●
●

●●●●●

●

●●●●
●

●

●

● ●
●

●

●

●●
●

●

●

●
●
●
●●

●
● ●● ●● ●

●●●
●

●
●●

●●

●
●●●

●●
● ●

● ●●

●

●●

●

●
●

●●●
●

●
●

●●●
●

●●

●

●●●●

●

●
●

●●●
●

●
●●

●

●
●

●

●
●

●

●

●●●●●
●
●●●●●

●●
●●●

●
●

●●●●●●●●
●

●

●●
●
●
●
●

●
●

●
●

●●

●

●
●● ●

●
●●

●

●

●● ●●●●
●●

●

●

●●●●

●

●

●

●

●
●●●●● ●●● ●●●

●

●●●
●

●

● ●●●●●●●●
●

●●●●
●

●●●●●
●
●●●●

●
●

●
●●● ●●●

●
●

●●●

●
●

●
●
●●

●
●

●●●
●

●

●● ●

●
●

●
●

●

●●

●●
●

●●●

●

●●

●

●
●●●

●● ●●
●●●● ●

●
●●●●●●

●
● ●

●
●

●●●

●

●●●

●
●

●
●
●●●●●

●
●

●

●

●

●
●

●
●
●●

●
●●

●

●
●

●
●

●
●

●●●
●
●●

●
●

●

●
●
●

●

●
●

●●●

●

●●
●●

●
●

●

●
●

● ●●●● ●●
●
●
●

●●●●
●
●●●

●

●●●●
●●
●

●

● ●●●
●

●●

●

●●●●●●
●●●

●
●

●●● ●●●
●● ●
●

●

●
●

●
●●

●
●

●●
●

●

●●
●
●●●●

●

●●
●

●
●
●●●●

●
●●

●

●●●●●
●

●

●
●
●●●●●● ●●●●●●●

●
●●●●●●●●

●
●●●●●●●

●
●

●
●●

●

●
●●●

●

●●●

●
● ●
●●

●

●

●●
●●
●●

●
●● ●

●●
●●

●

●●

●

●

●

●

●

●●●●●● ●●●●

●
●●

●

●
●●
●●●

●

● ●

●●

●
●●

●●●

●

●

●
●●●
●

●
●●

●

●

●

●
●
●
●● ●●●

●
●

●●●
●
●● ●
●
●●●●●

●
●●●

●

●●● ●●● ●●
●●●●

●

●
●
●

●
●●

●
●

●
●

●● ●

●

●
●
●●

●

●
●●● ●

●●●●

●
●

●●
●
● ●

●
●●●

●
●●
●
●
●●

●●●●●●●● ●
●●

●●●

●

●●●●●●●●
●

● ●

●
●
●●
●●

●●●●●
●●●●

●●
●

●●●●

●

●
●
●

●
●
●●●●●

●

●● ●●●●●●
●

●●●● ●
●
●

●
●

●●
●
●
●

●● ●
●

●

●●
●

●
●

●

●
●

●
●●

●
●●●●

●
●●●
●

●●

●

●●●●●
●

●●
●

●●●

●
●

●● ●

●

●●

●

●●
●

● ●● ●●●

●
●

●
●

●●●●
●

●

●●

●

●●●

●
●
●

●

●
●●

●
●

●

●

●

●●●●● ●● ●
●

●

● ●

●

●
●

●●●
●●

●●●●●●
●

●●
● ●

●

●●

●
●

●

●

●
●●●●

●
●

●● ●

●
●

●
●
●●
●
●●

●

●
●

●●
●

●
●

●
●●

●●
●
●

●

●●●●●●●●●

●

● ●●
●
●
●●
● ●●●

●
●
●

●●●●●●
●

●

●
●

●
●

●●●●●

●

●● ●●●●●
●
●
●●

●●●●●●●
●
●

●●
●●●●
●
●
●
●

●●
●●●●
●

●●

●

●

●

●●●
●●

●●

●●

●

● ●●

●

●●
●

●●

●
●

●●●●●●
●
●●●●
●

●

●●●●●●
●●●

●
●●

●●●●●
●

●●●●
●

●
●

●

●

●
●

●●
●●●●

●
●

●● ●●
●

●●●●●

●
●●

●

●
●●●

●
●

●●
●

●

●
●

●

●

●● ●
●

●●●●

●

●●●
● ●

●

●
●

●●●

●

●●
●●

●
●●●● ●

●
●

●
●●●

●
●●●●●●●●●●●

●●
●

●●●●●●
●●
●
●

●●●●●●● ●
●

●
●
●●●●
●●
●

●

●●●

●

●
● ●●

●●● ●●●●●●
●

●
●
●●

●

●●
●
●●

●

●

●

●●●●● ●
●
●
●

●●

●
●

●

●●

●●●●●● ●●
●

●
●
●

●
●

●
●●

●●●●
●●

●
●

●

●

●●
●

●

●
●

●

●
●

●●
● ●

●

●

●

●

●

●● ●
●
●

●
●●●

●

●●●
●

●●●
●

●●
●●
●

●

●●●●●●
●

●
● ●

●

●
●

●
●

●
●●●●●●●

●

●●
●

●

●

●

● ●
●

●●●
●

●

●

● ●●

●

●

●
●●

●

●●●●●●
●

●
●
●●●● ●●●●●●●●●

●

●●●

●

●●●

●
●●

●

●

●

●●
●

●

●

●
●

●

●
●

●●●
●●

●●●●
●

●

●

●●●

●

●

●

● ●
● ●●●●

●

●●
●

●●
●
●●●●●●● ●

●

●

●●
●●● ●●●

●
●●
●

●

●
●

●●●●

●

●

● ●
●●

●

●
●

●
●

●

●
●

●

●●●
●●

●●

●

●●●●●●●●
●

●

●
●
●

●●

●

●
●

●●●
●

●●

●

●
●

●
●
●●

●
●

●●●●
●

●●●●●●●●●●
●
●

●●
●

●
●

●● ●
●

●
●

●●●
●

●●●
●
●●

●●
●
●
●● ●●●
●
●

●
●

●
●●

●
●● ●●●●●●●

●●
●

●

●●●●
●

●
●

●
●
●●

●
●●●●●
●

● ●

●

●●

●

●
●●●

●

●●●●

●

●
●

●

●

●● ●
●

●●●●●
●

●
●

●
●

●
●●

●

●●●●● ●
●
●

●
●●●

●
●

●
●●

●

●
●

● ●●

●

●●

●

●●
●
●●●●●●

●
●

●

●

●●●● ●●
●

●

●●●●●

●

●

●●
●
●

●

●● ●●●●
●
●

●
●●

●
●●

●●●
●

●
●

●
●

●
●
●

●
●
●● ●●

●
●●●●
●

●
●

●●●

●

●●
●●

●

● ●●
●

●●

●

●●
●

●●●
●
●●●
●

●

●

●●

●

●

●

●

●●
●●

●
●
● ●●

●

●

●

●
●

●

●

●

●
●

●
●

●●●●●●
●

●● ●●●

●

●●●●●●
●●●

●
●
●
● ●

●●●

●

●
●●●●●

●

● ●●
●

● ●

●●●●

●

●●

●

●●
●
●●●●
●●

●

●
●●

●

●
●

●●

●
●

●

●
●
●●●

●
●

●
●●●

●
●●●●

●●
●

●

●

●
●

●
●
●
●
●

●●
●●●●●●

●●●
● ●●●●●●●●●

●
●●●●●●
●●
● ●●●●●●

●
●
●
●●

●
●●●●●● ●●●

●●
●

●
●●●●●
●●●

●
●

●● ●●●●●●●
●
●●●●●●●

●

●
●

●

●

●
●●

●●
●
●

●

●
●

●●●●

●

●

●

●● ●●
●

● ●●

●

●● ●

●

●

●
●

●●

●

●

●
●●
● ●

●

●
●

●

●

●●●

●

●

●●
●●

●●
●
●●●●●

●●
●

●●●●●
●

●●

●

●●●
●

● ●
●

●
●

●●
●●
●

●
●

●●
●

● ●
●

●
●

●

●●●
●

●

●
●
●●●●●
●●

●●●●

●

●
●

●●●
●

●

●●

●●

●●●●●
●

● ●●
●

●●●●

●

●
●●● ●

●●
●

●
●
●●

●

●

●

●

●●●●

●

● ●●●●●●
●
●●

●
●● ●●●●●

●

●●●●●●●

●

●
●

●● ●●
●

●●
●

●

●
●

●

●●●
●

●●●●●●

●

● ●
●

●●●●
●

●

●
●●●●
●
●●●●●

●
●●●●● ●●

●

●●●●●●●●●●●●●
●

●
●

●● ●●
●
●●●●

●
●

●

●
●

● ●

●

●●●
●●
●●●●

●
●

●
●●●

●

●●●
●●●

●● ●●●
●● ●
●

●
●
●
●●
●

●●●●

●

●

●●●
●

●●
●

●●
●●

●

●●●● ●

●

●
●
●●●

●

●

●●

●

●
●

●
●●

●
●

●●●

●

●
●

●●●●

●

●
●

●●●
●●
●●

●

●●●● ●●●
●

●

●

●

●

●●
●

●

●
●●

●●●●●●●●

●

●●●
●

●●
●

●
●

●
●

●

●

●
●●●●●

●

●
● ●●

●●
●
●
●●●
● ●●●●

●●

● ●
●

●
●

●● ●●●
●

●

●

●
●

● ●●
●

●●

●

●● ●
●

●

●●
●

●●
● ●●
●●

●
●

●

●
●

●
●

●●●●●●●●●
●●
●

●
● ●

●●
●
●
●●
●

●●●●●
●●●

●
●
●

●

●●●●
●

● ●

●

●●● ●
●

●●●●●●

●

●

●
●
●

●
● ●●

●

●

●

●

●

●●

●

●●
●

●
●

●●

●

●●●
●
●

●

●●●
●

●●

●
●

●
●

●●●

●
●
●●●●●●●●
●●

●
●

●
●●

●
●

●●●●●
●

●●●●
●

●●
●

●●●●
●●

● ●

●

●●
●

●

●

●
●

● ●●●

●

●●● ●● ●
●

● ●
●
●
●

●●●● ●● ●
●

●

●

●
●

●●
●●●

●
●
●●●●

●
●●●

●
●● ●

●
●

●

●●●●
●

●●
●

●

●●●
●
●

●
●

●●
●

●
●

●●●●●●
●
●●

●

●
●

●
●

●
●

●●

●

●●●●●●
●

● ●

●

● ●●●●
●

●●●●●●
●
●

●
●●●

●

●
●

●●
●

●
●

●●●●●
●●
●
●●
●

●●
●

●

●

●
●
● ●
●
●
●

●

●

●

●
●

●
●
●●

●
●

●●
●
● ●●
●●

●
●●●

●● ●●●●● ●●●●●●
●●

●

●●●●

●
●

●
●
●
●

●●●●●●
●
●●●

●
●

●
●

●
●

●

●
●
●

●

●●●●●●●●

●

●●

●

●●●●
●
●

●●
●

●●●●

●

●●●
●
●●●●

●
●

●●●

●

●

●

●
●

●●●

●
●
●●●●

●
●

●

●●●
●

●●

●

●●●●
●

●●
●

●●●●●
●

●
●

●

●

●

●
●

●

●

●
●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●● ●●●●●● ●●●●●●●●● ●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●● ●●● ●●●● ●●● ●●●●●●● ●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●● ●●●●●●●● ●●●●●● ●●●●●●●●●●●●●●●●●●●●●●● ● ●●●● ●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●● ●●●●●●●●● ●● ●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●● ●● ●● ●●●●●● ●●●●●●●●●●●●●●●●●●●●● ●● ●●●●● ●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●● ●●●●●●● ●●●●●●●●●●●●●●●●●●●● ●● ●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●● ●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●● ●●●●● ●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●● ●●●●●●●●●●●●●● ●● ●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●● ●●●●●●●●●●●●●●● ●● ●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●● ●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●● ●●●●●●●● ●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●● ●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●● ●● ●●●●●●●●●● ●●●●● ●●●● ●●●●●●●●●●●●●●●● ●●● ●●●●●●●● ●●● ●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●● ●●● ●●●●●●●●●●●● ●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●● ● ●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●● ●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●● ●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●● ●●●●●● ●● ●●●●●●●●●●●●●●●●●●● ●●● ●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●● ●●●●●●●●●●●●●●● ●●●● ●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●● ●●●●●●●●●● ●●●●● ●●●●●●●●●●●●●● ●●● ●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●● ●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●● ●●● ●●●●●●● ●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●● ●●●●● ●●●●●●● ●● ●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●● ●●●●●●●●●●●●●● ●●●●●●●● ●●●●●●● ●● ●● ●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●● ●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●● ●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●● ●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●● ●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●● ●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●● ●●●●● ●● ●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●● ●●●●●●●● ●●●●●●●●●●●●●●●●●● ● ●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●● ●●●●●●●●●●● ●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●● ●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●● ●●●● ●●●●●●●●●●●● ●●●●● ●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●● ●●●● ●●●●●●●●● ●● ●●●●●●●●●●● ●●●●●

FRG1B

MUC2

MUC4

PBRM1

TTN

VHL

●

●

●

●

●

●

0

20

40

60

0 50 100
Subtype 1, 2, and 3 (short−term survival)

S
ub

ty
pe

 4
 a

nd
 5

 (
lo

ng
−

te
rm

 s
ur

vi
va

l)

Mutations in KIPAN subtypes

Figure 2.11: Number of patients in each group for each mutated gene for KIPAN.
The horizontal axis represents the count in subtypes with low survival rate (subtype
1, 2, and 3), while the vertical axis shows the count for subtypes with high survival
(subtype 4 and 5) rate.

predicted risk scores. This process is repeated 20 times for each dataset, and the

average C-index and −log10(p) for each dataset are calculated using results from

these 20 runs. We note that some datasets do not have enough patients with either

event (survive or death), which leads to errors for Cox regression. For that reason,

we removed five datasets (DLBC, KIRP, TGCT, THYM, UCEC) from the analysis,

and report survival prediction for only 25 datasets without errors.

Figure 2.12 shows the distributions of C-indices and Cox p-values (in minus log10

scale), while Table 2.7 shows the exact values calculated for each dataset. We calculate

the C-index and Cox p-value obtained from individual data types and compared them

to those obtained from data integration (when mRNA, miRNA, and methylation are

analyzed together). As shown in Figure 2.12a, the accuracy of the prediction using

data integration is generally higher than the accuracy obtained from individual data

types. Predictions using data integration have a median C-index of 0.62, compared

to 0.57, 0.54, and 0.57 when using mRNA, methylation, and miRNA, respectively.

Similar results are also observed in the evaluation using Cox p-values (Figure 2.12b).
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The Cox p-values obtained from data integration has the median −log10(p) of 1.9,

compared to 1.0, 0.7, and 0.9 for mRNA, methylation, and miRNA. The results

demonstrate that we can potentially predict the risk score of each patient using only

molecular data. More importantly, the prediction using multi-omics data is generally

more accurate than using individual data types.
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Figure 2.12: Evaluation of risk prediction using concordance index (C-index) and
Cox p-values. For each dataset, we calculate the C-index and Cox p-values between
predicted risk scores and known survival of patients. To better understand the use-
fulness of data integration, we calculate the C-index and Cox p-value obtained from
individual data types and compared them to those obtained from data integration.
(a) Distributions of C-indices for data integration and individual data types. (b)
Distributions of Cox p-values for data integration and individual data types. SCFA
is able to predict risk scores that are highly correlated to true survival with a median
C-index of 0.62 and Cox p-value of 0.01. In addition, the prediction is more accurate
when all data types are analyzed together. The C-indices are significantly higher and
the p-values are significantly smaller when all data types are combined (p = 0.0007
and p = 0.002 using one-sided Wilcoxon test).
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Table 2.7: Risk score prediction evaluated by concordance index (C-index) and Cox
p-values.

Dataset C-index -log10(p)

Integration mRNA Methylation microRNA Integration mRNA Methylation microRNA

ACC 0.78 0.79 0.59 0.72 3.32 3.84 0.66 2.73
BLCA 0.59 0.55 0.55 0.54 2.44 1.1 0.9 0.73
BRCA 0.62 0.55 0.52 0.51 1.38 0.77 0.28 0.14
CESC 0.68 0.63 0.54 0.64 3.42 2.15 1.4 2.02
CHOL 0.56 0.56 0.51 0.55 0.38 0.36 0.2 0.24
COAD 0.56 0.52 0.51 0.57 0.52 0.09 0.09 0.48
ESCA 0.53 0.52 0.5 0.51 0.35 0.09 0.18 0.06
GBM 0.55 0.51 0.53 0.53 2.44 0.3 1.04 1.12
GBMLGG 0.77 0.79 0.72 0.73 14.1 11.56 4.83 5.14
HNSC 0.59 0.59 0.51 0.55 1.41 1.81 0.22 0.48
KICH 0.68 0.6 0.63 0.57 1.35 0.62 2.3 1.31
KIPAN 0.79 0.77 0.73 0.74 24.42 14.53 11.65 20.54
KIRC 0.58 0.59 0.54 0.6 0.79 1.24 0.5 0.94
LAML 0.63 0.61 0.56 0.59 2.45 1.94 1.06 1.16
LGG 0.77 0.78 0.73 0.73 14.02 11.44 5.21 7.53
LIHC 0.62 0.53 0.55 0.57 1.9 0.36 0.86 0.9
MESO 0.72 0.69 0.53 0.63 4.46 3.72 0.22 2.93
OV 0.54 0.51 0.53 0.51 0.41 0.12 0.72 0.14
PAAD 0.71 0.67 0.56 0.59 3.35 2.58 0.79 1.75
SARC 0.62 0.57 0.53 0.53 1.19 0.98 0.19 0.26
SKCM 0.61 0.53 0.53 0.52 2.32 0.55 0.32 0.24
STES 0.54 0.51 0.52 0.51 0.4 0.11 0.29 0.16
THCA 0.66 0.53 0.54 0.51 1.26 0.44 0.33 0.57
UCS 0.58 0.53 0.51 0.51 0.68 0.15 0.06 0.08
UVM 0.83 0.67 0.69 0.72 2.62 1.14 2.87 1.33
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2.3 Conclusion (SCFA)

We presented a novel method named SCFA for disease subtyping and risk assessment

using multi-omics data. The contribution of SCFA is two-fold. First, it utilizes

a robust dimension reduction procedure using autoencoder and factor analysis to

retain only essential signals. Second, it allows researchers to predict risk scores of

patients using multi-omics data – the attribute that is missing in current state-of-

the-art subtyping methods.

To evaluate the developed method, we examined data obtained from 7,973 patients

related to 30 cancer diseases downloaded from The Cancer Genome Atlas (TCGA).

SCFA was compared against four state-of-the-art subtyping methods, CC, SNF, iClus-

terBayes, and CIMLR. We demonstrate that SCFA outperforms existing approaches

in discovering novel subtypes with significantly different survival profiles. We also

demonstrate that the method is capable of exploiting complementary signals avail-

able in different types of data in order to improve the subtypes. Indeed, the Cox

p-values obtained from data integration are more significant than those obtained

from individual data types.

To further demonstrate the usefulness of the developed method, we also performed

a risk assessment using molecular data. We demonstrate that SCFA is able to predict

risk scores that are highly correlated with vital status and survival probability. The

correlation between predicted risk scores and survival information has a median of

0.62 and can be as high as 0.83. More importantly, we demonstrate that the risk

prediction becomes more accurate when more data types are involved.
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Part II

Single-cell RNA Sequencing

(scRNA-seq): Data Mining of

High-Dimensional, Large-scale

Biological Data
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Chapter 3

Mining scRNA-seq Data:

Background, Significance, and

Current Challenges

Bulk RNA sequencing (RNA-seq) has been the primary tool to study biological sys-

tems. Despite its popularity, bulk sequencing is unable to measure the heterogeneity

inside complex tissues and cell-to-cell variability. This is due to the fact that the

measurements from bulk sequencing technologies usually reflect the average gene

expression across a cell population. Recent advances in microfluidic and sequenc-

ing technologies have allowed us to measure the expression profiles of individual

cells [58, 59]. By allowing us to monitor the biological processes at the single-cell

resolution, single-cell RNA sequencing technologies have enabled new research di-

rections in genomics and transcriptomics research. These include a various atlas

projects [60, 61] aiming at building the references of all cell types in model organ-

isms, transcriptome landscape visualization in complex tissues [62, 63], inference of

cell developmental trajectories [64], inferring gene regulatory network [65], in silico
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cellular deconvolution [66, 67], and predicting cell spatial position [68, 69].

Such comprehensive decomposition of complex tissues holds enormous potential

in both basic research and clinical applications [70–72]. By sequencing the RNA from

individual cells, Single-cell RNA sequencing (scRNA-seq) is especially useful in fast-

changing environments, such as tumor tissues or developing embryos. This allows

researchers to see which genes are active in each cell, providing a more detailed

and accurate picture of cellular function [58, 59]. scRNA-seq has also been used

to identify new cell types, study the heterogeneity of cells in different tissues, and

identify the mechanisms underlying diseases such as cancer. It has also been used to

study environments with diverse composition, such as the microbiome.

The analysis of scRNA-seq data typically involves several steps. First, the raw

data from the sequencing experiment must be processed and filtered to remove noise

and low-quality data. This preprocessing can also include the removal of unwanted

variation, such as batch effects or technical variation, or recovery of missing values

due to the dropout phenomenon through data imputation. Next, the expression levels

of genes in each cell must be normalized, allowing for comparison across cells. After

the upstream analysis, scRNA-seq data usually is available as a table containing the

gene expression levels for individual cells. Using this data, we can perform several

downstream analyses, including clustering, visualization, classification, or pseudo-

time inference, to extract useful biological insights.

Defining cell types through unsupervised learning, also known as cell segregation

or clustering, is considered the most powerful application of scRNA-seq data anal-

ysis [73]. This has led to the creation of numerous atlas projects [60, 61], which

aim to build the references for all cell types in various model organisms at multi-

ple developmental stages. Widely-used methods in this category include SC3 [74],

SEURAT [68], SINCERA [75], CIDR [76], and SCANPY [77]. Another fundamental
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analysis of scRNA-seq data is the visualization of transcriptome landscape. Computa-

tional methods in this category aim at representing the high-dimensional scRNA-seq

data in a low-dimensional space while preserving the relevant structure of the data.

Non-linear methods [63], including Isomap [78], Diffusion Map [79], t-SNE [80], and

UMAP [62], have been recognized as efficient techniques to avoid overcrowding due

to the large number of cells, while preserving the local data structure. Among these,

t-SNE is the most commonly used technique while UMAP and SCANPY are recent

methods.

Once the cellular subpopulations have been determined and validated, classifica-

tion techniques can be used to determine the composition of new datasets by classify-

ing cells into discrete types. Dominant classification methods include XGBoost [81],

Random Forest (RF) [82], Deep Learning (DL) [83], and Gradient Boosting Machine

(GBM) [84]. Given the cell subpopulations information, researchers will be able

to perform pseudo-time inference, which defines the biological progression of cells

through their maturing stages [85]. This application, namely trajectory inference,

computationally models multiple cellular processes, such as cell cycle, proliferation,

differentiation, and activation [86, 87], by ordering the cells along developmental

trajectories. Multiple trajectory inference tools have been developed, in which Mono-

cle [88], TSCAN [89], Slingshot [64], and SCANPY [77] are considered state-of-the-art

and are widely used for pseudo-temporal ordering.

Besides, scRNA-seq techniques have limitations including the high cost of the

technology and the high rate of technical noise. This is because the process of isolating

RNA from a single cell is very complex, and it is difficult to ensure that the RNA

is not degraded during the process. This leads to a high rate of missing values in

the data, which is commonly referred to as the dropout phenomenon. One way to

address this issue is to use data imputation techniques to recover the missing values.
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However, the imputation process can be challenging, and plausibly introduce bias

into the data.

Despite its limitations, scRNA-seq remains a powerful tool with the potential to

revolutionize our understanding of cellular biology. Its widespread utilization across

various research domains, including cancer [90], immunology [91], or virology [92], has

resulted in the massive amounts of scRNA-seq data being generated each year [93].

In addition, researchers have recently developed computational methods, known as

cellular deconvolution, to obtain partial benefits of scRNA-seq analysis from existing

bulk RNA-seq data. This innovative approach enables the inference of cell-type com-

position from bulk RNA-seq data, thereby facilitating the identification of cell types

associated with diseases and other phenotypes.

Although scRNA-seq has gained wide popularity for studying the transcriptome

of individual cells, several challenges persist in the analysis and interpretation of the

data. Firstly, scRNA-seq data is high-dimensional, with thousands of genes repre-

senting each cell. This poses difficulties in visualizing and comprehending the data.

Analyzing relationships between thousands of genes and millions of cells, as required

for applications like trajectory inference or gene regulatory network inference, can

be computationally demanding and time-consuming. Secondly, scRNA-seq data is

characterized by noise and sparsity, with numerous missing values and outliers. This

makes it challenging to identify consistent patterns and trends, potentially leading

to false positives or false negatives in the results. Thirdly, technical noise is often

introduced during the sample preparation and sequencing process, stemming from

low starting material and amplification procedures. Such noise introduces inconsis-

tencies in the data and hampers comparisons across different experiments. Lastly,

scRNA-seq is expanding to measure additional modalities beyond gene expression,

such as protein expression, chromatin accessibility, and DNA methylation. Integrat-
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ing and interpreting these diverse modalities of data presents its own set of challenges.

Despite these obstacles, scRNA-seq remains a powerful tool for studying cell biology.

Ongoing technological advancements are expected to address these challenges, further

enhancing the capabilities of scRNA-seq for researchers.

One of the main challenge for scRNA-seq computational approaches is the expo-

nentially increasing in size of scRNA-seq dataset. Recently, it is becoming common

for single-cell studies to generate and publish datasets with hundreds of thousands to

millions of samples. Processing and analyzing this amount of data would prove to be

a challenging problems. Moreover, due to the large number of genes in scRNA-seq

datasets, the differences between cells in high dimensional space become more diffi-

cult to identify, this is known as the “curse of dimensionality”[47]. For researchers

to be able to take full advantage of these rich datasets, efficient computational meth-

ods are required. Current computational approaches usually apply feature selection

and/or dimension reduction techniques to reduce the noise and increase the scala-

bility. Feature selection aims to indentify the most informative genes, for example

ones with highest variance [94] or dispersion [95]. Dimension reduction methods,

including PCA [74, 96], t-SNE [97], UMAP [98], random projection [50], and autoen-

coder [99, 100], are often used by scRNA-seq data analysis methods to project the

data to lower dimensional space.

Another outstanding challenge is the “dropout” phenomenon where a gene is

highly expressed in one cell but does not express at all in another cell [101]. These

dropout events usually occur due to the limitation of sequencing technologies when

only a small amount of starting mRNA in individual cells can be captured, leading to

low sequencing depth and failed amplification [102, 103]. Since downstream analyses

of scRNA-seq heavily rely on the accuracy of expression measurement, it is crucial

to impute the zero expression values introduced by the dropout phenomenon and
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sequencing errors.

To address the challenges mentioned above, we develop four novel methods for

scRNA-seq data mining and interpretation. Chapter 4 describes a new analysis frame-

work, called single-cell Decomposition using Hierarchical Autoencoder (scDHA), that

can efficiently detach noise from informative biological signals. In one joint framework,

the scDHA software package conducts cell segregation through unsupervised learn-

ing, dimension reduction and visualization, cell classification, and time-trajectory

inference. We will show that scDHA outperforms state-of-the-art methods in all

four sub-fields: cell segregation through unsupervised learning, transcriptome land-

scape visualization, cell classification, and pseudo-time inference. Chapter 5 describes

a novel imputation method, named single-cell Imputation via Subspace Regression

(scISR), that can reliably recover the dropout values of scRNA-seq data. We will

show that scISR consistently improves the quality of cluster analysis regardless of

dropout rates, normalization techniques, and quantification schemes. Chapter 6 de-

scribes a new approach, single-cell Imputation using Neural Network (scINN), that

can reliably impute missing values from single-cell data. Chapter 7 describes another

imputation approach, single-cell Imputation using Residual Network (scIRN), that

can reliably impute missing values from single-cell data. We will demonstrate that

scINN and scIRN outperform existing imputation methods (MAGIC [104], scImpute

[105], SAVER [106], and DrImpute [107]) in improving the identification of cell sub-

populations and the quality of biological landscape.
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Chapter 4

scDHA: Fast and Precise

Single-cell Data Analysis using a

Hierarchical Autoencoder

This chapter is based on the following publication: Duc Tran, Hung Nguyen, Bang

Tran, Carlo La Vecchia, Hung N. Luu, and Tin Nguyen. Fast and precise single-cell

data analysis using hierarchical autoencoder. Nature Communications. 2021. DOI:

10.1038/s41467-021-21312-2

A primary challenge in single-cell RNA sequencing (scRNA-seq) studies comes

from the massive amount of data and the excess noise level. To address this challenge,

we introduce an analysis framework, named single-cell Decomposition using Hierar-

chical Autoencoder (scDHA), that reliably extracts representative information of each

cell. The scDHA pipeline consists of two core modules. The first module is a non-

negative kernel autoencoder able to remove genes or components that have insignifi-

cant contributions to the part-based representation of the data. The second module is

a stacked Bayesian autoencoder that projects the data onto a low-dimensional space
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(compressed). To diminish the tendency to overfit of neural networks, we repeatedly

perturb the compressed space to learn a more generalized representation of the data.

In an extensive analysis, we demonstrate that scDHA outperforms state-of-the-art

techniques in many research sub-fields of scRNA-seq analysis, including cell segre-

gation through unsupervised learning, visualization of transcriptome landscape, cell

classification, and pseudo-time inference.

4.1 Introduction

Advances in microfluidics and sequencing technologies have allowed us to monitor

biological systems at single-cell resolution [58, 59]. This comprehensive decomposi-

tion of complex tissues holds enormous potential in both developmental biology and

clinical research [65, 108, 109]. Many computational methods have been developed

to extract valuable information available in massive single-cell RNA sequencing data.

These include methods for cell segregation, transcriptome landscape visualization,

cell classification, and pseudo-time inference.

Defining cell types through unsupervised learning, also known as cell segregation

or clustering, is considered the most powerful application of scRNA-seq data [73].

This has led to the creation of a number of atlas projects [60, 61], which aim to build

the references of all cell types in model organisms at various developmental stages.

Widely-used methods in this category include SC3 [74], SEURAT [68], SINCERA [75],

CIDR [76], and SCANPY [77]. Another fundamental application of scRNA-seq is the

visualization of transcriptome landscape. Computational methods in this category

aim at representing the high-dimensional scRNA-seq data in a low-dimensional space

while preserving the relevant structure of the data. Non-linear methods [63], including

Isomap [78], Diffusion Map [79], t-SNE [80], and UMAP [62], have been recognized

as efficient techniques to avoid overcrowding due to the large number of cells, while
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preserving the local data structure. Among these, t-SNE is the most commonly used

technique while UMAP and SCANPY are recent methods.

Visualizing transcriptome landscape and building comprehensive atlases are prob-

lems of unsupervised learning. Once the cellular subpopulations have been determined

and validated, classification techniques can be used to determine the composition of

new datasets by classifying cells into discrete types. Dominant classification meth-

ods include XGBoost [81], Random Forest (RF) [82], Deep Learning (DL) [83], and

Gradient Boosting Machine (GBM) [84]. Another important down-stream analysis

is pseudo-time inference. Cellular processes, such as cell cycle, proliferation, differ-

entiation, and activation [86, 87], can be modeled computationally using trajectory

inference methods. These methods aim at ordering the cells along developmental tra-

jectories. Among a number of trajectory inference tools, Monocle [88], TSCAN [89],

Slingshot [64], and SCANPY [77] are considered state-of-the-art and are widely used

for pseudo-temporal ordering.

As the volume of scRNA-seq data increases exponentially each year [93], the

above-mentioned methods methods have become primary investigation tools in many

research fields, including cancer [90], immunology [91], or virology [92]. However, the

ever-increasing number of cells, technical noise, and high dropout rate pose signifi-

cant computational challenges in scRNA-seq analysis [73, 110, 111]. These challenges

affect both analysis accuracy and scalability, and greatly hinder our capability to

extract the wealth of information available in single-cell data.

4.2 Methodology

We develop a new analysis framework, called single-cell Decomposition using Hi-

erarchical Autoencoder (scDHA), that can efficiently detach noise from informative

biological signals. Figure 4.1 depicts the overall pipeline of scDHA. The first module is
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a non-negative kernel autoencoder that provides a non-negative, part-based represen-

tation of the data. Based on the weight distribution of the encoder, scDHA removes

genes or components that have insignificant contributions to the representation. The

second module is a Stacked Bayesian Self-learning Network that is built upon the

Variational Autoencoder [112] to project the data onto a low dimensional space (see

Methods section). Using this informative and compact representation, many analyses

can be performed with high accuracy and tractable time complexity (mostly linear

or lower complexity). In one joint framework, the scDHA software package conducts

cell segregation through unsupervised learning, dimension reduction and visualiza-

tion, cell classification, and time-trajectory inference. We will show that scDHA

outperforms state-of-the-art methods in all four sub-fields: cell segregation through

unsupervised learning, transcriptome landscape visualization, cell classification, and

pseudo-time inference. The details of each step are described below.
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Figure 4.1: Overview of scDHA architecture. scDHA data processing and analyzing
pipeline includes four steps: (i) Data input scaling, (ii) Data filtering using non-
negative kernel autoencoder, (iii) Data compression using Stacked Bayesian Autoen-
coder, and (iv) Downstream applications.

4.2.1 Data filtering using non-negative kernel autoencoder

The method requires an expression matrix M as input, in which rows represents

cells and columns represent genes or transcripts. Given the input M , scDHA first
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automatically performs a log transformation (base 2) to rescale the data if the range of

M is higher than 100. The goal is to prevent the domination of genes or features with

high expression. To reduce the technical variability and heterogeneous calibration

from sequencing technologies, the expression data is additionally rescaled to a range

of 0 to 1 for each cell as follow:

Xij =
Mij −min(Mi.)

max(Mi.) −min(Mi.)
(4.1)

where M is the input matrix and X is the log-based normalized matrix. This min-

max scaling step is to reduce standard deviation and to suppress the effect of outliers,

which is frequently used in deep learning models [113, 114]

After normalization, the data is then passed through a one-layer autoencoder to

filter out insignificant genes/features. In short, autoencoder consists of two com-

ponents: encoder and decoder. The formulation of autoencoder can be written as

follows:

e = fE(x)

x̄ = fD(e)
(4.2)

where x ∈ Rn
+ is the input of the model (x is simply a row/sample, i.e., x = Xi.),

fE and fD represent the transformation by encoder and decoder layers, x̄ is the

reconstruction of x. The encoder and decoder transformations can be represented

as fE(x) = xWE + bE and fD(e) = eWD + bD, where W -s are the weight matrices

and b-s are the bias vectors. Encoder aims at representing the data in a much lower

dimensional space (compression) whereas decoder tries to reconstruct the original

input from the compressed data. Optimizing this process can theoretically result

in a compact representation of the original, high-dimensional data. The size of the

bottleneck layer is set to 50 nodes (not user-provided parameter). Changing this

number of nodes has no significant impact on the results of scDHA.
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In our model, the weights of the encoder (WE in fE(·)) are forced to be non-

negative so that each latent variable is an additive combination of the original fea-

tures. By doing so, the non-negative coefficients of the less important features will be

shrunk toward zero. Based on the computed weights, the method only keeps genes

or components with high weight variances. In principle, the set of these genes can

be considered a “sufficient and necessary” set to represent the original data. These

genes are necessary because removing them would greatly damage the reversibility of

decoder, i.e., decoder cannot accurately reconstruct the original data. At the same

time, they are sufficient because encoder automatically shrinks the weights of genes

or gene groups that have similar but lesser impacts in the compression procedure. By

default, scDHA selects 5, 000 genes but users can choose a different number based on

the weight distribution.

4.2.2 Data compression using Stacked Bayesian Autoencoder

After the gene filtering step using non-negative kernel autoencoder, we obtain a data

matrix in which each gene is considered critical to preserve cell heterogeneity. How-

ever, although the step has greatly reduced the number of features, the number of

genes is still in the scale of hundreds or thousands. Therefore, it is necessary to per-

form dimension reduction before conducting any analysis or visualization. For this

purpose, we developed a modified version of VAE (theorized by Kingma et al. [112]).

We name it Stacked Bayesian Autoencoder (Figure 4.2) since the model is designed

with multiple latent spaces, instead of only one latent space used in the original VAE

or any other autoencoder model.

VAE has the same basic structure as a standard autoencoder, which is a self-

learning model consisting of two components: encoder and decoder. Given the input

matrix (the filtered matrix obtained from Non-negative kernel autoencoder), VAE’s
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Figure 4.2: High-level representation of Stacked Bayesian Autoencoder. The encoder
projects input data to multiple low-dimensional latent spaces (outputs of z1 to zn
layers). The decoders infer original data from these latent data. Minimizing the
difference between inferred data and original one leads to a high quality representation
of the data at bottle neck layer (outputs of µ layer).

encoder constructs a low-dimensional representation of the input matrix while the

decoder aims at inferring the original data. By minimizing the difference between the

inferred and the input data, the middle bottleneck layer is considered as the “near

lossless” projection of the input onto a latent space with a low number of dimensions

(m = 15 by default). We keep the model size small to avoid over-fitting and force the

neuron network to be as compressed as possible. Also, restricting the size of latent

layer will converge cells from the same group into similar latent space manifold. At

the same time, the size of the latent layer needs to be sufficient (15 dimensions) to

keep the latent variables disentangled. Per our experience, varying m between 10 and

20 do not alter the analysis results.

Given an expression profile of a cell x, the formulation of this architecture can be
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formulated as follows:

e = fE(x)

µ = fµ(e)

σ = fσ(e)

z ∼ N(µ, σ2)

x̄ = fD(z)

(4.3)

where x ∈ Rn
+ is the input of the network, fE and fD represent the transformation by

encoder and decoder layers. In addition to the standard autoencoder, two transfor-

mations fµ and fσ are added on the output e of encoder to generate the parameters

µ and σ (µ, σ ∈ Rm). The compress data z is now sampled from the distribution

N(µ, σ2). In contrast to the standard autoencoder, VAE uses z as the input of the

decoder instead of e. By adding randomness in generating z, VAE prevents overfit-

ting by avoiding mapping the original data to the compressed space without learning

a generalized representation of data. The perturbation process was shown to be an

effective method to increase data stability [44].

In our stacked model, to further diminish overfitting and increase the robustness,

we generate multiple compressed spaces with multiple realizations of z. For that

purpose, we use a re-parameterization trick to generate multiple realizations of z as

follows: z = µ + σ ∗ N(0, 1). This re-parameterization trick is introduced to ensure

that the model can backpropagate [112].

To train our model, we use AdamW [115] as optimizer while adopting two stage

training scheme [116]: (1) a Warm-up process which uses only reconstruction loss,

and (2) the VAE stage, in which the Kullback-Leibler loss is also considered to ensure

the normal distribution of latent variables z. The warm-up process prevents the

model from ignoring reconstruction loss and only focuses on Kullback-Leibler loss.

By doing this, we avoid the pitfall of making the model fail to learn generalized
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representations of the data. This process also makes the model less sensitive to the

weight initialization. For faster convergence and better accuracy, scaled exponential

linear unit (SELU) [117] is used as the activation function.

After finishing the training stage, scDHA processes the input data through en-

coder to generate representative latent variables of original data. This compressed

representation of the data will be used for single-cell applications: (1) cell segregation

through unsupervised learning, (2) dimension reduction and visualization, (3) cell

classification, and (4) pseudo-time trajectory inference.

4.2.3 Cell segregation via clustering

Predicting the number of cell types. The number of cell types is determined

using two indices: (i) the ratio of between sum of squares over the total sum of squares,

and (ii) the increase of the within sum of squares when number of clusters increases.

The indices are formulated as follows:

Index 1 =
SSbetween,j

SStotal,j

(4.4)

Index 2 =
SSwithin,j+1 − SSwithin,j

SSwithin,j

(4.5)

where j is number of clusters.

Larger Index 1 means that members of one group are far from other groups,

i.e., the clusters are well separated. Index 2 is affected by the number of eigenvectors

generated by spectral decomposition, which is also the number of clusters. We assume

that the addition of an eigenvector that leads to the highest spike in the within sum of

squares (which is undesirable) would be the correct number of clusters. These indices

are calculated by performing k-nearest neighbor spectral clustering on a subset of

samples over a range of cluster number. Mean of the predictions from these two
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indices is set to be the final number of clusters.

Basic clustering algorithm. In order to improve the accuracy when clustering non-

spherical data while ensuring the fast running time, we apply a k-nearest neighbor

adaption of spectral clustering (k-nn SC) as the clustering method embedded in our

package. Instead of using Euclidean distance to determine the similarity between two

samples, Pearson correlation is used to improve the stability of cluster assignment.

The difference between k-nn SC and normal SC is that the constructed affinity matrix

of data points is sparse. For each data point, the distance is calculated for only its k

nearest neighbors while the distance to the rest is left at zero. The clustering process

of k-nn SC consists of 4 steps: (i) constructing affinity matrix A for all data points

to use as input graph, (ii) generating a symmetric and normalized Laplacian matrix

Lsym = I−D− 1
2AD− 1

2 where D is the degree matrix of the graph, A is the constructed

affinity matrix and I is the identity matrix, (iii) calculating eigenvalues for Laplacian

matrix and select those with smallest values, generating eigenvectors corresponding

to selected eigenvalues, (iv) performing final clustering using k-means on the obtained

eigenvectors.

Consensus clustering. We use the basic clustering algorithm described above to

cluster the compressed data. To achieve higher accuracy and to avoid local minima,

an ensemble of data projection models is used. We first repeat the data projection and

clustering process multiple times. We then combine the clustering results using the

Weighted-based meta-clustering (wMetaC) implemented in SHARP [50]. wMetaC

is conducted through 5 steps: (i) calculating cell-cell weighted similarity matrix W ,

wi,j = si,j(1 − si,j) where si,j is the chance that cell i and j are in the same cluster,

(ii) calculating cell weight, which is the sum of all cell-cell weights related to this

cell, (iii) generating cluster-cluster similarity matrix |C|x|C|, where C is the union of

all the clusters obtained in each replicate, (iv) performing hierarchical clustering on



49

cluster-cluster similarity matrix, and (v) determining final results by voting scheme.

Voting procedure. For large datasets, we also provide an additional option in

our package to reduce the time complexity without compromising the performance.

Instead of clustering the whole dataset, which requires a large amount of memory and

heavy computation, we can perform the clustering on a subset of the data points and

then apply a vote-counting procedure to assign the rest of the data to each cluster.

The voting process is based on the k-nearest neighbor classification. This approach

still ensures the high clustering quality without compromising the speed of method.

4.2.4 Dimension reduction and visualization

Given the compressed data (10 to 15 dimensions), we compute the distance matrix

for the cells and then perform log and z transformations as follows:

Dij =
log(Dij) − µlog(Di.)

σlog(Di.)

(4.6)

where D is a distance matrix. The rationale of this transformation is to make the

distribution of distances from one point to its neighbors more uniform. Next, we

calculate the probabilities pij that are proportional to the similarity between sample

i and j as follows:

pj|i =
exp(Dij)∑
k ̸=i exp(Dik)

(4.7)

At the same time, using the compressed data, we build a neural network to project

the data to 2-dimensional space. Using two formulas described above, we re-calculate

the probabilities qij that are proportional to the similarity between sample i and j in

the 2-dimensional space. Our goal is to learn a 2-dimensional projection of the data

that retains the probabilities p as well as possible. We achieve this by minimizing the

distance between Q and P . Here, we use the Kullback-Leibler divergence to represent
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the distance between the two probability distributions, which can be formulated as:

KL(P ||Q) =
∑
i ̸=j

pij log
pij
qij

(4.8)

By minimizing Kullback-Leibler divergence, we obtain the optimal representation

of the data in the 2-dimensional space. The algorithm can be generalized to three or

higher number of dimensions.

4.2.5 Cell classification

The problem can be described as follows. We are given two datasets of the same

tissue: the training dataset and the testing dataset. For the training dataset, we have

the cell labels. The goal is to determine the cell labels of the testing dataset.

Our classification procedure consists of the following steps: (i) concatenate the

two matrices into a single matrix, in which the rows consist of all cells from the two

datasets and columns are the common genes; (ii) normalize and compress the merged

data using the hierarchical autoencoder described above; (iii) compute the similarity

matrix for the cells using Pearson correlation; and finally (iv) determine the label of

cells from testing data using k-nearest neighbor algorithm (k-nn).

The rationale for concatenating the two datasets is to exploit the robust denoising

and dimension reduction procedure offered by the hierarchical autoencoder. Since

we normalize the data per each cell, different scaling of the two datasets (training or

testing) would not pose as a problem. At the same time, the hierarchical autoencoder

efficiently diminishes batch effect and noise, moving cells of the same type closer to one

another. We demonstrated that even with an unsophisticated classification technique

as k-nn, scDHA is proven to be better than current state-of-the-art methods, including

XGBoost, Random Forest, Deep Learning, and Gradient Boosted Machine.
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4.2.6 Pseudo-time trajectory inference

We implement a pseudo-time inference method that allows users to infer non-branching

trajectory that is correlated with the developmental stages of cells. This method re-

quires a starting point as part of the input. We note that users can easily apply any

other methods on the compressed data provided by scDHA (see Saelens et al. [85] for

a comprehensive list of pseudo-time inference methods). Given the compressed data,

our method computes the similarity distance for the cells using Pearson correlation.

Using this similarity matrix as the affinity matrix, we construct a graph in which

nodes represent cells and edges represent the distance between the cells. In order to

construct the pseudo-time trajectory, we apply the minimum spanning tree (MST)

algorithm on the graph to find the shortest path that goes through all cells. From

the MST, pseudo time is determined by distance from one point to the designated

starting point.

4.3 Validation and Analysis Results

To validate our method, we use real scRNA-seq data that are generated from human

or mouse tissues using different protocols. By validating the methods with data from

different tissue origins and protocols, we can ensure the stability of the proposed

methods. Table 4.1 shows the details of 34 single-cell datasets that will be used

in our validation. The datasets Montoro, Sanderson, Slyper, Zilionis, Karagiannis,

Orozco, and Kozareva were downloaded from Broad Institute Single Cell Portal (ht

tps://singlecell.broadinstitute.org/single_cell). The datasets Puram,

Hrvatin, and Darrah were downloaded from Gene Expression Omnibus. Tabula Muris

was downloaded from Figshare. The remaining 23 datasets were downloaded from

Hemberg Group’s website (https://hemberg-lab.github.io/scRNA.seq.dat

https://singlecell.broadinstitute.org/single_cell
https://singlecell.broadinstitute.org/single_cell
https://hemberg-lab.github.io/scRNA.seq.datasets
https://hemberg-lab.github.io/scRNA.seq.datasets
https://hemberg-lab.github.io/scRNA.seq.datasets
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asets). The only processing step we did was to perform log transformation (base

2) to rescale the data if the range of the data is larger than 100. These datasets

include the ground truth (true cell type labels) for the each sample. This allows

accurate validation of downstream analysis performance. We validate the quality of

data using downstream analyses including clustering, visualization, classification, and

time-trajectory inference.

For clustering analysis, we compare our clustering result with other state-of-the-

arts including SC3 [74], SEURAT [68], SINCERA [75], CIDR [76], and SCANPY [77].

For visualization, we compare the transcriptome landscape generated by our meth-

ods with dominant methods including t-SNE [80], UMAP [62], SCANPY [77], and

the classical principal component analysis (PCA). For classification, we compare the

accuracy of our classifier with four methods that are dominant in machine learn-

ing: XGBoost [81], Random Forest (RF) [82], Deep Learning (DL) [83], and Gradi-

ent Boosting Machine (GBM) [84]. For time-trajectory inference, we compare our

methods with state-of-the-art methods for time-trajectory inference: Monocle [88],

TSCAN [89], Slingshot [64], and SCANPY [77].

4.3.1 Cell segregation

We assess the performance of scDHA in clustering using 34 scRNA-seq datasets with

known cell types. The true class information of these datasets is only used a posteriori

to assess the results. We compare scDHA with five methods that are widely used

for single-cell clustering: SC3 [74], SEURAT [68], SINCERA [75], CIDR [76], and

SCANPY [77]. Note that SCANPY is also an all-in-one pipeline that is able to

perform three types of analysis: clustering, visualization and pseudo-time inference.

We include k-means as the reference method in cluster analysis.

Since the true cell types are known in these datasets, we use adjusted Rand index

https://hemberg-lab.github.io/scRNA.seq.datasets
https://hemberg-lab.github.io/scRNA.seq.datasets
https://hemberg-lab.github.io/scRNA.seq.datasets
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Table 4.1: Description of the 34 single-cell datasets used to assess the performance of
computational methods. The first two columns describe the name and tissue while
the next four columns show the number of cells, number of cell types, protocol, and
accession ID.

Dataset Tissue Size Class Protocol Accession ID Reference

1. Yan Human Embryo 90 6 Tang GSE36552 Yan et al., 2013 [118]
2. Goolam Mouse Embryo 124 5 Smart-Seq2 E-MTAB-3321 Goolam et al., 2016 [119]
3. Deng Mouse Embryo 268 6 Smart-Seq2 GSE45719 Deng et al., 2014 [120]
4. Pollen Human Tissues 301 11 SMARTer SRP041736 Pollen et al., 2014 [121]
5. Patel Human Tissues 430 5 Smart-Seq GSE57872 Patel et al., 2014 [109]
6. Wang Human Pancreas 457 7 SMARTer GSE83139 Wang et al., 2016 [122]
7. Darmanis Human Brain 466 9 SMARTer GSE67835 Darmanis et al., 2015 [123]
8. Camp (Brain) Human Brain 553 5 SMARTer GSE75140 Camp et al., 2015 [124]
9. Usoskin Mouse Brain 622 4 STRT-Seq GSE59739 Usoskin et al., 2015 [125]
10. Kolodziejczyk Mouse Embryo Stem Cells 704 3 SMARTer E-MTAB-2600 Kolodziejczyk et al., 2015 [126]
11. Camp (Liver) Human Liver 777 7 SMARTer GSE81252 Camp et al., 2017 [127]
12. Xin Human Pancreas 1,600 8 SMARTer GSE81608 Xin et al., 2016 [128]
13. Baron (Mouse) Mouse Pancreas 1,886 13 inDrop GSE84133 Baron et al., 2016 [129]
14. Muraro Human Pancreas 2,126 10 CEL-Seq2 GSE85241 Muraro et al., 2016 [130]
15. Segerstolpe Human Pancreas 2,209 14 Smart-Seq2 E-MTAB-5061 Segerstolpe et al., 2016 [131]
16. Klein Mouse Embryo Stem Cells 2,717 4 inDrop GSE65525 Klein et al., 2015 [132]
17. Romanov Mouse Brain 2,881 7 SMARTer GSE74672 Romanov et al., 2017 [133]
18. Zeisel Mouse Brain 3,005 9 STRT-Seq GSE60361 Zeisel et al., 2015 [71]
19. Lake Human Brain 3,042 16 Fluidigm C1 phs000833.v3.p1 Lake et al., 2016 [134]
20. Puram Human Tissues 5,902 10 Smart-Seq2 GSE103322 Puram et al., 2017 [135]
21. Montoro Human Pancreas 7,193 7 Smart-Seq2 GSE103354 Montoro et al., 2018 [136]
22. Baron (Human) Human Pancreas 8,569 14 inDrop GSE84133 Baron et al., 2016 [129]
23. Chen Mouse Brain 12,089 46 Drop-seq GSE87544 Chen et al., 2017 [137]
24. Sanderson Mouse Tissues 12,648 11 10X Genomics SCP916 Sanderson et al., 2020 [138]
25. Slyper Human Blood 13,316 8 10X Genomics SCP345
26. Campbell Mouse Brain 21,086 21 Drop-seq GSE93374 Campbell et al., 2017 [139]
27. Zilionis Human Lung 34,558 9 inDrop GSE127465 Zilionis et al., 2019 [140]
28. Macosko Mouse Retina 44,808 12 Drop-seq GSE63473 Macosko et al., 2015 [141]
29. Hrvatin Mouse Visual Cortex 48,266 8 inDrop GSE102827 Hrvatin et al., 2018 [142]
30. Tabula Muris Mouse Tissues 54,439 40 10X Genomics GSE109774 Schaum et al., 2018 [143]
31. Karagiannis Human Blood 72,914 12 10X Genomics GSE128879 Karagiannis et al., 2020 [144]
32. Orozco Human Eye 100,055 11 10X Genomics GSE135133 Orozco et al., 2020 [145]
33. Darrah Human Blood 162,490 14 Drop-seq GSE139598 Darrah et al., 2020 [146]
34. Kozareva Mouse Cerebellum 611,034 18 10X Genomics SCP795 Kozareva et al., 2020 [147]
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(ARI) [148] to assess the performance of the six clustering methods. Figure 4.3 shows

the ARI values obtained for each dataset, as well as the average ARIs and their

variances. scDHA outperforms all other methods by not only having the highest

average ARI, but also being the most consistent method. The average ARI of scDHA

across all 34 datasets is 0.81 with very low variability. The second best method,

CIDR, has an average ARI of only 0.5. The one-sided Wilcoxon test also indicates

that the ARI values of scDHA are significantly higher than the rest with a p-value of

2.2 × 10−16. To perform a more comprehensive analysis, we calculate the normalized

mutual information (NMI) and Jaccard index (JI) for each method. Tables 4.2–4.4

show the detailed results of all methods on 34 single-cell datasets measured by the

three metrics.

Kozareva Darrah Orozco Karagiannis Tabula Hrvatin Macosko Zilionis Campbell

Slyper Sanderson Chen Baron (H) Montoro Puram Lake Zeisel Romanov

Klein Segerstolpe Muraro Baron (M) Xin Camp (L) Kolodziejczyk Usoskin Camp (B)

Darmanis Wang Patel Pollen Deng Goolam Yan

p=2.2e−16
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Figure 4.3: Clustering performance of scDHA, SC3, SEURAT, SINCERA, CIDR,
SCANPY, and k-means measured by adjusted Rand index (ARI) on 34 scRNA-seq
datasets. The first 34 panels show the ARI values obtained for individual datasets
while the last panel shows the average ARIs and their variance (vertical segments).
scDHA significantly outperforms other clustering methods by having the highest ARI
values (p = 2.2 × 10−16 using one-sided Wilcoxon test). (b) Running time of the
clustering methods, each using 10 cores. scDHA is the fastest among the six methods.

In 34 datasets analyzed, there are 19 plate-based datasets (Fluidigm C1, Tang,
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Table 4.2: Performance of scDHA, SC3, SEURAT, SINCERA, CIDR, SCANPY, and
k-means on 34 single-cell datasets measured by adjusted Rand index (ARI). Cells with
NA values indicate that the method was not able to analyze the dataset (crashed or
out-of-memory). Cells highlighted in green have the highest ARI values. The average
ARI of scDHA is 0.81, which is much higher than the rest (CIDR is the second best
with an average ARI of 0.5). In addition, scDHA has the highest ARI values in all
but two datasets (Pollen and Puram).

Dataset Size Class scDHA SC3 SEURAT SINCERA CIDR SCANPY k-means

1. Yan 90 6 0.86 0.66 0.39 0.72 0.80 0.84 0.80
2. Goolam 124 5 0.84 0.60 0.42 0.30 0.70 0.42 0.48
3. Deng 268 6 0.89 0.44 0.29 0.70 0.51 0.34 0.60
4. Pollen 301 11 0.92 0.96 0.61 0.85 0.90 0.77 0.89
5. Patel 430 5 0.87 0.46 0.76 0.47 0.45 0.66 0.82
6. Wang 457 7 0.85 0.85 0.65 0.29 0.63 0.58 0.44
7. Darmanis 466 9 0.68 0.44 0.58 0.55 0.50 0.48 0.44
8. Camp (B) 553 5 0.86 0.56 0.65 0.59 0.34 0.53 0.48
9. Usoskin 622 4 0.82 0.80 0.66 0.38 0.82 0.39 0.23
10. Kolodziejczyk 704 3 0.87 0.44 0.45 0.46 0.43 0.43 0.48
11. Camp (L) 777 7 0.74 0.66 0.71 0.49 0.61 0.61 0.53
12. Xin 1,600 8 0.95 0.14 0.42 0.16 0.57 0.32 0.44
13. Baron (M) 1,886 13 0.88 0.26 0.49 0.39 0.47 0.39 0.29
14. Muraro 2,126 10 0.91 0.38 0.57 0.32 0.22 0.46 0.34
15. Segerstolpe 2,209 14 0.92 0.29 0.44 0.40 0.37 0.31 0.29
16. Klein 2,717 4 0.98 0.45 0.54 0.61 0.68 0.62 0.29
17. Romanov 2,881 7 0.75 0.22 0.39 0.23 0.32 0.30 0.30
18. Zeisel 3,005 9 0.80 0.33 0.51 0.42 0.37 0.32 0.36
19. Lake 3,042 16 0.60 0.39 0.48 0.31 0.47 0.43 0.38
20. Puram 5,902 10 0.65 0.11 0.32 0.71 0.68 0.24 0.44
21. Montoro 7,193 7 0.81 0.11 0.24 0.13 0.30 0.20 0.45
22. Baron (H) 8,569 14 0.93 0.14 0.58 0.34 0.73 0.48 0.41
23. Chen 12,089 46 0.78 0.16 0.63 0.60 0.36 0.63 0.33
24. Sanderson 12,648 11 0.82 0.03 0.08 0.06 0.15 0.06 0.11
25. Slyper 13,316 8 0.78 0.07 0.25 0.00 0.63 0.26 0.40
26. Campbell 21,086 21 0.64 0.07 0.37 0.00 0.23 0.23 0.16
27. Zilionis 34,558 9 0.84 0.11 0.36 0.02 0.53 0.38 0.48
28. Macosko 44,808 12 0.73 0.07 0.22 0.41 0.17 0.23 0.25
29. Hrvatin 48,266 8 0.90 0.26 0.44 NA NA 0.56 0.85
30. Tabula Muris 54,439 40 0.71 0.30 0.54 NA NA 0.50 0.43
31. Karagiannis 72,914 12 0.54 0.26 0.42 NA NA 0.35 0.39
32. Orozco 100,055 11 0.77 NA NA NA NA 0.23 0.43
33. Darrah 162,490 14 0.84 NA NA NA NA 0.24 0.14
34. Kozareva 611,034 18 0.98 NA NA NA NA 0.15 NA

Mean ARI 0.81 0.36 0.47 0.39 0.50 0.41 0.43
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Table 4.3: Performance of scDHA, SC3, SEURAT, SINCERA, CIDR, SCANPY,
and k-means on 34 single-cell datasets measured by normalized mutual information
(NMI). Cells with NA values indicate that the method was not able to analyze the
dataset (crashed or out-of-memory). Cells highlighted in green have the highest NMI
values. scDHA outperforms other methods by having the highest average NMI value.
In addition, scDHA has the highest NMI values in 31 out of 34 datasets.

Dataset Size Class scDHA SC3 SEURAT SINCERA CIDR SCANPY k-means

1. Yan 90 6 0.89 0.80 0.55 0.82 0.84 0.87 0.86
2. Goolam 124 5 0.82 0.80 0.61 0.61 0.78 0.71 0.63
3. Deng 268 6 0.89 0.73 0.53 0.73 0.74 0.70 0.78
4. Pollen 301 11 0.96 0.95 0.80 0.93 0.94 0.91 0.94
5. Patel 430 5 0.84 0.67 0.76 0.67 0.57 0.72 0.83
6. Wang 457 7 0.83 0.81 0.71 0.43 0.71 0.71 0.57
7. Darmanis 466 9 0.75 0.67 0.64 0.66 0.64 0.69 0.62
8. Camp (B) 553 5 0.82 0.68 0.70 0.62 0.49 0.69 0.55
9. Usoskin 622 4 0.81 0.79 0.74 0.54 0.80 0.65 0.31
10. Kolodziejczyk 704 3 0.90 0.68 0.68 0.54 0.57 0.67 0.51
11. Camp (L) 777 7 0.85 0.81 0.85 0.69 0.79 0.82 0.72
12. Xin 1,600 8 0.87 0.39 0.60 0.42 0.55 0.61 0.60
13. Baron (M) 1,886 13 0.85 0.65 0.75 0.61 0.51 0.74 0.59
14. Muraro 2,126 10 0.88 0.69 0.77 0.51 0.43 0.74 0.53
15. Segerstolpe 2,209 14 0.90 0.65 0.75 0.62 0.45 0.69 0.53
16. Klein 2,717 4 0.97 0.69 0.71 0.67 0.66 0.76 0.40
17. Romanov 2,881 7 0.69 0.43 0.60 0.31 0.34 0.58 0.35
18. Zeisel 3,005 9 0.78 0.62 0.67 0.47 0.47 0.63 0.55
19. Lake 3,042 16 0.67 0.68 0.73 0.47 0.54 0.73 0.62
20. Puram 5,902 10 0.79 0.45 0.66 0.68 0.63 0.62 0.63
21. Montoro 7,193 7 0.74 0.30 0.50 0.24 0.46 0.47 0.56
22. Baron (H) 8,569 14 0.88 0.50 0.80 0.46 0.72 0.77 0.63
23. Chen 12,089 46 0.77 0.53 0.79 0.53 0.42 0.77 0.63
24. Sanderson 12,648 11 0.71 0.21 0.43 0.29 0.12 0.40 0.40
25. Slyper 13,316 8 0.73 0.36 0.60 0.16 0.70 0.59 0.62
26. Campbell 21,086 21 0.68 0.49 0.74 0.15 0.38 0.69 0.48
27. Zilionis 34,558 9 0.83 0.41 0.70 0.08 0.58 0.66 0.62
28. Macosko 44,808 12 0.59 0.31 0.56 0.19 0.33 0.56 0.40
29. Hrvatin 48,266 8 0.92 0.59 0.74 NA NA 0.77 0.88
30. Tabula Muris 54,439 40 0.80 0.65 0.77 NA NA 0.77 0.68
31. Karagiannis 72,914 12 0.66 0.49 0.73 NA NA 0.66 0.65
32. Orozco 100,055 11 0.76 NA NA NA NA 0.60 0.70
33. Darrah 162,490 14 0.78 NA NA NA NA 0.61 0.34
34. Kozareva 611,034 18 0.92 NA NA NA NA 0.58 NA

Mean NMI 0.81 0.60 0.68 0.50 0.58 0.68 0.60
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Table 4.4: Performance of scDHA, SC3, SEURAT, SINCERA, CIDR, SCANPY,
and k-means on 34 single-cell datasets measured by Jaccard Index (JI). Cells with
NA values indicate that the method was not able to analyze the dataset (crashed
or out-of-memory). Cells highlighted in green have the highest JI values. scDHA
outperforms other methods by having the highest average JI value. scDHA also has
the highest JI values in 31 out of 34 datasets.

Dataset Size Class scDHA SC3 SEURAT SINCERA CIDR SCANPY k-means

1. Yan 90 6 0.80 0.57 0.38 0.64 0.73 0.77 0.73
2. Goolam 124 5 0.82 0.54 0.46 0.28 0.65 0.37 0.45
3. Deng 268 6 0.86 0.40 0.33 0.65 0.46 0.28 0.55
4. Pollen 301 11 0.87 0.93 0.50 0.76 0.83 0.66 0.82
5. Patel 430 5 0.81 0.35 0.67 0.36 0.38 0.55 0.75
6. Wang 457 7 0.81 0.81 0.58 0.31 0.56 0.50 0.39
7. Darmanis 466 9 0.59 0.34 0.48 0.46 0.42 0.37 0.35
8. Camp (B) 553 5 0.82 0.48 0.57 0.55 0.30 0.44 0.44
9. Usoskin 622 4 0.76 0.74 0.58 0.35 0.78 0.31 0.29
10. Kolodziejczyk 704 3 0.83 0.37 0.38 0.44 0.40 0.37 0.50
11. Camp (L) 777 7 0.64 0.54 0.59 0.40 0.49 0.48 0.44
12. Xin 1,600 8 0.94 0.13 0.39 0.15 0.58 0.29 0.41
13. Baron (M) 1,886 13 0.85 0.20 0.41 0.34 0.42 0.32 0.25
14. Muraro 2,126 10 0.87 0.29 0.46 0.32 0.23 0.36 0.30
15. Segerstolpe 2,209 14 0.88 0.21 0.34 0.35 0.35 0.22 0.24
16. Klein 2,717 4 0.97 0.36 0.46 0.58 0.61 0.54 0.33
17. Romanov 2,881 7 0.69 0.17 0.31 0.29 0.31 0.23 0.28
18. Zeisel 3,005 9 0.73 0.24 0.41 0.41 0.37 0.23 0.30
19. Lake 3,042 16 0.52 0.28 0.37 0.27 0.39 0.32 0.29
20. Puram 5,902 10 0.58 0.08 0.25 0.66 0.65 0.18 0.36
21. Montoro 7,193 7 0.80 0.11 0.23 0.13 0.29 0.19 0.43
22. Baron (H) 8,569 14 0.89 0.10 0.46 0.29 0.65 0.37 0.32
23. Chen 12,089 46 0.68 0.11 0.51 0.49 0.29 0.50 0.23
24. Sanderson 12,648 11 0.89 0.07 0.13 0.11 0.50 0.10 0.18
25. Slyper 13,316 8 0.77 0.07 0.23 0.02 0.62 0.24 0.39
26. Campbell 21,086 21 0.62 0.06 0.30 0.17 0.35 0.17 0.16
27. Zilionis 34,558 9 0.79 0.08 0.27 0.04 0.50 0.29 0.41
28. Macosko 44,808 12 0.76 0.08 0.22 0.50 0.24 0.22 0.28
29. Hrvatin 48,266 8 0.85 0.19 0.34 NA NA 0.44 0.79
30. Tabula Muris 54,439 40 0.59 0.20 0.40 NA NA 0.36 0.31
31. Karagiannis 72,914 12 0.51 0.21 0.33 NA NA 0.29 0.33
32. Orozco 100,055 11 0.75 NA NA NA NA 0.20 0.40
33. Darrah 162,490 14 0.79 NA NA NA NA 0.18 0.19
34. Kozareva 611,034 18 0.99 NA NA NA NA 0.18 NA

Mean Jaccard Index 0.77 0.30 0.40 0.37 0.48 0.34 0.39
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SMARTer, Smart-Seq1/2, CEL-seq2, STRT-Seq) and 15 flow-cell-based datasets (in-

Drop, Drop-seq, 10X Genomics). There are four platforms that have more than

five datasets per platform: Smart-Seq1/2, SMARTer, inDrop, and 10X Genomics.

We compare scDHA with other methods for the six protocol groups: plate-based (19

datasets), flow-cell-based (15 datasets), Smart-Seq1/2 (six datasets), SMARTer (eight

datasets), inDrop (five datasets), and 10X Genomics (six datasets). Figure 4.4 shows

the performance of the clustering methods across the 6 platform groups. scDHA is

the only method that performs consistently well across all six platform groups. The

average ARI values of scDHA are close to 0.8 in all 6 groups. In contrast, the ARI

values of other methods greatly differ across the platform groups. The average ARI

of all methods drop when analyzing 10X Genomics data. This is partially due to

the high dropout rate of 10X Genomics (the average dropout rates of Smart-Seq1/2,

SMARTer, inDrop, and 10X Genomics datasets are 72.47, 76.61, 87.55, 91.50, respec-

tively).
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Figure 4.4: Clustering performance of scDHA, SC3, SEURAT, SINCERA, CIDR,
SCANPY, and k-means across six data platforms. Data are presented as mean values
+/- variance.

Figure 4.5 and Table 4.5 shows the running time of scDHA and other six clustering
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methods on 34 scRNA-seq datasets. scDHA and SCANPY are the fastest among the

seven methods. For the Macosko dataset with 44 thousand cells, scDHA finishes

the analysis in less than five minutes. On the contrary, it takes CIDR more than

two days (3,312 minutes) to finish the analysis of this dataset. In summary, scDHA

outperforms other clustering methods in terms of both accuracy and scalability.
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Figure 4.5: Running time of the scDHA, SC3, SEURAT, SINCERA, CIDR, SCANPY,
and k-means on 34 scRNA-seq datasets. scDHA and SCANPY are the fastest among
the seven methods.

Finally, we evaluate the consistency of scDHA with changing parameters. In the

default setting of the denoising autoencoder, the bottleneck layer is set to a fixed

size of 50 nodes. We test the model with different numbers of nodes and found that

varying this number does not have a significant impact on the performance of the

software. As shown in Figure 4.6, the average ARI value of the clustering results is

consistently at 0.8 when we vary the number of nodes from 30 to 70.

Based on the computed weights of denoising module, we choose 5,000 genes with

the highest weight variances (also the default setting). Figure 4.7a shows the nor-
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Table 4.5: Running time of scDHA, SC3, SEURAT, SINCERA, CIDR, SCANPY,
and k-means on 34 single-cell datasets. Overall, scDHA is the fastest and was able
to analyze 611,034 cells within 24 minutes.

Dataset Size scDHA SC3 SEURAT SINCERA CIDR SCANPY k-means

Yan 90 1.24 0.49 1.08 0.03 0.03 0.08 0.03
Goolam 124 1.52 0.46 0.92 0.05 0.04 0.03 0.13
Deng 268 1.51 0.50 0.94 0.05 0.05 0.03 0.37
Pollen 301 1.67 0.75 1.68 0.06 0.06 0.03 0.52
Patel 430 1.24 1.09 1.33 0.02 0.03 0.01 0.19
Wang 457 1.56 0.91 2.18 0.09 0.08 0.03 0.86
Darmanis 466 1.67 0.86 1.32 0.09 0.09 0.04 0.73
Camp (B) 553 1.57 1.10 2.04 0.11 0.08 0.03 0.80
Usoskin 622 1.67 1.44 1.97 0.17 0.17 0.03 1.09
Kolodziejczyk 704 1.89 1.71 2.59 0.29 0.23 0.05 1.79
Camp (L) 777 1.91 1.94 1.90 0.17 0.17 0.03 0.88
Xin 1,600 2.42 12.69 3.43 1.43 0.65 0.08 3.58
Baron (M) 1,886 2.33 15.01 1.43 0.71 0.54 0.04 1.20
Muraro 2,126 2.53 4.27 1.44 1.20 0.77 0.06 1.44
Segerstolpe 2,209 2.54 4.62 3.02 1.77 1.15 0.07 4.23
Klein 2,717 2.54 10.34 4.56 2.26 1.85 0.10 4.28
Romanov 2,881 2.56 8.78 3.08 2.57 2.09 0.07 3.05
Zeisel 3,005 2.50 9.00 3.04 2.51 1.96 0.08 1.90
Lake 3,042 2.53 10.44 4.94 3.11 2.85 0.10 5.78
Puram 5,902 2.72 66.35 3.69 9.39 10.16 0.18 3.62
Montoro 7,193 2.54 59.85 5.42 29.26 18.99 0.14 15.01
Baron (H) 8,569 2.81 55.79 3.36 28.93 30.73 0.37 6.49
Chen 12,089 3.00 67.84 8.51 53.33 73.57 0.24 22.98
Sanderson 12,648 2.57 59.44 3.96 33.39 74.31 0.31 7.20
Slyper 13,316 2.92 53.89 3.91 50.44 96.38 0.90 17.50
Campbell 21,086 3.60 77.56 11.19 164.04 372.83 0.56 34.05
Zilionis 34,558 4.68 87.73 29.85 764.05 2146.26 1.24 61.36
Macosko 44,808 4.49 96.58 26.40 614.65 3312.65 1.52 86.58
Hrvatin 48,266 4.81 86.76 19.11 NA NA 1.39 40.00
Tabula Muris 54,439 11.52 89.16 19.23 NA NA 2.21 66.90
Karagiannis 72,914 12.58 60.29 41.47 NA NA 1.97 97.86
Orozco 100,055 11.80 NA NA NA NA 12.06 189.99
Darrah 162,490 14.63 NA NA NA NA 14.70 264.57
Kozareva 611,034 23.90 NA NA NA NA 35.45 NA
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Figure 4.6: Clustering performance of scDHA on 34 single-cell datasets with varying
size of bottleneck layer in the first module. Data are presented as mean values +/-
variance.

malized weight variances in which each line represents a dataset. The figure shows

that most lines are flattened at 5,000 genes. Another important note is that chang-

ing this threshold does not have a significant impact on the overall performance of

scDHA. Figure 4.7b shows the clustering performance of scDHA with varying number

of genes. The average ARI is consistently close to 0.8 when we change the number of

genes from 3,000 to 10,000.
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Figure 4.7: Effect of gene filtering cutoff on scDHA performance. (a) Normalized
weight variance of genes. (b) Performance of scDHA on 34 single-cell datasets with
varying number of selected genes. Data are presented as mean values +/- variance.
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4.3.2 Dimension reduction and visualization

Here we demonstrate that scDHA is more efficient than t-SNE, UMAP, and SCANPY,

as well as the classical principal component analysis (PCA) in visualizing single-cell

data. We test the five techniques on the same 34 single-cell datasets described above.

Again, cell type information is not given as input to any algorithm.

The top row of Figure 4.8a shows the color-coded representations of the Kolodziejczyk

dataset, which consists of three mouse embryo stem cells: 2i, a2i, and lif. The classi-

cal PCA simply rotates the orthogonal coordinates to place dissimilar data points far

apart in the two-dimensional (2D) space. In contrast, t-SNE focuses on representing

similar cells together in order to preserve the local structure. In this analysis, t-SNE

splits each of the two classes 2i and a2i into two smaller groups, and lif class into

three groups. The transcriptome landscape represented by UMAP is similar to that

of t-SNE, in which UMAP also splits cells of the same types into smaller groups.

According to the authors of this dataset [126], embryonic stem cells were cultured in

three different conditions: lif (serum media that has leukemia inhibitory factor), 2i

(basal media that has GSK3β and Mek1/2 inhibitor), and a2i (alternative 2i that has

GSK3β and Src inhibitor). The lif cells were measured in two batches and both t-

SNE and UMAP split this cell type according to batches. Similarly, the a2i cells were

measured by two batches and the cells were separated according to batches. The 2i

cells were measured by four batches (chip1 - 82 cells, chip2 - 59 cells, chip3 - 72 cells,

and chip4 - 82 cells). Both t-SNE and UMAP split the cells into two groups: chip2,

chip3 and chip4 were grouped together and were separated from chip1. SCANPY

was able to mitigate batch effects in the lif cells but still split 2i and a2i cells. In

contrast, scDHA provides a clear representation of the data, in which cells of the

same type are grouped together and cells of different types are well-separated.

The lower row of Figure 4.8a shows the visualization of the Sergerstolpe dataset
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(human pancreas). The landscapes of SCANPY, UMAP and t-SNE are better than

that of PCA. In these representations, the cell types are separable. However, the

cells are overcrowded and many cells from different classes overlap. Also, the alpha,

beta and gamma cells are split into smaller groups. According to the authors of this

dataset [131], the data were collected from different donors, which is potentially the

source of heterogeneity. For this dataset, scDHA again better represents the data by

clearly showing the transcriptome landscape with separable cell types.
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Figure 4.8: Transcriptome landscape visualization of Kolodziejczyk and Sergerstolpe
datasets using scDHA, PCA, t-SNE, and UMAP. (a) Color-coded representation of
the Kolodziejczyk and Segerstolpe datasets using scDHA, PCA, t-SNE, UMAP, and
SCANPY (from left to right). For each representation, we report the silhouette index,
which measures the cohesion among cells of the same type, as well as the separation
between different cell types. (b) Average silhouette values (bar plot) and their vari-
ance (vertical lines). scDHA significantly outperforms other dimension reduction
methods by having the highest silhouette values (p = 1.7 × 10−6 using one-sided
Wilcoxon test).

To quantify the performance of each method, we calculate the silhouette index

(SI) [149] of each representation using true cell labels. This metric measures the

cohesion among the cells of the same type and the separation among different cell

types. For both datasets shown in Figure 4.8a, the SI values of scDHA are much higher

than those obtained for PCA, t-SNE, UMAP, and SCANPY. The average SI values
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obtained across the 34 datasets are shown in Figure 4.8b. Overall, scDHA consistently

and significantly outperforms other methods (p = 1.7×10−6). The visualization, and

SI values of all datasets are shown in Figures 4.9–4.17 and Table 4.6.

We also compare the methods across different data platforms: plate-based, flow-

cell-based, Smart-Seq1/2, SMARTer, inDrop, and 10X Genomics. Figure 4.18 shows

the performance of the visualization methods. The silhouette values of all methods

change across the platform groups. However, scDHA consistently outperforms other

methods in each platform. Similar to clustering, the performance of all methods

dropped when analyzing 10x Genomics.

4.3.3 Cell classification

We assess scDHA’s classification capability by comparing it with four methods that

are dominant in machine learning: XGBoost [81], Random Forest (RF) [82], Deep

Learning (DL) [83], and Gradient Boosting Machine (GBM) [84].

We test these methods using five datasets: Baron (8,569 cells), Segerstolpe (2,209

cells), Muraro (2,126 cells), Xin (1,600 cells), and Wang (457 cells). All five datasets

are related to human pancreas and thus have similar cell types. In each analysis

scenario, we use one dataset as training and then classify the cells in the remaining

four datasets. For example, we first train the models on Baron and then test them

on Segerstolpe, Muraro, Xin, and Wang. Next, we train the models on Segerstolpe

and test on the rest, etc. The accuracy of each method is shown in Figure 4.19 and

Table 4.7.

Overall, scDHA is accurate across all 20 combinations with accuracy ranging from

0.88 to 1. scDHA outperforms other methods by having the highest accuracy. The

average accuracy of scDHA is 0.96, compared to 0.77, 0.69, 0.43, and 0.72 for XGB,

RF, DL, and GBM, respectively. In addition, scDHA is very consistent, while the
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Table 4.6: Silhouette values calculated for representation using scDHA, PCA, t-SNE,
UMAP, and SCANPY. Cells with NA values indicate that the method was not able
to analyze the dataset (out-of-memory). Cells highlighted in green have the highest
silhouette values. scDHA has the highest average silhouette value. It outperforms
other methods in 25 out of 34 datasets.

Dataset Size scDHA PCA t-SNE UMAP SCANPY

Yan 90 0.52 0.54 0.45 0.47 0.73
Goolam 124 0.37 0.31 0.28 0.27 -0.02
Deng 268 0.50 0.60 0.49 0.67 0.45
Pollen 301 0.78 0.30 0.61 0.58 0.65
Patel 430 0.62 0.17 0.52 0.52 0.31
Wang 457 0.28 -0.07 0.13 0.21 0.27
Darmanis 466 0.47 0.01 0.31 0.34 0.25
Camp (B) 553 0.54 0.07 0.36 0.30 0.34
Usoskin 622 0.62 0.07 0.40 0.51 0.45
Kolodziejczyk 704 0.81 0.30 0.43 0.54 0.50
Camp (L) 777 0.67 0.17 0.42 0.50 0.41
Xin 1,600 0.67 0.08 0.25 0.17 0.36
Baron (M) 1,886 0.44 -0.23 0.05 0.10 0.43
Muraro 2,126 0.57 -0.20 0.24 0.46 0.24
Segerstolpe 2,209 0.66 -0.22 0.01 0.24 0.22
Klein 2,717 0.72 0.24 0.48 0.69 0.69
Romanov 2,881 0.37 0.03 0.24 0.34 0.27
Zeisel 3,005 0.67 0.03 0.31 0.55 0.34
Lake 3,042 0.35 -0.11 0.25 0.32 0.29
Puram 5,902 0.27 0.23 0.05 0.28 0.24
Montoro 7,193 0.16 0.24 0.09 0.29 0.22
Baron (H) 8,569 0.61 -0.14 0.20 0.46 0.50
Chen 12,089 0.49 -0.07 0.09 0.35 0.40
Sanderson 12,648 0.09 0.06 0.04 0.16 0.14
Slyper 13,316 0.44 0.22 0.16 0.44 0.45
Campbell 21,086 0.01 -0.31 -0.05 -0.08 0.03
Zilionis 34,558 0.44 0.00 0.22 0.42 0.29
Macosko 44,808 0.27 0.11 0.09 0.36 0.27
Hrvatin 48,266 0.73 0.36 0.26 0.59 0.46
Tabula Muris 54,439 0.11 -0.24 -0.14 -0.07 -0.17
Karagiannis 72,914 0.05 -0.08 0.05 0.17 0.11
Orozco 100,055 0.72 0.69 -0.15 0.02 0.22
Darrah 162,490 0.26 -0.36 -0.15 0.17 0.13
Kozareva 611,034 0.76 NA NA NA 0.50

Mean 0.47 0.08 0.21 0.33 0.32
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Figure 4.9: Representation of the Yan, Gollam, Deng, and Pollen datasets (top to
bottom) using scDHA, PCA, t-SNE, UMAP, and SCANPY (left to right). Different
colors code for different cell types.
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Figure 4.10: Representation of the Patel, Wang, Darmanis, and Camp (Brain)
datasets (top to bottom) using scDHA, PCA, t-SNE, UMAP, and SCANPY (left
to right). Different colors code for different cell types.
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Figure 4.11: Representation of Usoskin, Kolodziejczyk, Camp (Liver), and Xin
datasets (top to bottom) using scDHA, PCA, t-SNE, UMAP, and SCANPY (left
to right). Different colors code for different cell types.
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Figure 4.12: Representation of Baron (mouse), Muraro, Segerstolpe, and Klein
datasets (top to bottom) using scDHA, PCA, t-SNE, UMAP, and SCANPY (left
to right). Different colors code for different cell types.
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Figure 4.13: Representation of Romanov, Zeisel, Lake, and Puram datasets (top to
bottom) using scDHA, PCA, t-SNE, UMAP, and SCANPY (left to right). Different
colors code for different cell types.
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Figure 4.14: Representation of Montoro, Baron (Human), Chen, and Sanderson
datasets (top to bottom) using scDHA, PCA, t-SNE, UMAP, and SCANPY (left
to right). Different colors code for different cell types.
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Figure 4.15: Representation of Slyper, Campbell, Zilionis, and Macosko datasets (top
to bottom) using scDHA, PCA, t-SNE, UMAP, and SCANPY (left to right). Different
colors code for different cell types.
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Figure 4.16: Representation of Hrvatin, Tabula Muris, Karagiannis, and Orozco
datasets (top to bottom) using scDHA, PCA, t-SNE, UMAP, and SCANPY (left
to right). Different colors code for different cell types.
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Table 4.7: Classification performance measuring by accuracy of scDHA, XGBoost,
Random Forest (RF), Deep Learning (DL), and Gradient Boosting Machine (GBM)
approach on single cell evaluation pairs.

Training Dataset Predicting Dataset scDHA XGBoost RF DL GBM

Baron (Human) Segerstolpe 0.93 0.82 0.32 0.60 0.39
Baron (Human) Muraro 0.88 0.86 0.79 0.72 0.74
Baron (Human) Xin 0.99 0.93 0.49 0.03 0.84
Baron (Human) Wang 0.96 0.27 0.28 0.01 0.60
Segerstolpe Baron (Human) 0.94 0.83 0.71 0.21 0.49
Segerstolpe Muraro 0.96 0.81 0.88 0.73 0.74
Segerstolpe Xin 0.99 1 0.97 0.46 0.99
Segerstolpe Wang 0.99 0.98 0.93 0.22 0.97
Xin Baron (Human) 0.99 0.55 0.60 0.77 0.46
Xin Segerstolpe 0.99 0.98 0.91 0.78 0.92
Xin Muraro 0.97 0.70 0.82 0.57 0.42
Xin Wang 1 1 0.58 0.58 0.96
Muraro Baron (Human) 0.93 0.86 0.78 0.16 0.85
Muraro Segerstolpe 0.97 0.93 0.65 0.65 0.72
Muraro Xin 0.99 0.88 0.89 0.06 0.84
Muraro Wang 0.98 0.85 0.64 0.01 0.73
Wang Baron (Human) 0.93 0.14 0.38 0.30 0.38
Wang Segerstolpe 0.92 0.90 0.75 0.44 0.91
Wang Muraro 0.89 0.13 0.55 0.46 0.52
Wang Xin 0.97 1 0.90 0.76 0.96
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Figure 4.17: Representation of Darrah, and Kozareva datasets (top to bottom) using
scDHA, PCA, t-SNE, UMAP, and SCANPY (left to right). Different colors code for
different cell types. For Kozareva dataset, only scDHA and SCANPY can generate
the 2D representation.
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Figure 4.18: Average silhouette values obtained from 2D representations
across six data platforms. Data are presented as mean values +/- variance

performance of existing methods fluctuates from one analysis to another, especially

when the testing dataset is much larger than the training dataset. For example,
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Figure 4.19: Classification accuracy of scDHA, XGBoost, Random Forest (RF),
Deep Learning (DL), Gradient Boosted Machine (GBM) using five human pancre-
atic datasets. In each scenario (row), we use one dataset as training and the rest as
testing, resulting in 20 train-predict pairs. The accuracy values of scDHA are signifi-
cantly higher than those of other methods (p = 2.1× 10−8 using Wilcoxon one-tailed
test).

when the testing set (Baron) is 20 times larger than the training set (Wang), the

accuracy of existing methods is close to 30%, while scDHA achieves an accuracy of

0.93. The one-sided Wilcoxon test also confirms that the accuracy values of scDHA

are significantly higher than the rest (p = 2.1 × 10−8).

4.3.4 Time-trajectory inference

Here we compare the performance of scDHA with state-of-the-art methods for time-

trajectory inference: Monocle [88], TSCAN [89], Slingshot [64], and SCANPY [77].

We test scDHA and these methods using three mouse embryo development datasets:
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Yan, Goolam, and Deng. The true developmental stages of these datasets are only

used a posteriori to assess the performance of the methods.

Figure 4.20a shows the Yan dataset in the first two t-SNE components. The

smoothed lines shown in each panel indicate the time-trajectory of scDHA (left)

and Monocle (right). The trajectory inferred by scDHA accurately follows the true

developmental stages: it starts from zygote, going through 2cell, 4cell, 8cell, 16cell,

and then stops at the blast class. On the contrary, the trajectory of Monocle goes

directly from zygote to 8cell before coming back to 2cell. Figure 4.20b shows the cells

ordered by pseudo-time. The time inferred by scDHA is strongly correlated with the

true developmental stages. On the other hand, Monocle fails to differentiate between

zygote, 2cell, and 4cell. To quantify how well the inferred trajectory explains the

developmental stages, we also calculate the R-squared value. scDHA outperforms

Monocle by having a higher R-squared value (0.93 compared to 0.84).

Figure 4.20c,d show the results of the Goolam dataset. scDHA correctly recon-

structs the time-trajectory whereas Monocle fails to estimate pseudo-time for 8cell,

16cell, and blast cells (colored in gray). Monocle assigns an “infinity” value for these

cell classes. Figure 4.20e,f show the results obtained for the Deng dataset. Similarly,

the time-trajectory inferred by scDHA accurately follows the developmental stages

whereas Monocle cannot estimate the time for half of the cells. The results of TSCAN,

Slingshot, and SCANPY are shown in Figures 4.20 and 4.20. scDHA outperforms all

three methods by having the highest R-squared values in every single analysis.
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Figure 4.20: Pseudo-time inference of three mouse embryo development datasets
(Yan, Goolam, and Deng) using scDHA and Monocle. (a) Visualized time-trajectory
of the Yan dataset in the first two t-SNE dimensions using scDHA (left) and Monocle
(right). (b) Pseudo-temporal ordering of the cells in the Yan dataset. The horizontal
axis shows the inferred time for each cell while the vertical axis shows the true de-
velopmental stages. (c,d) Time-trajectory of the Goolam dataset. Monocle is unable
to estimate the time for most cells in 8-cell, 16-cell, and blast (colored in gray). (e,f)
Time-trajectory of the Deng dataset. Monocle is unable to estimate the pseudo time
for most blast cells.
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Figure 4.21: Pseudo-time inferred by scDHA, Monocle, TSCAN, Slingshot, and
SCANPY for the Yan, Goolam, and Deng datasets. R-squared values shown in each
panel represent the correlation between the true developmental stages and inferred
pseudo-time. Points with gray color indicate cells with infinite pseudo-time.
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Figure 4.22: Visualized trajectory inferred from Yan, Goolam, and Deng dataset
using scDHA, Monocle, TSCAN, Slingshot, and SCANPY. Points with gray color
mean cells with infinity pseudo time from Monocle.
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4.4 Conclusion (scDHA)

The ever-increasing number of cells, technical noise, and high dropout rate pose signif-

icant computational challenges in scRNA-seq analysis. These challenges affect both

analysis accuracy and scalability, and greatly hinder our capability to extract the

wealth of information available in single-cell data. To detach noise from informative

biological signals, we have introduced scDHA, a powerful framework for scRNA-seq

data analysis. We have shown that the framework can be utilized for both upstream

and downstream analyses, including de novo clustering of cells, visualizing the tran-

scriptome landscape, classifying cells, and inferring pseudo-time. We demonstrate

that scDHA outperforms state-of-the-art techniques in each research sub-field. Al-

though we focus on single-cell as an example, scDHA is flexible enough to be adopted

in a range of research areas, from cancer to obesity to aging to any other area that

employs high-throughput data.

In contrast to existing autoencoders, such as scVI [150] that was developed for

data imputation, scDHA provides a complete analysis pipeline from feature selection

(first module) to dimension reduction (second module) and downstream analyses (vi-

sualization, clustering, classification, and pseudo-time inference). The scVI package

itself is not capable of clustering, visualization, classification, and pseudo-time in-

ference. Even for the implementation of autoencoder, there are two key differences

between scDHA and scVI. First, scDHA implements a hierarchical autoencoder that

consists of two modules: the first autoencoder to remove noise (denoising), and the

second autoencoder to compress data. The added denoising module (first module)

filters out the noisy features and thus improves the quality of the data. Second, we

modify the standard variational autoencoder (VAE, second module) to generate mul-

tiple realizations of the input. This step makes the VAE more robust. Indeed, our

analysis results show that scDHA and its second module consistently outperform scVI
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when scVI is used in conjunction with downstream analysis methods implemented in

scDHA and other packages (see Supplementary Section 6 and Fig. 25–32).

In summary, scDHA is user-friendly and is expected to be more accurate than ex-

isting autoencoders. Users can apply scDHA to perform downstream analyses without

installing additional packages for the four analysis applications (clustering, visualiza-

tion, classification, and pseudo-time trajectory inference). At the same time, the

hierarchical autoencoder and the modified VAE (second module of scDHA) are ex-

pected to be more efficient than other autoencoders in single-cell data analysis.
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Chapter 5

scISR: A Novel Method for

Single-cell Data Imputation using

Subspace Regression

This chapter is based on the following publication: Duc Tran, Bang Tran, Hung

Nguyen, and Tin Nguyen. A novel method for single-cell data imputation using

subspace regression. Scientific Reports, 2022. DOI: 10.1038/s41598-022-06500-4

Recent advances in biochemistry and single-cell RNA sequencing (scRNA-seq)

have allowed us to monitor the biological systems at the single-cell resolution. How-

ever, the low capture of mRNA material within individual cells often leads to in-

accurate quantification of genetic material. Consequently, a significant amount of

expression values are reported as missing, which are often referred to as dropouts.

To overcome this challenge, we develop a novel imputation method, named single-cell

Imputation via Subspace Regression (scISR), that can reliably recover the dropout

values of scRNA-seq data. The scISR method first uses a hypothesis-testing tech-

nique to identify zero-valued entries that are most likely affected by dropout events
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and then estimates the dropout values using a subspace regression model. Our com-

prehensive evaluation using 25 publicly available scRNA-seq datasets and various

simulation scenarios against five state-of-the-art methods demonstrates that scISR is

better than other imputation methods in recovering scRNA-seq expression profiles via

imputation. scISR consistently improves the quality of cluster analysis regardless of

dropout rates, normalization techniques, and quantification schemes. The source code

of scISR can be found on CRAN at https://cran.r-project.org/package=scISR.

5.1 Introduction

Bulk RNA sequencing (RNA-seq) has been the primary tool to study biological sys-

tems. Despite its popularity, bulk sequencing is unable to measure the heterogeneity

inside complex tissues and cell-to-cell variability. Recently, advances in microfluidics

and sequencing technologies have allowed us to measure the expression profiles of

individual cells [58, 59]. By allowing us to monitor the biological processes at the

single-cell resolution, single-cell technologies (scRNA-seq) have enabled new research

directions in genomics and transcriptomics research. However, scRNA-seq data also

comes with additional challenges [73]. One of the challenges is that sequencing mRNA

within individual cells requires artificial amplification of DNA materials, leading to

disproportionate distortions of relative transcript abundance and gene expression.

Another outstanding challenge is the “dropout” phenomenon where a gene is highly

expressed in one cell but does not express at all in another cell [101]. These dropout

events usually occur due to the limitation of sequencing technologies when only a

small amount of starting mRNA in individual cells can be captured, leading to low

sequencing depth and failed amplification [102, 103]. Since downstream analyses of

scRNA-seq heavily rely on the accuracy of expression measurement, it is crucial to

impute the zero expression values introduced by the dropout phenomenon and se-

https://cran.r-project.org/package=scISR
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quencing errors.

There have been a number of computational methods developed to impute single-

cell data. These imputation methods can be classified into two categories: i) model-

based methods and ii) model-free methods. Methods in the first category model the

data using a mixture of two different distributions: one distribution represents the

actual gene expression while the other accounts for the dropout events. Next, they

estimate the model parameters and true expression values using the Expectation-

Maximization (EM) algorithm [151]. Methods in this category include scImpute [105],

SAVER [106], and BISCUIT [152]. scImpute uses a Gaussian distribution to model

the actual expression and a Gamma distribution to model the dropout events. It es-

timates the model parameters and dropout values using the EM algorithm. Similarly,

SAVER [106] models read counts as a mixture of Poisson-Gamma distribution and

then uses a Bayesian approach to estimate the true expression values. BISCUIT [152]

uses the Dirichlet process mixture model [153] to perform data normalization, cells

clustering, and dropouts imputation by simultaneously inferring clustering param-

eters, estimating technical variations (e.g., library size), and learning co-expression

structures of each cluster.

Methods in the second category typically assume that expression values from

the same dataset follow a certain data structure (manifold), whereas dropout events

move the values away from the underlying structure. These methods use regression

techniques to infer missing values from genes or cells that have similar expression pat-

terns. Methods in this category include MAGIC [104], DrImpute [107], scScope [154],

DCA [155], and DeepImpute [156]. MAGIC imputes zero values using heat diffu-

sion [157]. The method first computes the affinity matrix between cells using a

Gaussian kernel and then constructs the Markov transition matrix by normalizing

and smoothing the computed affinity matrix. Finally, the method multiplies the
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exponentiated Markov matrix with the original data to obtain the imputed data.

DrImpute [107] uses a cluster ensemble strategy and consensus clustering to separate

data into groups of similar cells and then imputes missing data by averaging expres-

sion values of similar cells. The other three methods (scScope, DeepImpute, and

DCA) rely on deep neural networks to denoise the data and to impute the missing

values. scScope uses a recurrent network layer to iteratively impute the zero-valued

entries while DeepImpute randomly splits genes into subsets and builds sub-neural

networks to estimate the missing values. DCA, on the other hand, extends the stan-

dard autoencoder to account for sparse count data by incorporating a noise model

into their loss function.

The quality of data imputed by methods in the first category (statistical meth-

ods) is determined by the validity of the assumption of the distribution models. In

addition, these methods usually require excessive computational power, which makes

them slow in processing big datasets. Therefore, these statistical methods often rely

on gene filtering steps to ease the computational burden. For methods in the second

category (regression approaches), their major drawbacks include i) relying on many

parameters to fine-tune their models, which can lead to overfitting, and ii) tending

to over-smoothen and remove the cell-to-cell stochasticity that represents meaningful

biological variations in gene expression. More importantly, in addition to the limita-

tions mentioned above, methods in both categories attempt to alter the expression

of all zero-valued entries, including those not affected by dropout events. This may

introduce false signals and further weaken their reliability.

5.2 Methodology

Here we propose a new approach, scISR, that can reliably impute missing values from

single-cell data. Our method consists of three modules. The first module performs
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hypothesis testing to identify the values that are likely to be impacted by the dropout

events. By not altering the true zero values, we can avoid false imputations. The

second module utilizes a data perturbation technique [44] to automatically group

genes with similar patterns into smaller groups. The third module imputes missing

values affected by dropout events (identified in the first module) by learning the gene

patterns in each gene group (identified in the second module). This strategy ensures

that the true missing values are imputed by using only highly relevant information.

In an extensive analysis using simulation and 25 real scRNA-seq datasets, we demon-

strate that scISR improves the quality of clustering analysis of single-cell data while

preserving the transcriptome landscape.

The schematic pipeline of scISR is shown in Figure 5.1. Our method consists of

three modules. The first module performs hypothesis testing to identify the values

that are likely to be impacted by the dropout events. By not altering the true zero

values, we can avoid false imputations. The second module utilizes a data perturba-

tion technique [44] to automatically group genes with similar patterns into smaller

groups. The third module imputes missing values affected by dropout events (identi-

fied in the first module) by learning the gene patterns in each gene group (identified in

the second module). This strategy ensures that the true missing values are imputed

by using only highly relevant information. The details of each module are provided

in the the following subsections.

5.2.1 Hyper-geometric testing (Module 1)

The first module aims at determining whether each zero value observed is the result

of dropouts. Our hypothesis is that dropout events happen randomly for a gene

affected by this phenomenon. By treating each cell as an instance of the population,

we also assume that the ratio of zero values (dropout probability) reported for each
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Figure 5.1: Single-cell Imputation using Subspace Regression (scISR). (A) Input data
visualized in cell/sample space. (B) Hypergeometric test to determine whether each
zero value is induced by dropout. Based on the computed p-values for each entry, we
separate the original data into two sets of data: training data and imputable data. (C)
Training data in which none of the values is induced by dropout events. (D) Imputable
data in which each gene has at least one entry that is likely to be induced by dropout
events. (E) Gene subspaces determined by perturbation clustering. We perturb the
training data to discover the natural structure of the genes. Based on the pair-wise
similarity between genes, we separate genes into groups that share similar patterns.
(F) Subspace regression. We assign each gene in the imputable data to the closest
subspace and then perform a generalized linear regression on the subspace to estimate
the zero-valued entries that are impacted by dropouts. (G) Output expression matrix
obtained by concatenating the training data and imputed data.
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cell differ from each other. Using dropout probabilities from both genes and cells, we

can calculate how likely each zero values is affected by dropout. If zero values caused

by dropout are over-represented in a gene, we conclude that this gene is affected by

dropout events.

Given a zero-valued entry, let us denote p1 and p2 as the probability of observing a

zero value in the corresponding gene and cell, respectively. It follows that the chances

of having zero values in a gene and in a cell follow binomial distributions denoted

by X∼ Bin(n, p1) and Y∼ Bin(m, p2), respectively. n is the number of measured

values for a gene, and m is the number of measured values for a cell. Under the null,

we have p = p1 = p2. If X and Y are independent, we have X + Y ∼ Bin(n+m,

p). Therefore, the conditional distribution of X, P (X = x|X + Y = r), is a hyper-

geometric where x is the number of observed zero values in the gene and r is the total

number of observed zero values in the selected pair of gene and cell. The probability

mass function of the hyper-geometric distribution can be written as follows:

P (X = x− 1|X + Y = r − 1) =

(
n− 1

x− 1

)(
m

r − x

)
(
n+m− 1

r − 1

)
(5.1)

Note that X and Y have an overlapping entry for each gene and cell pair. There-

fore, we remove the overlapping entry from the hypergeometic formula by using: i)

n+m− 1 (instead of n+m) as the total number of of observed values in the selected

pair of gene and cell, ii) n−1 (instead of n) as the number of measured values for the

gene, and iii) x− 1 (instead of x) as the number of zero values observed in the gene.

Applying Equation (5.1), we calculate the p-value for every zero-valued. We per-

form two different kinds of tests: an under-representation and over-representation

analysis with a significance threshold set to 0.01 for both analyses. An entry with

a significant p-value in the over-representation analysis is considered untrustworthy
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and should be imputed (imputable). An entry with a significant p-value in the under-

representation analysis is considered trustworthy. An entry that is neither trustworthy

nor untrustworthy should be left alone. These values will not be imputed, nor be used

to impute other values. A gene is trustworthy if all of its entries are trustworthy. A

gene is imputable when at least one of its values is imputable. Based on this hypoth-

esis testing procedure, we obtain a set of genes that can be used for training (training

data), and a set of genes that needed to be imputed (imputable data).

5.2.2 Identifying gene subspaces (Module 2)

It is crucial that the missing values of a gene are inferred using related genes that

share similar expression patterns. Therefore, this module aims at identifying gene

groups of the training data, i.e., gene subspaces that share similar patterns. For this

purpose, we utilize the perturbation clustering [44, 45] that we recently developed.

The method is based on the observation that small changes in quantitative assays will

be inherently presented even when there is no significant difference between genes. If

distinct gene groups do exist, they must be stable with respect to small degrees of data

perturbation. This is indeed the case, as we have demonstrated in our previous work

that the pair-wise connectivity between data points of the same group is preserved

when the data are perturbed.

We will describe this approach using an illustrative example shown in Figure 5.2.

In this simulated dataset, we have three distinct classes of genes in which the expres-

sions of genes in each class are generated using a standard normal distribution. This

distribution for the first class is N (0, 1), for the second class is N (1, 1) to simulate

up-regulated genes, and for the third class is N (−1, 1) to simulate down-regulated

genes.

Assuming that we do not know the number of classes in this dataset, we set k = 2
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(number of clusters) and then partition the genes. The upper panel in Figure 5.2B

shows the connectivity between genes after clustering: green when they belong to

the same cluster, and white otherwise. Note that two of the three true classes are

wrongfully grouped together due to the wrong number of clusters. Now we repeatedly

perturb the molecular measurements (by adding Gaussian noise) and partition the

genes again (still with k = 2). The lower panel in Figure 5.2B shows the average

connectivity between genes when the data is perturbed. The perturbed connectiv-

ity matrix suggests that the larger cluster is not stable. Similarly, the discordant

connectivity in Figure 5.2C states that the partitioning using k = 5 is not correct

either. The perturbed connectivity matrices (Figure 5.2B, C) suggest that there are

three distinct classes of genes. Finally, when we set k = 3, the perturbed and original

connectivity matrices are identical (Figure 5.2D).

The perturbed connectivity matrices suggest that there are three distinct classes

of genes. This demonstrates that for truly distinct gene groups the true connectivity

between genes within each class is recovered when the data is perturbed, no matter

how we set the value of k. This resilience of pair-wise connectivity occurs consistently

regardless of the clustering algorithm being used (e.g., k -means, hierarchical cluster-

ing, or partitioning around medoids), or the distribution of the data. When there

are no truly distinct subgroups, the connectivity is randomly distributed. When the

number of true classes changes, the perturbed connectivity always reflects the true

structure of the data.

To identify the optimal partitioning, we calculate the absolute difference between

the original and the perturbed connectivity matrices and compute the empirical cu-

mulative distribution functions of the entries of the difference matrix (CDF-DM). In

the ideal case of perfectly stable clusters, the original and perturbed connectivity

matrices are identical, yielding a difference matrix of 0s, a CDF-DM that jumps from
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Figure 5.2: The resilience of pair-wise connectivity. (A) The dataset consists of three
classes of genes: the first class has expression values of N (0, 1), the second has ex-
pression values of N (1, 1), and the third class has expression values of N (−1, 1). (B)
The original connectivity matrix (upper panel) and perturbed connectivity matrix
(lower panel) for k = 2. (C) The connectivity matrices for k = 5. (D) The connectiv-
ity matrices for k = 3. The perturbed connectivity matrices clearly reveal the true
structure of the data.

0 to 1 at the origin, and an area under the curve (AUC) of 1 [44, 45]. We choose

the partitioning with the highest AUC and then partition the genes into subgroups

that are strongly connected in those perturbation scenarios. We note that the idea

of determining subspaces can be realized for both genes and cells simultaneously. We

do not focus on such simultaneous clustering in this manuscript, but it is of great

interest.

5.2.3 Subspace regression (Module 3)

In the first module, we divide the genes into two sets: i) a set I in which all of the

genes are likely to be affected by dropouts (imputable set), and ii) a set T that have
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accurate gene expression that does not need to impute (training set). In the second

module, we segregate T into smaller groups of genes (gene subspaces) that share

similar expression patterns. In this third module, we will impute dropout values in

group I using a generalized linear regression model on gene subspaces.

Given a gene in the imputable set g ∈ I, we calculate the Euclidean distance

between the gene to the centroid of each gene subspaces. Based on the calculated

distances, we assign the gene to the closest subspace (with the smallest Euclidean

distance). In order to impute dropout values in g, we train a generalized linear

model using only highly-correlated genes within the assigned subspace in T . The

linear regression process consists of two steps. The first step is to select genes from

the training set that are highly correlated with the gene we need to impute. In the

second step, we train the linear model using these highly correlated genes and then

estimate the missing values [158].

Denoting y ⊂ g as the non-zero part of g, S as the gene subspace in T that g

was assigned to, {si ∈ S} are expression vectors of genes in S; and {xi ⊂ ti} are the

parts of {ti} that correspond with y. We calculate the Pearson correlation between

y and xi and then select the 10 genes {t1, . . . , t10} in T with the highest correlation

coefficients. We train a linear model in which {x1, . . . , x10} are the predictor variables

and y is the outcome variable. In our implementation, we adopt the lm function that

is available in the stats R package. Next, we use the trained linear model to estimate

the missing values in g \ y, using {t1\x1, . . . , t10\x10} as the predictors, where ti\xi

is the part of ti that does not belong to xi. To avoid adding excessive weight to

genes with high expression values, we always rescale the data to an acceptable range

(default is [0,100]) using log transformation (base 2).
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5.3 Validation and Analysis Results

To assess the performance of scISR, we use both real scRNA-seq data and simula-

tion. We compare scISR with five popular methods, MAGIC [104], scImpute [105],

SAVER [106], scScope [154], and scGNN [159]. SAVER and scImpute are statistical

approaches that impute the missing values using mixture models; MAGIC is a math-

ematical approach that relies on Markov transition to estimate the missing values.

scScope uses a recurrent network layer to iteratively perform imputations on zero-

valued entries of input scRNA-seq data. scGNN formulates and aggregates cell–cell

relationships with graph neural networks and models heterogeneous gene expression

patterns using a left-truncated mixture Gaussian model. scGNN uses the cell-cell

relationships to impute the dropouts.

First, we apply the six methods on 25 real scRNA-seq datasets with known cell

types. Table 5.1 shows the details of 25 single-cell datasets that will be used in our

validation. The cell labels are only used a posteriori to assess whether the imputation

enhances the cell segregation, i.e., making the cell types more separable without

drastically altering the transcriptome landscape. Second, we simulate 46 single-cell

expression datasets whose values follow different distributions and dropout rates. We

then apply the six imputation methods, scISR, MAGIC, scImpute, SAVER, scScope,

and scGNN on the masked dataset to recover the missing values. Since we know

exactly the missing entries and values, we can accurately assess the reliability of each

method in terms of both sensitivity and specificity.
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Table 5.1: Description of the 25 single-cell datasets used to assess the performance of
imputation methods. The first three columns describe the name, accession ID, and
tissue, while the following seven columns show the sequencing protocol, cell isolation
technique, quantification scheme, normalized unit, dropout rate, number of cell types,
and number of cells.

Dataset Accession Tissue Sequencing Cell Quant. Norm. Drop. Class Size
ID Protocol Isolation Scheme Unit Rate

1. Fan [160] GSE53386 Mouse Embryo SUPeR-seq Plate Reads FPKM 0.584 6 69
2. Treutlein [161] GSE52583 Mouse Tissues SMARTer Plate Reads FPKM 0.902 5 80
3. Yan [118] GSE36552 Human Embryo Tang Plate Reads RPKM 0.456 6 90
4. Goolam [119] E-MTAB-3321 Mouse Embryo Smart-Seq2 Plate Reads CPM 0.685 5 124
5. Deng [120] GSE45719 Mouse Embryo Smart-Seq Plate Reads RPKM 0.605 6 268
6. Pollen [121] SRP041736 Human Tissues SMARTer Plate Reads TPM 0.671 4 301
7. Darmanis [123] GSE67835 Human Brain SMARTer Plate Reads CPM 0.808 9 466
8. Usoskin [125] GSE59739 Mouse Brain STRT-Seq Plate Reads RPM 0.846 3 622
9. Camp [124] GSE75140 Human Brain SMARTer Plate Reads FPKM 0.801 7 734
10. Klein [132] GSE65525 Mouse Embryo inDrop Droplet UMI RPM 0.658 4 2,717
11. Romanov [133] GSE74672 Human Brain SMARTer Plate UMI - 0.878 7 2,881
12. Segerstolpe [131] E-MTAB-5061 Human Pancreas Smart-Seq2 Plate Reads RPKM 0.823 15 3,514
13. Manno [162] GSE76381 Human Brain STRT-Seq Plate UMI - 0.86 56 4,029
14. Marques [163] GSE75330 Mouse Brain Fluidigm C1 Plate Reads FPKM 0.891 13 5,053
15. Baron [129] GSE84133 Human Pancreas inDrop Droplet UMI TPM 0.906 14 8,569
16. Sanderson [138] SCP916 Mouse Tissues 10X Genomics Droplet Reads - 0.764 11 12,648
17. Slyper SCP345 Human Blood 10X Genomics Droplet UMI - 0.956 8 13,316
18. Zilionis (Mouse) [140] GSE127465 Mouse Lung inDrop Droplet UMI RPM 0.976 7 15,939
19. Tasic [164] GSE115746 Mouse Visual Cortex SMART-Seq Plate Reads CPM 0.798 6 23,178
20. Zyl (Human) [165] SCP780 Human Eye inDrop Droplet UMI - 0.913 19 24,023
21. Zilionis (Human) [140] GSE127465 Human Lung inDrop Droplet UMI RPM 0.982 9 34,558
22. Wei [166] SCP469 Human Synovium 10x Genomics Droplet UMI TPM 0.915 9 41,565
23. Cao [167] SCP454 Sea Squirt Embryos 10x Genomics Droplet UMI - 0.821 7 90,579
24. Orozco [145] GSE135133 Human Eye 10X Genomics Droplet UMI RPKM 0.964 12 100,055
25. Darrah [146] GSE139598 Human Blood Drop-seq Droplet UMI - 0.947 14 162,490

1 UMI: Unique Molecular Identifier; CPM: Counts Per Million; RPM: Reads Per Million; RPKM:
Reads Per Kilobase of transcript, per Million mapped reads; FPKM: Fragments Per Kilobase of
transcript, per Million mapped reads.
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5.3.1 Cluster analysis of 25 scRNA-seq datasets using k-

means

We use the known cell types of the 25 scRNA-seq datasets to assess whether the

imputation helps separate cells of different types in cluster analysis. We compare

scISR against MAGIC, scImpute, SAVER, scScope, and scGNN using three assess-

ment metrics: Adjusted Rand Index (ARI) [148], Jaccard Index (JI) [168], and Purity

Index (PI) [169].

Given a dataset (raw data), we use k-means to cluster the cells using the true

number of cell types k as the number of clusters. We calculate the Adjusted Rand

Index (ARI) [148] to compare k-means partitioning against the known cell labels.

Rand Index (RI) measures the agreement between a given clustering and the ground

truth. The ARI is the corrected-for-chance version of the RI. The ARI takes values

from -1 to 1, with the ARI expected to be 1 for a perfect agreement, and 0 for random

partitionings. Next, we apply each of the six imputation methods to the raw data

to obtain the imputed data. Again, we use k-means to partition the imputed data

and calculate the ARI values using the true cell labels. We expect that by imputing

the raw data, we obtain better data in which the cells of different types are more

separable. Therefore, we assess the performance of each method by comparing the

ARI of the imputed data against the ARI obtained from the raw data. We repeat

the whole procedure for all 25 datasets to assess how well each imputation method

performs.

Table 5.2 and Figure 5.3 show the ARI values obtained for the 25 datasets. For

each row, a cell of a method is highlighted in green if the imputed ARI is higher than

the raw ARI. The maximum memory permitted for each analysis was set to 100 GB

of RAM. scISR and MAGIC are the only methods able to analyze all datasets. scIm-

pute runs out of memory when analyzing datasets with 23,178 cells (Tasic) or larger.
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SAVER crashes when analyzing the Tasic dataset, and it runs out of memory when

analyzing datasets with 90,579 cells (Cao) or larger. scScope runs out of memory

when analyze the biggest dataset (Darrah). scGNN ran out of memory when ana-

lyzing the datasets Cao, Orozco, and Darrah. For 25 real datasets, scISR is able to

improve the ARI values 21 out of 25. The average ARI value of scISR is 0.571, which

is the highest compared to those of raw data and data imputed by MAGIC, scImpute,

SAVER, scScope, and scGNN (0.504, 0.461, 0.286, 0.423, 0.165, and 0.279, respec-

tively). Overall, scISR increases the ARI values by 13.3% across all datasets. For the

two datasets Zyl (Human) (24,023 cells) and Zilionis (Human) (34,558 cells), scISR

increases the ARI values significantly (11.3% and 14.5%, respectively). For Orozco

and Darrah datasets with more than 100,000 cells, scISR increases the ARI values

by 13.6% and 77.2%, respectively. A one-sided Wilcoxon test also confirms that the

ARI values of scISR are significantly higher than those of raw data (p = 3.2 × 10−5)

and of other imputation methods (p = 9.8 × 10−6).

To perform a more comprehensive analysis, we also compare the methods using

two other metrics: Jaccard Index (JI) [168] and Purity Index (PI) [169]. The detailed

results for each dataset and method are reported in Table 5.2–5.4. Overall, scISR

is the only method that has better clustering accuracy on average when comparing

with using the raw data. The results are similar for analyses using JI and PI. Among

all methods, scISR has the highest average JI values (Table 5.3). Its average JI value

is 0.531, compare to 0.468, 0.453, 0.276, 0.403, 0.243 and 0.273 of the raw data,

MAGIC’s, scImpute’s, SAVER’s, scScope’s, and scGNN’s. A one-sided Wilcoxon test

also confirms that the JI values of scISR are significantly higher than those of raw

data (p = 3.2 × 10−5) and of all other methods (p = 4.8 × 10−5). Table 5.4 shows

the PI values obtained from raw and imputed data. It is the only method that has

the average PI value higher than that of the raw data. All other methods have an
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average PI less than that of the raw data. scISR improves cluster analysis by having

PI values higher than those of the raw data in 15 out of 25 datasets. A one-sided

Wilcoxon test also confirms that the PI values of scISR are significantly higher than

those of raw data (p = 0.007) and of all other methods (p = 9.9 × 10−5).

Next, to assess the performance of each method with respect to different cell iso-

lation techniques, quantitative schemes, and normalized units, we divide the datasets

into multiple overlapping groups: (1) 14 plate-based and 11 droplet-based datasets;

(2) 12 with UMI and 13 with read count; and (3) 7 without normalization, 11 with

transcript length-normalization (RPKM/FPKM/TPM), and 7 with transcript-depth

normalization (CPM/RPM). Figure 5.3 shows the ARI values obtained for raw data

and data imputed by four imputation methods. The ARI values of scISR are con-

sistently higher than those of raw data and of other methods in each grouping. In-

terestingly, the ARI values of raw data are comparable across quantification schemes

(UMI/read) but differ greatly across different normalization units (Figure 5.4A). Well-

known normalization techniques developed for bulk RNA-seq (RPKM/FPKM/TPM)

improve raw data’s cluster analysis (better than no normalization), but they have ap-

parent disadvantages compared to CPM/RPM. The ARI values of scISR follow the

same trend but are always higher than those of raw data. Similarly, Figures 5.4B and

Figure 5.4C show the JI and PI values obtained for the cluster analysis. Regardless

of the assessment metrics, cluster analysis in conjunction with scISR has a notable

advantage over other imputation methods.

To understand the impact of data scaling on the performance of the imputation

methods, we also perform the same analysis without log transformation applied to the

input data. We repeat the same process as the previous analysis, the only difference

is we do not perform log transformation on the raw data before applying imputation

method on it. The clustering results are also assessed using three different metrics
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Figure 5.3: Adjusted Rand Index (ARI) obtained from raw and imputed data. The
x-axis shows the names of the datasets while the y-axis shows ARI value of each
method. scISR improves cluster analysis by having ARI values higher than those of
the raw data in 21 out of 25 datasets.
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Table 5.2: Adjusted Rand Index (ARI) obtained from raw and imputed data. In each
row, a cell is highlighted in green if the ARI value is higher than that of the raw data.
scISR improves cluster analysis by having ARI values higher than those of the raw
data in 21 out of 25 datasets. A one-sided Wilcoxon test also confirms that the ARI
values of scISR are significantly higher than those of raw data (p = 3.2 × 10−5) and
of all other methods (p = 9.8 × 10−6).

Dataset Size Raw MAGIC scImpute SAVER scScope scGNN scISR

Fan 69 0.081 0.087 0.000 0.000 0.137 0.198 0.249
Treutlein 80 0.699 0.295 0.509 0.014 0.383 0.140 0.758
Yan 90 0.603 0.000 0.692 0.691 0.253 0.803 0.768
Goolam 124 0.533 0.512 0.291 0.590 0.1 0.525 0.641
Deng 268 0.549 0.182 0.656 0.772 0 0.464 0.814
Pollen 301 0.955 0.931 0.932 0.885 0.012 0.768 0.955
Darmanis 466 0.665 0.691 0.465 0.644 0 0.383 0.705
Usoskin 622 0.736 0.842 0.144 0.880 0 0.127 0.870
Camp 734 0.460 0.402 0.341 0.429 0 0.377 0.462
Klein 2,717 0.984 0.963 0.423 0.988 0.019 0.388 0.984
Romanov 2,881 0.507 0.556 0.356 0.507 0 0.367 0.548
Segerstolpe 3,514 0.437 0.430 0.405 0.576 0.004 0.146 0.555
Manno 4,029 0.266 0.236 0.296 0.302 0.082 0.093 0.269
Marques 5,053 0.206 0.245 0.169 0.202 0 0.109 0.206
Baron 8,569 0.557 0.410 0.415 0.528 0.467 0.258 0.557
Sanderson 12,648 0.155 0.177 0.177 0.134 0.104 0.053 0.162
Slyper 13,316 0.409 0.494 0.473 0.392 0.426 0.201 0.496
Zilionis (Mouse) 15,939 0.665 0.670 0.404 0.668 0.455 0.349 0.675
Tasic 23,178 0.439 0.501 N/A N/A 0 0.387 0.477
Zyl (Human) 24,023 0.381 0.414 N/A 0.423 0.366 0.285 0.424
Zilionis (Human) 34,558 0.620 0.633 N/A 0.646 0 0.204 0.710
Wei 41,565 0.616 0.622 N/A 0.473 0.578 0.341 0.617
Cao 90,579 0.426 0.307 N/A N/A 0.35 N/A 0.430
Orozco 100,055 0.375 0.557 N/A N/A 0.383 N/A 0.415
Darrah 162,490 0.298 0.379 N/A N/A N/A N/A 0.528

Mean ARI 0.504 0.461 0.286 0.423 0.165 0.279 0.571
1 N/A: Out of memory or error.
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Table 5.3: Jaccard Index (JI) obtained from raw and imputed data. In each row, a
cell value is highlighted in green if the JI value is higher than that of the raw data.
scISR improves cluster analysis by having JI values higher than those of the raw data
in 21 out of 25 datasets. A Wilcoxon test also confirms that the JI values of scISR are
significantly higher than those of raw data (p = 3.2 × 10−5) and of all other methods
(p = 4.8 × 10−5).

Dataset Size Raw MAGIC scImpute SAVER scScope scGNN scISR

Fan 69 0.195 0.223 0.156 0.177 0.172 0.226 0.261
Treutlein 80 0.673 0.433 0.482 0.316 0.377 0.296 0.727
Yan 90 0.524 0.194 0.612 0.608 0.245 0.734 0.695
Goolam 124 0.513 0.496 0.359 0.607 0.195 0.506 0.643
Deng 268 0.524 0.333 0.629 0.739 0.293 0.446 0.780
Pollen 301 0.923 0.885 0.886 0.816 0.112 0.656 0.924
Darmanis 466 0.563 0.594 0.379 0.541 0.169 0.319 0.606
Usoskin 622 0.679 0.795 0.264 0.840 0.273 0.249 0.828
Camp 734 0.395 0.368 0.306 0.390 0.211 0.359 0.398
Klein 2,717 0.977 0.948 0.430 0.983 0.275 0.386 0.977
Romanov 2,881 0.451 0.505 0.316 0.466 0.249 0.326 0.485
Segerstolpe 3,514 0.363 0.356 0.330 0.330 0.228 0.137 0.464
Manno 4,029 0.167 0.147 0.187 0.191 0.056 0.061 0.168
Marques 5,053 0.168 0.199 0.149 0.170 0.106 0.107 0.168
Baron 8,569 0.445 0.324 0.326 0.418 0.374 0.207 0.445
Sanderson 12,648 0.243 0.277 0.273 0.225 0.2 0.120 0.256
Slyper 13,316 0.393 0.476 0.458 0.381 0.427 0.232 0.478
Zilionis (Mouse) 15,939 0.601 0.607 0.354 0.602 0.409 0.337 0.610
Tasic 23,178 0.431 0.490 N/A N/A 0.134 0.389 0.520
Zyl 24,023 0.287 0.315 N/A 0.324 0.281 0.215 0.323
Zilionis (Human) 34,558 0.530 0.546 N/A 0.556 0.09 0.211 0.633
Wei 41,565 0.535 0.541 N/A 0.400 0.499 0.317 0.535
Cao 90,579 0.374 0.305 N/A N/A 0.326 N/A 0.379
Orozco 100,055 0.375 0.533 N/A N/A 0.364 N/A 0.395
Darrah 162,490 0.369 0.446 N/A N/A N/A N/A 0.589

Mean 0.468 0.453 0.276 0.403 0.243 0.273 0.531
1 N/A: Out of memory or error.
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Table 5.4: Purity Index (PI) obtained from raw and imputed data. In each row, a
cell value is highlighted in green if the JI value is higher than that of the raw data.
scISR improves cluster analysis by having PI values higher than those of the raw data
in 15 out of 25 datasets. A Wilcoxon test also confirms that the PI values of scISR
are significantly higher than those of raw data (p = 0.007) and of all other methods
(p = 9.9 × 10−5).

Dataset Size Raw MAGIC scImpute SAVER scScope scGNN scISR

Fan 69 0.485 0.424 0.379 0.379 0.5 0.500 0.545
Treutlein 80 0.800 0.662 0.825 0.538 0.738 0.550 0.838
Yan 90 0.811 0.356 0.811 0.833 0.567 0.867 0.844
Goolam 124 0.823 0.815 0.758 0.774 0.597 0.863 0.823
Deng 268 0.806 0.660 0.795 0.795 0.507 0.795 0.840
Pollen 301 0.963 0.920 0.924 0.870 0.236 0.857 0.963
Darmanis 466 0.841 0.820 0.702 0.830 0.283 0.655 0.848
Usoskin 622 0.830 0.879 0.524 0.929 0.378 0.505 0.929
Camp 734 0.738 0.651 0.614 0.655 0.307 0.598 0.740
Klein 2,717 0.991 0.979 0.650 0.994 0.351 0.633 0.991
Romanov 2,881 0.845 0.800 0.760 0.817 0.35 0.732 0.861
Segerstolpe 3,514 0.840 0.822 0.773 0.869 0.377 0.666 0.847
Manno 4,029 0.506 0.463 0.509 0.467 0.266 0.282 0.506
Marques 5,053 0.445 0.479 0.446 0.440 0.19 0.345 0.445
Baron 8,569 0.947 0.856 0.833 0.935 0.888 0.703 0.947
Sanderson 12,648 0.936 0.964 0.944 0.957 0.858 0.877 0.958
Slyper 13,316 0.907 0.906 0.895 0.882 0.867 0.762 0.917
Zilionis (Mouse) 15,939 0.976 0.970 0.887 0.976 0.853 0.762 0.973
Tasic 23,178 0.912 0.907 N/A N/A 0.485 0.874 0.856
Zyl 24,023 0.861 0.878 N/A 0.863 0.787 0.780 0.875
Zilionis (Human) 34,558 0.918 0.930 N/A 0.946 0.37 0.663 0.920
Wei 41,565 0.768 0.773 N/A 0.719 0.748 0.559 0.768
Cao 90,579 0.776 0.643 N/A N/A 0.712 N/A 0.761
Orozco 100,055 0.918 0.966 N/A N/A 0.911 N/A 0.928
Darrah 162,490 0.924 0.921 N/A N/A N/A N/A 0.942

Mean 0.823 0.778 0.521 0.659 0.525 0.593 0.835
1 N/A: Out of memory or error.
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Figure 5.4: Assessment results of each imputation method with respect to cell iso-
lation techniques, quantification schemes, or normalized units. The analysis is per-
formed with a log transformation of the data. Panel (A) shows the results using
Adjusted Rand Index (ARI), while panels (B) and (C) show the results using Jaccard
Index (JI) and Purity Index (PI). scISR consistently outperforms other methods in
every grouping by having the highest ARI, JI, and PI values.
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Adjusted Rand Index (ARI), Jaccard Index (JI) and Purity Index (PI). With the

exception of scISR, a decrease in performance is observed for all imputation methods

due to the dominance of genes with large values. This leads to a wider accuracy gap

between scISR and other imputation methods.

Figure 5.5A shows the ARI values obtained for data without log transformation.

Again, the ARI values of scISR are consistently higher than those of raw data and of

other methods in each grouping. Note that the ARI values of the raw data decrease

(in comparison with ARI values obtained with log transformation). The reason is

that the range of the data is very large. For example, the Deng dataset has a max

RPKM value of 155,847 whereas the mean RPKM of the dataset is only 35. Without

log transformation, genes with large values dominate the clustering analysis results,

which is undesirable. A decrease in performance is observed for other imputation

methods too (except scISR).

Table 5.5 shows the ARI values obtained for the raw data and the data inferred by

the six imputation methods. In this analysis, scISR improves the clustering analysis

in 24 out of 25 datasets by having the ARI values higher than those of the raw

data. Among all methods, scISR has the highest average ARI values. Its average

ARI value is 0.571, compare to 0.374, 0.356, 0.219, 0.307, 0.101 and 0.306 of the raw

data, MAGIC’s, scImpute’s, SAVER’s, scScope’s, and scGNN’s. A Wilcoxon test also

confirms that the ARI values of scISR are significantly higher than those of raw data

(p = 6.3 × 10−5) and of all other methods (p = 1.9 × 10−7).

Table 5.6 shows the JI values obtained for the raw data and the data inferred

by the six imputation methods. In this analysis, scISR also improves the clustering

analysis in 23 out of 25 datasets by having the JI values higher than those of the

raw data. Among all methods, scISR has the highest average JI values. Its average

JI value is 0.531, compare to 0.392, 0.399, 0.245, 0.308, 0.223, and 0.304 of the raw
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data, MAGIC’s, scImpute’s, SAVER’s, scScope’s, and scGNN’s. A Wilcoxon test also

confirms that the JI values of scISR are significantly higher than those of raw data

(p = 0.0001) and of all other methods (p = 4.4 × 10−6).

Table 5.7 shows the PI values obtained from raw and imputed data. The results

are similar to the analysis using ARI and JI. It is the only method that has the average

PI value higher than that of the raw data. All other methods have an average PI

less than that of the raw data. scISR improves cluster analysis by having PI values

higher than those of the raw data in most datasets (21 out of 25). A Wilcoxon test

also confirms that the PI values of scISR are significantly higher than those of raw

data (p = 0.0001) and of all other methods (p = 2.4 × 10−7).

5.3.1.1 Cluster analysis of 25 scRNA-seq datasets using Seurat

To further assess the performance of imputation methods, we perform an additional

clustering analysis using Seurat [68]. This method can automatically determine the

number of cell types from the input data. We first used Seurat to cluster the raw and

imputed data of the 25 real scRNA-seq datasets. We then compared the clustering

results against true cell types using Adjusted Rand Index (ARI). Figure 5.6 and

Table 5.8 show the ARI values obtained from the raw data and the data obtained

from the six imputation methods. scISR is able to improve the cluster analysis in

14 out of 25 datasets. MAGIC, scImpute, SAVER, scScope, and scGNN improve the

cluster analysis in 5, 3, 5, 4, and 5 datasets, respectively. The mean ARI value of

scISR is 0.499 which is higher than the mean ARI values of all other methods (the

mean ARI values for MAGIC, scImpute, SAVER, scScope, and scGNN are 0.315,

0.283, 0.324, 0.155, and 0.186, respectively). scISR is the only method that has mean

ARI higher than that of the raw data.
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Cell Isolation Quantification Scheme Normalization Method
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Figure 5.5: Assessment results of each imputation method with respect to cell iso-
lation techniques, quantification schemes, or normalized units. The analysis is per-
formed without a log transformation of the data. Panel (A) shows the results using
Adjusted Rand Index (ARI) while panels (B) and (C) show the results using Jaccard
Index (JI) and Purity Index (PI). scISR consistently outperforms other methods in
every grouping by having the highest ARI, JI, and PI values.
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Table 5.5: Adjusted Rand Index (ARI) obtained from raw and imputed data. In each
row, a cell value is highlighted in green if the ARI value is higher than that of the
raw data. scISR improves cluster analysis by having ARI values higher than those of
the raw data in 24 out of 25 datasets. A Wilcoxon test also confirms that the ARI
values of scISR are significantly higher than those of raw data (p = 6.3 × 10−5) and
of all other methods (p = 1.9× 10−7). The analysis is performed on data without log
transformation.

Dataset Size Raw MAGIC scImpute SAVER scScope scGNN scISR

Fan 69 0.008 0 0 0.015 0.017 0.003 0.249
Treutlein 80 0.699 0.056 0 0 0.072 0.195 0.758
Yan 90 0.460 0.705 0.547 0.609 0.155 0.884 0.768
Goolam 124 0.629 0.17 0.281 0.379 0.112 0.657 0.641
Deng 268 0.359 0.263 0.521 0.668 0 0.865 0.814
Pollen 301 0.822 0.631 0.826 0.822 0.009 0.833 0.955
Darmanis 466 0.404 0.396 0.458 0.472 0 0.356 0.705
Usoskin 622 0.008 0.007 0.353 0.008 0.003 0.127 0.87
Camp 734 0.460 0.349 0.09 0.351 0.006 0.263 0.462
Klein 2,717 0.643 0.66 0.63 0.852 0.016 0.494 0.984
Romanov 2,881 0.193 0.29 0.519 0.45 0 0.403 0.548
Segerstolpe 3,514 0.079 0.085 0.088 0.17 0.003 0.214 0.555
Manno 4,029 0.167 0.183 0.176 0.231 0 0.107 0.269
Marques 5,053 0.100 0.179 0.181 0.231 0.001 0.124 0.206
Baron 8,569 0.276 0.271 0.331 0.471 0.008 0.284 0.557
Sanderson 12,648 0.155 0.125 N/A 0.122 0.119 0.064 0.162
Slyper 13,316 0.409 0.509 0.484 0.484 0.438 0.145 0.496
Zilionis (Mouse) 15,939 0.419 0.528 N/A 0.42 0 0.375 0.675
Tasic 24,023 0.818 0.74 N/A N/A 0 0.442 0.477
Zyl (Human) 23,178 0.381 0.39 N/A 0.379 0.378 0.268 0.424
Zilionis (Human) 34,558 0.424 0.737 N/A N/A 0 0.261 0.71
Wei 41,565 0.616 0.776 N/A 0.537 0.514 0.292 0.617
Cao 90,579 0.426 0.316 N/A N/A 0.269 N/A 0.43
Orozco 100,055 0.390 0.376 N/A N/A 0.394 N/A 0.415
Darrah 162,490 0.000 0.105 N/A N/A N/A N/A 0.528

Mean ARI 0.374 0.356 0.219 0.307 0.101 0.306 0.571
1 N/A: Out of memory or error.
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Table 5.6: Jaccard Index (JI) obtained from raw and imputed data. In each row, a
cell value is highlighted in green if the JI value is higher than that of the raw data.
scISR improves cluster analysis by having JI values higher than those of the raw data
in 23 out of 25 datasets. A Wilcoxon test also confirms that the JI values of scISR
are significantly higher than those of raw data (p = 0.0001) and of all other methods
(p = 4.4 × 10−6). The analysis is performed on data without log transformation.

Dataset Size Raw MAGIC scImpute SAVER scScope scGNN scISR

Fan 69 0.187 0.182 0.181 0.187 0.183 0.182 0.261
Treutlein 80 0.673 0.333 0.312 0.312 0.337 0.288 0.727
Yan 90 0.418 0.627 0.47 0.529 0.235 0.831 0.695
Goolam 124 0.634 0.403 0.434 0.401 0.355 0.621 0.643
Deng 268 0.387 0.406 0.544 0.649 0.278 0.834 0.78
Pollen 301 0.728 0.518 0.733 0.728 0.11 0.74 0.924
Darmanis 466 0.364 0.363 0.409 0.404 0.146 0.295 0.606
Usoskin 622 0.188 0.28 0.429 0.188 0.279 0.25 0.828
Camp 734 0.395 0.359 0.226 0.358 0.212 0.254 0.398
Klein 2,717 0.606 0.622 0.591 0.813 0.283 0.49 0.977
Romanov 2,881 0.268 0.346 0.484 0.418 0.246 0.356 0.485
Segerstolpe 3,514 0.243 0.245 0.247 0.192 0.227 0.185 0.464
Manno 4,029 0.108 0.116 0.113 0.144 0.03 0.069 0.168
Marques 5,053 0.134 0.172 0.174 0.19 0.107 0.116 0.168
Baron 8,569 0.259 0.254 0.303 0.379 0.199 0.223 0.445
Sanderson 12,648 0.243 0.219 N/A 0.22 0.217 0.133 0.256
Slyper 13,316 0.393 0.493 0.47 0.471 0.435 0.208 0.478
Zilionis (Mouse) 15,939 0.372 0.46 N/A 0.372 0.11 0.352 0.61
Tasic 24,023 0.809 0.735 N/A N/A 0.134 0.421 0.52
Zyl 23,178 0.287 0.299 N/A 0.291 0.288 0.206 0.323
Zilionis (Human) 34,558 0.389 0.666 N/A N/A 0.083 0.257 0.633
Wei 41,565 0.535 0.715 N/A 0.455 0.439 0.278 0.535
Cao 90,579 0.374 0.321 N/A N/A 0.273 N/A 0.379
Orozco 100,055 0.370 0.355 N/A N/A 0.37 N/A 0.395
Darrah 162,490 0.444 0.479 N/A N/A N/A N/A 0.589

Mean 0.392 0.399 0.245 0.308 0.223 0.304 0.531
1 N/A: Out of memory or error.
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Table 5.7: Purity Index (PI) obtained from raw and imputed data. In each row, a
cell value is highlighted in green if the PI value is higher than that of the raw data.
scISR improves cluster analysis by having PI values higher than those of the raw data
in 21 out of 25 datasets. A Wilcoxon test also confirms that the PI values of scISR
are significantly higher than those of raw data (p = 0.0001) and of all other methods
(p = 2.4 × 10−7). The analysis is performed on data without log transformation.

Dataset Size Raw MAGIC scImpute SAVER scScope scGNN scISR

Fan 69 0.394 0.364 0.364 0.409 0.364 0.364 0.545
Treutlein 80 0.800 0.55 0.538 0.538 0.562 0.638 0.838
Yan 90 0.767 0.8 0.822 0.8 0.544 0.911 0.844
Goolam 124 0.823 0.613 0.702 0.782 0.565 0.839 0.823
Deng 268 0.713 0.608 0.72 0.765 0.504 0.854 0.84
Pollen 301 0.870 0.761 0.87 0.87 0.233 0.884 0.963
Darmanis 466 0.674 0.624 0.697 0.721 0.296 0.659 0.848
Usoskin 622 0.376 0.383 0.595 0.376 0.378 0.518 0.929
Camp 734 0.738 0.542 0.396 0.54 0.313 0.55 0.74
Klein 2,717 0.803 0.81 0.81 0.883 0.363 0.688 0.991
Romanov 2,881 0.578 0.642 0.695 0.759 0.354 0.737 0.861
Segerstolpe 3,514 0.518 0.531 0.519 0.685 0.376 0.713 0.847
Manno 4,029 0.394 0.407 0.381 0.416 0.102 0.296 0.506
Marques 5,053 0.353 0.461 0.427 0.453 0.185 0.37 0.445
Baron 8,569 0.752 0.741 0.747 0.863 0.302 0.749 0.947
Sanderson 12,648 0.936 0.927 N/A 0.914 0.869 0.879 0.958
Slyper 13,316 0.907 0.903 0.894 0.899 0.85 0.706 0.917
Zilionis (Mouse) 15,939 0.873 0.971 N/A 0.873 0.503 0.797 0.973
Tasic 24,023 0.931 0.922 N/A N/A 0.485 0.934 0.856
Zyl 23,178 0.861 0.854 N/A 0.784 0.8 0.754 0.875
Zilionis (Human) 34,558 0.749 0.918 N/A N/A 0.37 0.701 0.92
Wei 41,565 0.768 0.772 N/A 0.75 0.743 0.561 0.768
Cao 90,579 0.776 0.669 N/A N/A 0.595 0 0.761
Orozco 100,055 0.935 0.951 N/A N/A 0.94 0 0.928
Darrah 162,490 0.710 0.764 N/A N/A N/A 0 0.942

Mean 0.720 0.700 0.407 0.563 0.464 0.604 0.835
1 N/A: Out of memory or error.
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Figure 5.6: Adjusted Rand Index (ARI) obtained from raw and imputed data using
Seurat as the clustering method. The x-axis shows the names of the datasets while
the y-axis shows ARI value of each method.

5.3.1.2 Preservation of the transcriptome landscape

The purpose of this analysis is to assess whether the imputation alters the transcrip-

tome landscape. Preferably, life scientists impute the data in order to improve the

quality of downstream analyses. At the same time, imputation should not completely

change the data because of falsely introduced signals, leading to wrong or compro-

mised findings. In the above sections, we have demonstrated that scISR significantly

improves the quality of downstream analyses (e.g., cluster analysis). In this section,

we will demonstrate that scISR preserves the transcriptome landscape of the data

as well. For this purpose, we will visualize the transcriptome landscape of the raw

and imputed data using t-SNE [170] and UMAP [62]. We will also quantify the sim-

ilarity between the imputed and original landscapes using the distance correlation

index [171].

First, we use t-SNE [170] to generate the 2D transcriptome landscapes of the raw
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Table 5.8: Adjusted Rand Index (ARI) obtained from raw and imputed data using
Seurat as the clustering method. scISR improves cluster analysis by having ARI
values higher than those of the raw data in 14 out of 25 datasets. Cells with N/A
value indicate that the method failed to run due to out of memory or error.

Dataset Size Raw MAGIC scImpute SAVER scScope scGNN scISR

Fan 69 0.000 0 0 0 0 0.079 0
Treutlein 80 0.000 0 0 0 0 0.003 0
Yan 90 0.392 0.691 0.392 0.562 0 0.307 0.392
Goolam 124 0.605 0.345 0.582 0.297 0 0.116 0.387
Deng 268 0.749 0.351 0.74 0.624 0.071 0.443 0.749
Pollen 301 0.722 0.775 0.721 0.276 0.026 0.138 0.668
Darmanis 466 0.668 0.321 0.359 0.632 0 0.208 0.706
Usoskin 622 0.734 0.535 0.165 0.903 0 0.046 0.737
Camp 734 0.470 0.222 0.336 0.256 0 0.354 0.479
Klein 2,717 0.827 0.757 0.654 0.742 0.023 0.224 0.824
Romanov 2,881 0.611 0.476 0.558 0.555 0.004 0.301 0.629
Segerstolpe 3,514 0.586 0.271 0.469 0.323 0.006 0.208 0.607
Manno 4,029 0.254 0.144 0.343 0.243 0.061 0.037 0.226
Marques 5,053 0.212 0.133 0.178 0.172 0 0.085 0.307
Baron 8,569 0.855 0.328 0.591 0.606 0.728 0.243 0.882
Sanderson 12,648 0.194 0.098 0.226 0.161 0.163 0.377 0.196
Slyper 13,316 0.310 0.39 0.397 0.393 0.498 0.337 0.614
Zilionis (Mouse) 15,939 0.667 0.667 0.367 0.01 0.658 0.197 0.63
Tasic 23,178 0.559 0.027 N/A N/A 0 0.167 0.463
Zyl (Human) 24,023 0.108 0.236 N/A 0.176 0.187 0.258 0.106
Zilionis (Human) 34,558 0.708 0.416 N/A 0.698 0 0.219 0.822
Wei 41,565 0.476 0.321 N/A 0.479 0.768 0.305 0.643
Cao 90,579 0.247 0.368 N/A N/A 0.254 N/A 0.282
Orozco 100,055 0.590 0 N/A N/A 0.438 N/A 0.763
Darrah 162,490 0.337 0 N/A N/A N/A N/A 0.359

Mean ARI 0.475 0.315 0.283 0.324 0.155 0.186 0.499

and imputed data. The 2D visualizations of the 25 datasets are shown in Figures 5.7–

5.11. Overall, MAGIC, SAVER, and scISR produce landscapes that are similar to

those of the raw data for every single dataset analyzed. The same cannot be said

about scImpute, scScope, and scGNN. For the Manno dataset (second last row in

Figure 5.9), scImpute, scScope, and scGNN completely alter the landscape. scImpute

tends to split cells into smaller groups while scScope and scGNN mix cells from

different cell types together. This can be clearly observed in datasets such as Camp,
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Segerstolpe, Manno (Human).

To perform a more comprehensive analysis, we also generate the 2D transcriptome

landscapes of the 25 datasets using UMAP [62]. The visualizations are shown in Fig-

ures 5.12–5.16. Again, except for scImpute, scScope, and scGNN, other methods

preserve the landscape very well. For scImpute, scScope, and scGNN, the differ-

ence between the original and imputed landscape becomes more obvious in UMAP

visualization.

To quantify the similarity between the imputed and original landscapes, we calcu-

late the distance correlation index (dCor) [171] for each imputed landscape generated

by t-SNE and UMAP. Given X and Y as the 2D representation of the raw and im-

puted data, dCor is calculated as dCor = dCov(X,Y )√
dV ar(X)dV ar(Y )

where dCov(X, Y ) is the

distance covariance between X and Y while dV ar(X) and dV ar(Y ) are distance vari-

ances of X and Y . Specifically, the method first calculates the pair-wise distances

for X by computing the distance between each pair of cells, resulting in a square

matrix. Second, it calculates the pair-wise distances for Y . Finally, it compares the

two matrices using the formula described above to obtain the distance correlation.

The dCor coefficient takes a value between 0 and 1, with the dCor is expected to be 1

for a perfect similarity. In our analysis, when we rotate the transcriptome landscape,

dCor does not change. In contrast to Pearson correlation, this metric measures both

the linear and nonlinear associations between X and Y [171].

The dCor values are displayed in each panel in Figures 5.7–5.11. We also plot

the dCor distributions in Figure 5.17. In this figure, the left panel shows the values

obtained from t-SNE while the right panel shows the values obtained from UMAP

representations. The mean correlations using t-SNE for MAGIC, scImpute, SAVER,

scScope, scGNN, and scISR are 0.78, 0.46, 0.68, 0.36, 0.48, and 0.88, respectively.

The bar plot shows that scISR has the highest mean correlation, as well as the small-
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Figure 5.7: Transcriptome landscape of the Fan, Treutlein, Yan, Goolam and Deng
datasets (top to bottom) using t-SNE. Different colors code for different cell types.
The distance correlation calculated for each imputed dataset shows the similarity
between the new landscape (from imputed data) and the original landscape (from
raw data).
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Figure 5.8: Transcriptome landscape for the Pollen, Darmanis, Usoskin, Camp and
Klein datasets (top to bottom) using t-SNE. Different colors code for different cell
types. The distance correlation calculated for each imputed dataset shows the sim-
ilarity between the new landscape (from imputed data) and the original landscape
(from raw data).
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Figure 5.9: Transcriptome landscape for the Romanov, Segerstolpe, Manno (Human),
Marques and Barron (Human) datasets (top to bottom) using t-SNE. Different colors
code for different cell types. The distance correlation calculated for each imputed
dataset shows the similarity between the new landscape (from imputed data) and the
original landscape (from raw data).
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Figure 5.10: Transcriptome landscape for the Sanderson, Slyper, Zilionis (Mouse),
Tasic and Zyl (Human) datasets (top to bottom) using t-SNE. Different colors code
for different cell types. The distance correlation calculated for each imputed dataset
shows the similarity between the new landscape (from imputed data) and the original
landscape (from raw data).
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Figure 5.11: Transcriptome landscape for the Zillionis (Human), Wei (Human), Cao,
Orozco and Darrah datasets (top to bottom) using t-SNE. Different colors code for
different cell types. The distance correlation calculated for each imputed dataset
shows the similarity between the new landscape (from imputed data) and the original
landscape (from raw data).
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Figure 5.12: Transcriptome landscape for the Fan, Treutlein, Yan, Goolam and Deng
datasets (top to bottom) using UMAP. Different colors code for different cell types.
The distance correlation calculated for each imputed dataset shows the similarity
between the new landscape (from imputed data) and the original landscape (from
raw data).
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Figure 5.13: Transcriptome landscape for the Pollen, Darmanis, Usoskin, Camp and
Klein datasets (top to bottom) using UMAP. Different colors code for different cell
types. The distance correlation calculated for each imputed dataset shows the sim-
ilarity between the new landscape (from imputed data) and the original landscape
(from raw data).
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Figure 5.14: Transcriptome landscape for the Romanov, Segerstolpe, Manno (Hu-
man), Marques and Barron (Human) datasets (top to bottom) using UMAP. Differ-
ent colors code for different cell types. The distance correlation calculated for each
imputed dataset shows the similarity between the new landscape (from imputed data)
and the original landscape (from raw data).
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Figure 5.15: Transcriptome landscape for the Sanderson, Slyper, Zilionis (Mouse),
Tasic and Zyl (Human) datasets (top to bottom) using UMAP. Different colors code
for different cell types. The distance correlation calculated for each imputed dataset
shows the similarity between the new landscape (from imputed data) and the original
landscape (from raw data).
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Figure 5.16: Transcriptome landscape for the Zillionis (Human), Wei (Human), Cao,
Orozco and Darrah datasets (top to bottom) using UMAP. Different colors code
for different cell types. The distance correlation calculated for each imputed dataset
shows the similarity between the new landscape (from imputed data) and the original
landscape (from raw data).
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Figure 5.17: The distance correlation between raw data and imputed data using
the first two components obtained from t-SNE and UMAP. Higher correlation values
indicate more similarity between the imputed and original landscapes. Different colors
represent different imputation methods. scISR has the highest mean correlation with
the smallest variance. A one-sided Wilcoxon test indicates that the correlation values
obtained from scISR are significantly higher than the rest (p = 3×10−9 and 2.8×10−7

for t-SNE and UMAP, respectively).

est variance. This demonstrates that scISR consistently preserves the transcriptome

landscape of the datasets analyzed. MAGIC is the second-best method in this analy-

sis. Using UMAP, scISR obtains a mean correlation of 0.86 compared to those of 0.8,

0.5, 0.7, 0.4, and 0.57, for MAGIC, scImpute, SAVER, scScope, and scGNN, respec-

tively. A one-sided Wilcoxon test also confirms that the correlation values obtained

from scISR are significantly higher than the rest (p = 3 × 10−9 and 2.8 × 10−7 for

t-SNE and UMAP, respectively).

5.3.1.3 Normalized intra dispersion of imputed genes

For each gene, we calculated the ratio between the intra-cell-type standard deviation

and the gene’s standard deviation. The intra-cell-type standard deviation measures

how similar the expression value of the cells for the underlying gene (cohesion). The

ratio (between the intra-cell-type standard deviation and the gene’s standard devi-
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ation) represents the normalized intra-cell-type standard deviation. We named this

as intra dispersion. In general, we expect that with an improved data quality, the

expression of cells of the same type are closer to one another compared to cells of

different types. Therefore, we expect that a good imputation method would have the

smallest intra dispersion. For each gene, we calculate the intra dispersion for the raw

and imputed data: one value for raw data and 6 values for 6 imputation methods.

Figure 5.18 shows the dispersion for each dataset. scISR has the smallest dispersion

compared to raw data and data imputed by 5 other methods. Indeed, the median

dispersion of scISR is 3.6×10−3 which is much lower compared to 2×10−1, 1.1×102,

2.4 × 10−1, 1.3 × 10−1, 2.3 × 10−2, and 5.4 × 101 of raw data and data imputed by

MAGIC, scImpute, SAVER, scScope and scGNN, respectively.

5.3.1.4 Running time

Figure 5.19 shows the running time of imputation methods on 25 single-cell datasets.

As seen in Figure 5.19, only scISR and MAGIC can analyze the Darrah dataset.

scISR is the fastest method and can complete the imputation for this dataset in 50

minutes. MAGIC can analyze the Darrah dataset but it takes 170 minutes to finish

the analysis. It takes scScope 350 minutes to analyze the second largest dataset

(Orozco 100,000 cells). scImpute, SAVER, and scGNN cannot even analyze the three

largest datasets.

5.3.1.5 Simulation studies

To present a comprehensive simulation analysis, we generate a total of 46 datasets in

two different scenarios: (1) uniform dropout distribution, (2) normal dropout distri-

bution.

In the first scenario, we generate 6 datasets by varying the number of cells from 100
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Figure 5.18: Distribution of the normalized intra dispersion for 25 real datasets.
For each gene, we calculate the ratio between the intra-cell-type standard deviation
and the gene’s standard deviation (normalized intra dispersion). We repeat this
calculation for all genes for raw and imputed data. The median dispersion of scISR is
3.6×10−3 which is much lower compared to 2×10−1, 1.1×102, 2.4×10−1, 1.3×10−1,
2.3×10−2, and 5.4×101 of raw data and data imputed by MAGIC, scImpute, SAVER,
scScope and scGNN, respectively.
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Figure 5.19: Running time of the six imputation methods on 25 real scRNA-seq
datasets. scISR is the fastest and can impute the Darrah dataset in 50 minutes.

to 10,000 and the number of genes from 300 to 10,000. The cells/genes combination

setups are presented as follows: 100 × 300, 1,000 × 3,000, 3,000 × 9,000, 5,000 ×

10,000, 7,000 × 10,000, and 10,000 × 10,000.
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In each of the 6 datasets, the expression values follow a normal distribution

N (µ, σ). We set µ = 1 and σ = 0.15. We slightly shift the mean of the cells

and genes by adding a certain value to each group (-1, 0, 1, 1.5 for cell groups and

-1, 0, 1 for gene groups) to create 4 different cell types and 3 gene groups – each

cell type has an equal number of cells. We name this data as complete data and use

the expression values as the ground truth for benchmarking. Next, we introduce the

dropout events. We randomly select 40% of the genes and consider those as genes

that are impacted by dropout events. We randomly assign 30% of the values of these

genes to zero. We name this data as masked data.

We present a detailed simulation results for 3 datasets with 100, 1,000, and 10,000

cells in Figures 5.20, 5.21 and 5.22. In each figure, panel A shows the transcriptome

landscape of the complete data and panel B shows the masked data. In each dataset,

the transcriptome landscape and gene-cell heatmap of the complete data clearly show

the presence of three cell types and four gene groups. With masked data, dropout

events clearly alter the cells’ transcriptome landscape, making it difficult to separate

the cell types. The ultimate goal of imputation is to infer the masked (dropout)

values in order to recover the original transcriptome landscape and expression profile.

We apply the six imputation methods on the masked data and assess the quality of

the imputed data by comparing them against the ground truth. Panels C, D, E, F, G,

and H in Figures 5.20, 5.21 and 5.22 show the data imputed by MAGIC, scImpute,

SAVER, scScope, scGNN, and scISR, respectively. Panels I shows Mean Absolute

Error (MAE) and correlation coefficients obtained by comparing masked/imputed

data with the complete data. We calculate the MAE and correlation values for each

gene and then plot the distributions of each metric using boxplot.

These case studies show that MAGIC imputes the missing values by smoothing

the expression values. Many expression values, including non-zero-valued entries,
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Figure 5.20: Assessment of MAGIC, scImpute, SAVER, scScope, scGNN, and scISR
using simulation (100 cells and 300 genes). (A) – (H) The visualization of the com-
plete data, masked data and imputed data recovered by MAGIC, scImpute, SAVER,
scScope, scGNN, and scISR. In each subfigure, the left panel shows the transcrip-
tome landscape using t-SNE while the right panel shows the gene-cell heatmap.
(I) Mean Absolute Error (MAE) and correlation coefficients obtained by comparing
masked/imputed data with the complete data. We calculate the MAE and correlation
values for each gene and then plot the distributions of each metric using boxplot. The
transcriptome landscapes and heatmaps show that scISR comes closest to recovering
the complete data. scISR also has smaller MAE values as well as higher correlation
coefficients than other methods.
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Figure 5.21: Assessment of MAGIC, scImpute, SAVER, scScope, scGNN, and scISR
using simulation of 1,000 cells. (A) – (H) The visualization of the complete data,
masked data and imputed data recovered by MAGIC, scImpute, SAVER, scScope,
scGNN, and scISR. In each subfigure, the left panel shows the transcriptome land-
scape using t-SNE while the right panel shows the gene-cell heatmap. (I) Mean Abso-
lute Error (MAE) and correlation coefficients obtained by comparing masked/imputed
data with the complete data. We calculate the MAE and correlation values for each
gene and then plot the distributions of each metric using boxplot. The transcriptome
landscapes and heatmaps show that scISR comes closest to recovering the complete
data. scISR also has smaller MAE values as well as higher correlation coefficients
than other methods.
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Figure 5.22: Assessment of MAGIC, scImpute, SAVER, scScope, scGNN, and scISR
using simulation of 10,000 cells. (A) – (H) The visualization of the complete data,
masked data and imputed data recovered by MAGIC, scImpute, SAVER, scScope,
scGNN, and scISR. In each subfigure, the left panel shows the transcriptome land-
scape using t-SNE while the right panel shows the gene-cell heatmap. (I) Mean Abso-
lute Error (MAE) and correlation coefficients obtained by comparing masked/imputed
data with the complete data. We calculate the MAE and correlation values for each
gene and then plot the distributions of each metric using boxplot. The transcriptome
landscapes and heatmaps show that scISR comes closest to recovering the complete
data. scISR also has smaller MAE values as well as higher correlation coefficients
than other methods.
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were altered by MAGIC, making the landscape of the imputed data very different

from those of both complete and masked data. scImpute improves the quality of the

data but is still not able to separate some cell types. In addition, scImpute also alters

the values of non-zero entries to make the data better fit into the assumed mixture

model. SAVER further improves the transcriptome landscape and separates the 4 cell

types. However, data imputed by SAVER does not entirely match with the complete

data, in which many dropout values remain uncorrected many other dropout entries

imputed with wrong values. scScope and scGNN oversmooth the imputed data such

that it merges all the cells in four types together. The heatmaps clearly show that

many expression values, including non-zero-valued entries, were altered by scScope

and scGNN. In contrast, scISR is able to recover the transcriptome landscape as well

as most of the missing values. The color patterns in the imputed data’s heatmap are

almost identical to the patterns in the complete data. scISR did not alter any non-

zero entry and recovered most of the dropout values. The transcriptome landscapes

of scISR-imputed data (panels H) are similar to those of the complete data (panels

A). scISR also has smaller MAE values as well as higher correlation coefficients than

other methods (panels I).

Using the true expression values of the complete data in all 6 datasets, we calculate

the mean absolute error (MAE) and correlation between the imputed data and the

ground truth for the genes that were impacted by dropout events. Figure 5.23 displays

the mean absolute error (MAE) (left panel) and correlation values (right panel) for

each method and each cell/gene combination. scISR is the best method in recovering

the gene expression values with the smallest MAE and the highest correlation values.

In the second scenario, we generate in total 40 datasets resulted from the combi-

nation of 2 different dropout distributions: uniform and normal, 4 different dropout

rates: 60%, 70%, 80%, and 90%, and 5 different sizes of data with the number of
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Figure 5.23: Assessment of MAGIC, scImpute, SAVER, scScope, scGNN, and scISR
using simulation studies. Mean Absolute Error (MAE) and correlation coefficients
were obtained by comparing imputed data with the complete data. In each analysis,
scISR has smaller MAE values and higher correlation coefficients than other methods.

cells × genes are: 1,000 × 3,000, 3,000 × 9,000, 5,000 × 10,000, 7,000 × 10,000, and

10,000 × 10,000. Since scISR uses the hypergeometric test, which can be less accu-

rate when the dropout probability does not follow a uniform distribution, we use this

simulation to assess the stability of scISR when imputing data with different dropout

distributions.

To generate datasets of a certain size (e.g., 1,000 × 3,000), we first generate an

expression matrix whose values follow a normal distribution N(µ, σ) where µ = 1 and

σ = 0.15. We then slightly shift the mean of the cells and genes by adding a certain

value to each group (-1, 0, 1, 1.5 for cell groups and -1, 0, 1 for gene groups) to create 4

different cell types. We name this as complete data. Next, we randomly assign dropout

values to the data in two different cases. In the first case, the dropout probability is

uniformly distributed. In the second case, the dropout probability follows a normal

distribution. For example, at 60% dropout rate, the dropout probability follows a

distribution of N(0.6, 0.1). We then vary the dropout rate from 60% to 90%. We

name the data with dropouts as masked data. Next, we impute the masked data using

imputation methods to obtain the imputed data. Finally, to assess the performance of
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imputation methods, we compare the imputed data against the complete data using

Mean Absolute Error (MAE) and correlation coefficients.

The top left panel in Figure 5.24 shows the MAE values obtained for datasets

with 1,000 cells and 3,000 genes. In this panel, the left side displays the results

obtained for uniform distributions while the right side shows the results for the normal

distributions. When the dropout probability is uniformly distributed, scISR is able

to recover most of the dropout values, resulting in a median MAE close to zero

at any dropout rate. When the dropout probability is normally distributed, scISR

still performs as well at 60% to 80% dropout but it becomes less accurate at 90%

rate. At 90% dropout rate, scISR recovers only a part of the data (median MAE

of approximately 2.11 compared to 3.65 of masked data). Assessment results using

correlation coefficient (top right panel) also confirm our finding. However, as seen in

Figure 5.24, the result of scISR is still much better than other imputation methods.

The next two panels (second row) in Figure 5.24 show the results obtained for

datasets with 3,000 cells and 9,000 genes. scISR is more accurate (lower MAE and

higher correlation) for these datasets compared to datasets with 1,000 cells. At

dropout rates of 60%, 70%, and 80%, scISR performs consistently well for uniform

and normal distributions alike (median MAE value close to zero). At 90% rate, the

median MAE of scISR for normal distributions is now 1.61 (compared to 2.11 for

datasets with 1,000 cells and 3,000 genes). The reason for such improvement is that

with the same dropout rate, larger datasets provide us with more data to learn from,

leading to improved hypothesis testing (hypergeometric test) and prediction (linear

regression). For datasets with 7,000 cells or more, the median MAE is close to zero

for both uniform and normal distributions at any dropout rate. In summary, scISR

(using hypergeometric test) performs well for large datasets with high dropout rates

even when the dropout probability is not uniformly distributed. Moreover, scISR
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also outperforms other methods in recovering the missing data by having the lowest

median MAE and highest median correlation.
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Figure 5.24: Assessment of MAGIC, scImpute, SAVER, scScope, scGNN, and scISR
using simulated datasets with different dropout distributions and sample sizes. The
left panels show the Mean Absolute Error (MAE) values while the right panels show
the correlation coefficients. In each panel, the left side shows the results for uniform
distributions while the right side shows the results for normal distributions. For
small datasets (e.g., datasets with 1,000 cells) with high dropout rates, scISR is less
accurate when the dropout probability is normally distributed. When the sample size
increases, scISR becomes more accurate. For datasets with 7,000 cells or more, scISR
performs well for both uniform and normal distributions alike across all dropout rates.
For most of the dataset sizes and dropout rates, scISR have a much better median
MAE and correlation compared to other methods.
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5.4 Conclusion (scISR)

In this work, we introduced a new method to mitigate the effects of dropout events

that frequently happen during the sequencing process of individual cells. The con-

tribution is two-fold. First, by introducing a hypothesis testing procedure, we avoid

altering true zero values. Second, the subspace regression provides a more accurate

imputation by limiting the imputation to gene groups with similar expression pat-

terns. We compared our approach with state-of-the-art methods using 25 real scRNA-

seq datasets and 116 simulated datasets. We demonstrated that scISR outperforms

other imputation methods in improving the quality of clustering analysis. At the

same time, we also demonstrated that scISR preserves the transcriptome landscape

of each dataset. Finally, we showed that scISR is robust against different dropout

rates and distributions. We expect that scISR will be a very useful method that can

improve the quality of single-cell data. The tool can be seamlessly incorporated into

other single-cell analysis pipelines.
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Chapter 6

scINN: Single-cell RNA

Sequencing Data Imputation using

Similarity Preserving Network

This chapter is based on the following publication: Duc Tran, Hung Nguyen,

Frederick C. Harris, and Tin Nguyen. Single-cell RNA sequencing data imputation

using similarity preserving network. In Proceedings of the 13th International

Conference on Knowledge and Systems Engineering (KSE), 2021.

Recent advancements in single-cell RNA sequencing (scRNA-seq) technologies

have allowed us to monitor the gene expression of individual cells. This level of detail

in monitoring and characterization enables the research of cells in rapidly changing

and heterogeneous environments such as early stage embryo or tumor tissue. How-

ever, the current scRNA-seq technologies are still facing many outstanding challenges.

Due to the low amount of starting material, a large portion of expression values in

scRNA-seq data is missing and reported as zeros. Moreover, scRNA-seq platforms are

trending toward prioritizing high throughput over sequencing depth, which makes the
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problem become more serious in large datasets. These missing values can greatly af-

fect the accuracy of downstream analyses. Here we introduce a neural network-based

approach, named single-cell Imputation using Neural Network (scINN), that can re-

liably recover the missing values in single-cell data and thus can effectively improve

the performance of downstream analyses. To impute the dropouts in single-cell data,

we build a neural network that consists of two sub-networks: imputation sub-network

and quality assessment sub-network. We compare scINN with state-of-the-art impu-

tation methods using 10 scRNA-seq datasets with a total of more than 100,000 cells.

In an extensive analysis, we demonstrate that scINN outperforms existing imputa-

tion methods in improving the identification of cell sub-populations and the quality

of transcriptome landscape visualization.

6.1 Introduction

The ability to monitor and characterize biological samples at single-cell resolution

has opened up many novel research fields, such as studying cells in early embryonic

stage or decomposition heterogeneous environment of cancer tumors [109, 120]. These

promising applications have led to the generation of a massive amount of single-cell

data, where each dataset consists of hundreds of thousands of cells [145, 146].

Current single-cell RNA sequencing (scRNA-seq) technologies still need to over-

come significant challenges to ensure the accurate measurement of gene expression [94,

172]. One notable challenge of scRNA-seq is the dropout events, which happen when a

gene that generally has high expression values but does not express in some cells [101].

The source of these errors can be attributed to the limitation of sequencing tech-

nologies. Due to the low amount of starting mRNA collected from individual cells,

failed amplification can happen and causes the expression values to be inaccurately

reported [102, 103, 173]. This leads to an excessive amount of zeros in the expres-
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sion values of scRNA-seq data. On the other hand, the zero expression values can

also be due to biological variability. Since most downstream analyses of scRNA-seq

are performed on gene expression data, it is essential to have a precise expression

measurement. Therefore, imputing scRNA-seq data to recover the information loss

caused by dropout events would greatly improve the quality of downstream analyses.

Thus far, numerous methods have been developed to infer the missing values

caused by dropout events [104–107, 158, 174–176]. Those methods can be classified

into two categories: (i) statistical-based methods, and (ii) diffusion smooth-based

methods. Methods in the first category include bayNorm [174], SAVER [106], scIm-

pute [105], scRecover [177], and RIA [158]. These methods typically model the data

as a mixture of distributions. For example, scImpute models the gene expression as

a mixture of two different distributions: the Gaussian distribution represents the ac-

tual gene expression while the Gamma distribution accounts for the dropout events.

Similarly, SAVER [106] models read counts as a mixture of Poisson-Gamma and then

uses a Bayesian approach to estimate true expression values of genes by borrowing

information across genes. More recent methods, RIA [158] and scIRN [176], assume

that highly expressed genes follow a normal distribution and apply hypothesis testing

method to identify true dropouts. Next, they impute missing values by using a linear

regression model. All of these methods assume the gene expression data follows a

specific distribution, which does not always hold true in reality. In addition, exit-

ing methods involve the estimation of many parameters for genes across the whole

genome. This can potentially lead to overfitting and high time complexity.

Methods in the second category include DrImpute [107], MAGIC [104], and kNN-

smoothing [175]. MAGIC imputes zero expression values using a heat diffusion algo-

rithm [157]. It constructs the affinity matrix between cells using a Gaussian kernel

and then constructs a Markov transition matrix by normalizing the sc-RNA similar-
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ity matrix. Next, MAGIC estimates the weights of other cells using the transition

matrix. Another method is DrImpute [107] that is based on the cluster ensemble and

consensus clustering. It performs clustering for a predefined number of times and

imputes the data by averaging expression values of similar cells. If the number of

clusters is not provided by users, DrImpute uses some default values that might not

be optimal for the data. kNN-smoothing is designed to reduce noise by aggregating

information from similar cells (neighbors). The method assumes that the zero counts

of scRNA-seq data follows a Poisson distribution. For cells that contain zero counts,

kNN-smoothing performs a smoothing step using each cell’s k nearest neighbors either

through the application of diffusion models or weighted sums. The major drawback of

these methods is that they rely on many parameters to fine-tune their model, which

often leads to over-smoothing the data.

6.2 Methodology

Here we propose a new approach, single-cell Imputation using Neural Network (scINN),

that can reliably impute missing values from single-cell data. The method consists

of two steps. The first step is to generate an accurate clustering result of the original

data, and calculate the similarity between all pairs of samples. The second step is

to estimate the missing values using a neural network and the similarity information

generated in the first module. The approach is evaluated using 10 single-cell datasets

in comparison with four other methods. We demonstrate that scINN outperforms

existing imputation methods (DrImpute [107], MAGIC [104], scImpute [105], and

SAVER [106]) in improving the identification of cell sub-populations and the quality

of biological landscape.

The input of scINN is an expression matrix, in which rows represent cells and

columns represent genes or transcripts. The overall workflow of scINN is described
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in Figure 6.1, which consists of two modules: (i) generating an accurate clustering

results of the original data, and calculating the similarity between all samples, and

(ii) imputing the dropout values. The purpose of the first module is to learn the

similarity information between each pair of samples. The output of the first module

is the clustering assignments for samples in the dataset, and a similarity matrix with

Pearson correlations for all pairs of samples. These information are used as the target

for the second module. In the second module, we impute the original data using a

neural network. The parameters of the neural network are repeatedly adjusted so

that the clustering assignments and similarity matrix inferred from the imputed data

is as similar to the outputs of the first module as possible. The details of each step

are described in the following subsections.

6.2.1 Generating similarity information

To generate a compressed, low-dimensional representation of original data, we apply

our previously developed method, called scDHA [178]. scDHA consists of two core

modules. The first module is a non-negative kernel autoencoder that can filter out

genes or components that have insignificant contributions to the representation. The

second module is a Stacked Bayesian Self-learning Network that is built upon the Vari-

ational Autoencoder [112] to project the filtered data onto a much lower-dimensional

space. The output of scDHA is a low-dimensional matrix that preserves the global

structure of the original data. Using this representation, scDHA can cluster the sam-

ples into groups with high accuracy. We also generate the similarity matrix for all

samples in the dataset. The similarity between two samples is measured by Pearson

correlation. We use the similarity information between samples in the dataset to op-

timize our imputation module so the same information can be inferred from imputed

data using a network with simpler structure.
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Figure 6.1: The workflow of single-cell Imputation using Residual Network (scINN).
The first module (similarity module, upper part) generates an accurate clustering
result of the data, and calculates the similarity between all pairs of samples. The
input data is first filtered using a one-layer, non-negative kernel autoencoder to re-
move genes that have insignificant contribution to the global structure of the data.
Next, the data is projected onto a low-dimensional space to obtain a compressed data
matrix (latent data). Using this latent data, we cluster the samples into groups and
compute the similarity matrix for all samples. In the second module (imputation
module, lower part), zero values in input matrix are imputed using a neural network-
based imputation model. These imputed values are added to original data without
modifying the non-zeros values to produce the imputed data. The parameters of the
neural network are repeatedly adjusted so that the clustering assignments and sim-
ilarity matrix inferred from the imputed data is as similar to the output of the first
module as possible.
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6.2.2 Imputing dropout data using neural network

To impute the dropouts in single-cell data, we build a neural network that consists

of two sub-networks. The first network aims to infer the true value of zeros in the

data. The output is a matrix with the same size as the input, in which the values at

zero positions are modified. The non-zero values remain the same as of the original

data. The second network aims to infer the clusters of input cells and the Pearson

correlations between them. By minimizing the difference between the inferred results

and the results from the first module, the imputed values are ensured to have high

accuracy.

The formulation of the neural network can be written as:

XI = fI(X)

C + S = fP (XI)

where X ∈ Rn
+ is the input of the model (X is simply the original data), fI and

fP represent the transformation by the two sub-networks, fI imputes the zero values

in the data, fP predicts the clusters of the input cells and the correlations between

them, C is the clustering results, and S is the similarity matrix between all input

cells. The network is optimized by minimizing: (i) the binary cross entropy loss

between the inferred clusters and the clustering result from the first module, and (ii)

the mean square error loss between the inferred similarity matrix and the similarity

matrix calculated using the representations from the first module.

6.3 Validation and Analysis Results

We compare our method with four state-of-the-art imputation methods: DrImpute

[107], MAGIC [104], scImpute [105], and SAVER [106]. Each of these methods repre-
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sents a distinct strategy to single-cell data imputation: DrImpute integrates clustering

result from other software, MAGIC is a Markov-based technique, while scImpute and

SAVER use statistical models. Table 6.1 shows the 10 datasets used in our data anal-

ysis. These scRNA-seq datasets are available on NCBI [179], and ArrayExpress [180].

The processed data of the first 7 datasets are downloaded from Hemberg lab’s website

(https://hemberg-lab.github.io/scRNA.seq.datasets). In each dataset, the

cell sub-populations are known. We used this information a posteriori to assess how

the imputation methods improve the identification of cell populations, and how they

enhance the visualization of transcriptome landscapes.

For each dataset, we used the above methods to impute the data. The quality

of the imputed data is assessed using two downstream analyses: clustering and visu-

alization. For clustering, we partitioned the data using k-means and compared the

obtained partitioning against the true cell types using Adjusted Rand index (ARI)

[148]. For visualization, we used UMAP [62] to generate the 2D representation and

then calculated the silhouette index (SI) [149] of the 2D representation. SI measures

the cohesion among cells of the same type, as well as the separation between different

cell types.

6.3.1 scINN improves the identification of sub-populations

Given a dataset, we used the five methods to impute the data. After imputation, we

have 6 matrices: the raw data and five imputed matrices (from DrImpute, MAGIC,

scImpute, SAVER, and scINN). To assess how separable the cell types in each matrix

is, we reduced the number of dimensions using PCA and then clustered the data using

k-means where k is the true number of cell types. The accuracy of cluster assignments

is measured by ARI.

Figure 6.2 shows the ARI values for the raw and imputed data. Existing methods

https://hemberg-lab.github.io/scRNA.seq.datasets
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Table 6.1: Description of the 10 single-cell datasets used to assess the performance of
imputation methods.

Dataset Accession Tissue Sequencing Drop. Class Size
ID Protocol Rate

1. Yan GSE36552 Human Embryo Tang 0.456 6 90
2. Goolam E-MTAB-3321 Mouse Embryo Smart-Seq2 0.685 5 124
3. Deng GSE45719 Mouse Embryo Smart-Seq 0.605 6 268
4. Camp GSE75140 Human Brain SMARTer 0.801 7 734
5. Klein GSE65525 Mouse Embryo inDrop 0.658 4 2,717
6. Romanov GSE74672 Human Brain SMARTer 0.878 7 2,881
7. Baron GSE84133 Human Pancreas inDrop 0.906 14 8,569
8. Tasic GSE115746 Mouse Visual Cortex SMART-Seq 0.798 6 23,178
9. Zilionis GSE127465 Human Lung inDrop 0.982 9 34,558
10. Hrvatin GSE102827 Mouse Visual Cortex inDrop 0.942 8 48,266

improve cluster analysis in some datasets but decreases the ARI values in some others.

For example, SAVER has higher ARIs than the raw data for the Goolam, Camp,

Klein, Romanov, Baron, and Zilionis but has lower ARIs in the remaining 4 datasets.

scINN is the only method able to improve the clustering performance compared to

raw data in every dataset. Moreover, scINN has the highest ARIs in all but Zilionis

datasets. The average ARI of scINN-imputed data is 0.72, which is higher than those

obtained from raw data and data imputed by DrImpute, MAGIC, scImpute, SAVER

(0.52, 0.58, 0.48, 0.36, 0.53, respectively).

For a more comprehensive analysis, we also report the assessment using normal-

ized mutual information (NMI) and Jaccard index (JI) [168] in Figures 6.3 and 6.4,

respectively. Regardless of the assessment metrics, scINN outperforms other meth-

ods by having the highest NMI (9/10 datasets) and JI (9/10 datasets) values. These

results demonstrate that cluster analysis using scINN-imputed data leads to a better

accuracy than using the raw data or data imputed by other imputation methods.
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Figure 6.2: Adjusted Rand index (ARI) obtained from clustering on raw data and
data imputed by DrImpute, MAGIC, scImpute, SAVER, and scINN. The x-axis shows
the names of the datasets while the y-axis shows ARI value of each method. scINN
outperforms other methods in all datasets except Zilionis.

Figure 6.3: Normalized mutual information (NMI) obtained from clustering on raw
data and data imputed by DrImpute, MAGIC, scImpute, SAVER, and scINN. The
y-axis shows NMI value of each method. scINN outperforms other methods in all
datasets except Zilionis.
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Figure 6.4: Jaccard index (JI) obtained from clustering on raw data and data imputed
by DrImpute, MAGIC, scImpute, SAVER, and scINN. The y-axis shows JI value of
each method. scINN outperforms other methods in all datasets except Zilionis.

6.3.2 scINN improves transcriptome landscape visualization

In this subsection, we demonstrate that scINN improves the visualization of the single-

cell data. We used UMAP [62] to generate the transcriptome landscapes from raw and

data imputed by DrImpute, MAGIC, scImpute, SAVER, and scINN. We performed

data visualization and calculated the silhouette index for each of the 10 datasets.

Figure 6.5 shows the SI values obtained for the raw data and data imputed by the

five imputation methods. The figure shows that scINN can improve the quality of

data visualization in most of the datasets (8/10 datasets). These results demon-

strate that data imputation using scINN would lead to a much better visualization

of transcriptome landscapes compared to using raw data or data imputed by other

methods.

Figure 6.6 shows the transcriptome landscapes of the Klein dataset. The 2D

representation of scINN-imputed data is the only one that has four separable groups,

corresponding to the four real cell types. The landscapes generated using raw and

data imputed by other methods have different cell types mixed together. The data

imputed by scINN has the highest SI value (0.77 compared to 0.68 of the second

best).
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Figure 6.5: Visualization quality using raw and imputed data, measured by silhouette
index (SI). The y-axis shows SI value of each method.

Figure 6.6: Transcriptome landscape of the Klein dataset. The scatter plot shows
the first two principal components calculated by UMAP. Different colors represent
different cell types. The 2D representation generated by scINN has a clear structure,
where cells from different groups are separated from one other.
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6.4 Conclusion (scINN)

We introduced a new method, scINN, to recover the missing data caused by dropout

events in scRNA-seq data. We compared scINN with four state-of-the-art imputation

methods using 10 scRNA-seq datasets. scINN outperformed existing approaches in

improving the identification of cell sub-populations. scINN also improved the qual-

ity of transcriptome landscapes generated by UMAP. A potential improvement of

this research is to investigate the scalability of scINN by analyzing datasets with

higher number of cells. Another direction is to investigate the imputation method in

other research applications, including pseudo-time trajectory inference and supervised

learning.
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Chapter 7

scIRN: Single-cell RNA

Sequencing Data Imputation using

Deep Neural Network

This chapter is based on the following publication: Duc Tran, Bang Tran, Hung

Nguyen, Frederick C. Harris, Nam Sy Vo, and Tin Nguyen. Single-cell RNA

sequencing data imputation using deep neural network. In Proceedings of the 18th

International Conference on Information Technology-New Generations (ITNG),

2021.

Recent research in biology has shifted the focus toward single-cell data analysis.

The new single-cell technologies have allowed us to monitor and characterize cells in

early embryonic stage and in heterogeneous tumor tissue. However, current single-

cell RNA sequencing (scRNA-seq) technologies still need to overcome significant chal-

lenges to ensure accurate measurement of gene expression. One critical challenge is to

address the dropout event. Due to the low amount of starting material, a large por-

tion of expression values in scRNA-seq data is missing and reported as zeros. These
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missing values can greatly affect the accuracy of downstream analysis. Here we intro-

duce a neural network-based approach, named single-cell Imputation using Residual

Network (scIRN), that can reliably recover the missing values in single-cell data and

thus can effectively improve the performance of downstream analyses. To impute

the dropouts in single-cell data, we build a neural network that consists of two sub-

networks: imputation sub-network and quality assessment sub-network. We compare

scIRN with state-of-the-art imputation methods using 10 scRNA-seq datasets. In

our extensive analysis, scIRN outperforms existing imputation methods in improving

the identification of cell sub-populations and the quality of visualizing transcriptome

landscape.

7.1 Methodology

Here we propose a new approach, single-cell Imputation using Residual Network

(scIRN), that can reliably impute missing values from single-cell data. Our method

consists of two steps. The first step is to generate a compressed and accurate low-

dimensional representation of the original data. The second step is to estimate the

missing values using a neural network and information from the low-dimensional

representation. The approach is tested using 10 single-cell datasets in comparison

with four other methods. We demonstrate that scIRN outperforms existing impu-

tation methods (MAGIC [104], scImpute [105], SAVER [106], and DrImpute [107])

in improving the identification of cell sub-populations and the quality of biological

landscape.

The input of scIRN is an expression matrix, in which rows represent cells and

columns represent genes or transcripts. The overall workflow of scIRN is described

in Figure 7.1, which consists of two modules: (i) generating a low-dimensional, non-

redundant representation of the original data, and (ii) imputing the dropout values.
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The purpose of the first module is to remove redundant signals and noise from the

data. The output of the first module is a low-dimensional, non-redundant represen-

tation of the original data. This presentation is used as the target for the second

module. In the second module, we impute the original data using a residual net-

work. The parameters of the residual network are repeatedly adjusted so that the

compressed representation of the imputed data is as similar to the non-redundant

representation as possible. The details of each step are described in the following

sections.

7.1.1 Generating low-dimensional, non-redundant represen-

tation

To generate a compressed, low-dimensional representation of original data, we apply

our previously developed method, called scDHA [178]. scDHA consists of two core

modules. The first module is a non-negative kernel autoencoder that can filter out

genes or components that have insignificant contributions to data representation.

The second module is a Stacked Bayesian Self-learning Network that is built upon

the Variational Autoencoder [112] to project the filtered data onto a much lower-

dimensional space. The output of scDHA is a low-dimensional matrix that preserves

the global structure of the original data. This representation is used as the training

target for the imputation module.

7.1.2 Imputing dropout data using residual network

To impute the dropouts in single-cell data, we build a neural network that consists of

two sub-networks. The first network aims to infer the true value of zeros in the data.

The output is a matrix with the same size as the input, in which the values at zero

positions are modified. The non-zero values remain the same as of the original data.
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Figure 7.1: The overall workflow of single-cell Imputation using Residual Net-
work (scIRN). The first module (compression module) generates a compressed, low-
dimensional representation of original data. The input data is first filtered (using an
one-layer, non-negative kernel autoencoder) to remove genes that have insignificant
contribution to the global structure of the data. After that, we project the data
into a low-dimensional space to obtain a compressed data matrix (latent data). This
latent data is used as the training target for the imputation process. In the second
module (imputation module), zero values in input matrix are imputed using a neural
network-based imputation model. These imputed values are added to original data
without modifying the non-zeros values to produce the imputed data matrix. The
imputed data is compressed to a low-dimensional space (latent data). The parame-
ters of the imputation module is repeatedly optimized by minimizing the difference
between the two latent matrices.
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The second network aims to compress the imputed data to a lower dimension. This

compressed data has the same size as the representation generated in the first step.

By minimizing the difference between the representation generated from imputed data

and the representation from the first step, the imputed values are ensured to have

high accuracy.

The formulation of the neural network can be written as:

XI = fI(X)

Z ′ = fC(XI)

where X ∈ Rn
+ is the input of the model (X is simply the original data), fI and

fC represent the transformation by the two sub-networks, fI imputes the zero values

in the data, fC compresses the imputed data onto a lower-dimensional space, and

Z ′ ∈ Rm (m << n) is the compressed data. For the fI transformation, we use residual

network [113] for a more stable and accurate imputation process. The network is

optimized by minimizing ∥Z ′ − Z∥22, where Z is the low-dimensional representation

generated by scDHA.

7.2 Validation and Analysis Results

We compares our method with four state-of-the-art imputation methods: MAGIC

[104], scImpute [105], SAVER [106], and DrImpute [107]. Each of these methods

represents a distinct strategy to single-cell data imputation: MAGIC is a Markov-

based technique, DrImpute integrates clustering result from other software, while

scImpute and SAVER use statistical models. Table 7.1 shows the 10 datasets used

in our data analysis. The processed datasets were downloaded from Hemberg lab’s

website (https://hemberg-lab.github.io/scRNA.seq.datasets). In each dataset,

the cell sub-populations are known. We used this information a posteriori to assess

https://hemberg-lab.github.io/scRNA.seq.datasets
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how the imputation methods improve the identification of cell populations, and how

they enhance the visualization of transcriptome landscapes.

For each dataset, we used the above methods to impute the data. The quality

of the imputed data is assessed using two downstream analyses, clustering and visu-

alization. For clustering, we partitioned the data using k-means and compared the

obtained partitioning against the true cell types using Adjusted Rand index (ARI)

[148]. For visualization, we used UMAP [62] to generate the 2D representation and

then calculated the silhouette index (SI) [149] of the 2D representation. SI measures

the cohesion among cells of the same type, as well as the separation between different

cell types.

7.2.1 scIRN improves the identification of sub-populations

Given a dataset, we used the five methods to impute the data. After imputation, we

have 6 matrices: the raw data and five imputed matrices (from MAGIC, scImpute,

SAVER, DrImpute, and scIRN). To assess how separable the cell types in each matrix

is, we reduced the number of dimensions using PCA and then clustered the data using

k-means. The accuracy of cluster assignments is measured by ARI.

Figure 7.2 shows the ARI values for the raw and imputed data. Existing methods

improve cluster analysis in some datasets but decreases the ARI values in some others.

Table 7.1: Description of the 10 single-cell datasets used to assess the performance of
imputation methods.

Dataset Tissue Size Class Protocol Accession ID Reference
1. Deng Mouse Embryo 268 6 Smart-Seq2 GSE45719 Deng et al., 2014 [120]
2. Pollen Human Tissues 301 11 SMARTer SRP041736 Pollen et al., 2014 [121]
3. Usoskin Mouse Brain 622 4 STRT-Seq GSE59739 Usoskin et al., 2015 [125]
4. Kolodziejczyk Mouse Embryo Stem Cells 704 3 SMARTer E-MTAB-2600 Kolodziejczyk et al., 2015 [126]
5. Xin Human Pancreas 1,600 8 SMARTer GSE81608 Xin et al., 2016 [128]
6. Muraro Human Pancreas 2,126 10 CEL-Seq2 GSE85241 Muraro et al., 2016 [130]
7. Klein Mouse Embryo Stem Cells 2,717 4 inDrop GSE65525 Klein et al., 2015 [132]
8. Romanov Mouse Brain 2,881 7 SMARTer GSE74672 Romanov et al., 2017 [133]
9. Zeisel Mouse Brain 3,005 9 STRT-Seq GSE60361 Zeisel et al., 2015 [108]
10. Baron Human Pancreas 8,569 14 inDrop GSE84133 Baron et al., 2016 [129]
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For example, MAGIC has higher ARIs than the raw data for the Deng, Usoskin,

Muraro, Klein, Romanov, and Baron but has lower ARIs in the remaining 4 datasets.

scIRN is the only method able to improve the clustering performance compared to

raw data in every dataset. Moreover, scIRN has the highest ARIs in all but Usoskin

datasets. The average ARI of scIRN-imputed data is 0.77, which is higher than those

obtained from raw data and data imputed by MAGIC, scImpute, SAVER, DrImpute

(0.44, 0.41, 0.46, 0.43, 0.58, respectively).

For a more comprehensive analysis, we also report the assessment using normalized

mutual information (NMI) and Jaccard index (JI) in Figures 7.3 and 7.4, respectively.

Regardless of the assessment metrics, scIRN outperforms other methods by having

the highest NMI (10/10 datasets) and JI (9/10 datasets) values. These results demon-

strate that cluster analysis using scIRN-imputed data leads to a better accuracy than

using the raw data or data imputed by other imputation methods.

7.2.2 scIRN improves transcriptome landscape visualization

In this section, we demonstrate that scIRN improves the visualization of the single-cell

data. We used UMAP [62] to generate the transcriptome landscapes from raw and

data imputed by MAGIC, scImpute, SAVER, DrImpute, and scIRN. We performed

data visualization and calculated the silhouette index for each of the 10 datasets.

Figure 7.5 shows the SI values obtained for the raw data and data imputed by the

five imputation methods. The figure shows that scIRN can improve the quality of

data visualization in all datasets. scIRN also has the highest SI in each of these

datasets. These results demonstrate that data imputation using scIRN would lead to

a much better visualization of transcriptome landscapes compared to using raw data

or data imputed by other methods.

Figure 7.6 shows the transcriptome landscapes of the Usoskin dataset. Using
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Figure 7.2: Adjusted Rand index (ARI) obtained from clustering on raw data and
data imputed by MAGIC, SAVER, scImpute, DrImpute, and scIRN. The x-axis shows
the names of the datasets while the y-axis shows ARI value of each method. scIRN
outperforms other methods in all datasets except Usoskin.
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Figure 7.3: Normalized mutual information (NMI) obtained from clustering on raw
data and data imputed by MAGIC, SAVER, scImpute, DrImpute, and scIRN. The
x-axis shows the names of the datasets while the y-axis shows NMI value of each
method. scIRN outperforms other methods in all datasets.
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Figure 7.4: Jaccard index (JI) obtained from clustering on raw data and data imputed
by MAGIC, SAVER, scImpute, DrImpute, and scIRN. The x-axis shows the names
of the datasets while the y-axis shows JI value of each method. scIRN outperforms
other methods in all datasets except Usoskin.

scIRN imputed data, UMAP was able to generate a clear representation, where cells

from different groups are well-separated. When using data imputed by other methods,

cells are usually mixed together. scIRN outperformed other imputation methods by

having the highest SI value (0.67 compared to 0.28, -0.09, 0.14, 0.26, 0.5 of raw data,

MAGIC, scImpute, SAVER, and DrImpute, respectively).

Figure 7.7 shows the transcriptome landscapes of the Klein dataset. The 2D

representation of scIRN-imputed data is the only one that has four separable groups,

corresponding to the four real cell types. The landscapes generated using raw and

data imputed by other methods have different cell types mixed together. The data

imputed by scIRN has the highest SI value (0.89 compared to 0.61 of the second

best).

7.3 Conclusion (scIRN)

We introduce a new method, scIRN, to recover the missing data caused by dropout

events in scRNA-seq. We assess the performance of our approach using 10 single-

cell datasets in a comparison with four current state-of-the-art imputation methods.
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Figure 7.5: Visualization quality using raw and imputed data, measured by silhouette
index (SI). The x-axis shows the names of the datasets while the y-axis shows SI value
of each method. scIRN outperforms other methods in all datasets.
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Figure 7.6: Transcriptome landscape of the Usoskin dataset. The scatter plot shows
the first two principal components calculated by UMAP. Different colors represent
different cell types. The 2D representation generated by scIRN has a clear structure,
where cells from different groups are separated from one other.
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Figure 7.7: Transcriptomics landscape of the Klein dataset. The scatter plot shows
the first two principal components calculated by UMAP for raw and imputed data.
The 2D representation generated from scIRN has a clear structure, where cells from
different groups are separate from each other.

Our analysis shows that scIRN outperforms existing approaches in improving the

identification of cell sub-populations. scIRN also improves the quality of transcrip-

tome landscapes generated by UMAP. A potential improvement of this research is

to investigate the scalability of scIRN by analyzing datasets with higher number of

cells. Another direction is to investigate the imputation method in other research

applications, including pseudo-time trajectory inference and supervised learning.
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Part III

Summary
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Chapter 8

Conclusion

Advances in next generation sequencing techniques have produced a vast amount bi-

ological data from different modalities. However, studying biological systems using

multiple levels of data, from tissue level with multi-omics to single-cell level with

scRNA-seq, is still an ongoing challenge. To this end, we presented novel compu-

tational approaches to translate the high-dimensional, large-scale biological data to

knowledge and insights of complex diseases.

First, we proposed a novel method for multi-omics data integration, disease sub-

typing, and risk assessment. Our method, called Subtyping via Consensus Factor

Analysis (SCFA), aims to address the limitations of current integrative methods in-

cluding their statistical assumption, and their sensitivity to noise. The contribution

of SCFA is two-fold. First, it utilizes a robust dimension reduction procedure using

autoencoder and factor analysis to retain only essential signals. Second, it allows re-

searchers to predict risk scores of patients using multi-omics data – the attribute that

is missing in current state-of-the-art subtyping methods. We validated our method by

comparing it with current state-of-the-arts using data obtained from 7,973 patients

related to 30 cancer diseases downloaded from The Cancer Genome Atlas (TCGA).

We demonstrated that our method was able to exploiting the complementary sig-
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nals available in different types of data in order to improve the accuracy of disease

subtyping and risk prediction tasks.

Second, we introduced a powerful deep learning-based framework for scRNA-seq

data analysis, called called single-cell Decomposition using Hierarchical Autoencoder

(scDHA). The method aims to address the computation challenges of single-cell data

analysis including the exponentially increasing in size of scRNA-seq dataset and tech-

nical noise. The scDHA framework includes two main modules. The first module is

a non-negative kernel autoencoder that is capable of filtering out the noisy features

and improving the quality of the data. The second module is a Stacked Bayesian

Autoencoder that is built upon the Variational Autoencoder [112] (VAE) to project

the data onto a low-dimensional space. The low-dimensional representation has much

lower number of features than the original data, while still retaining most of the in-

formation in the original data. We demonstrated that using this low-dimensional

representation would improve both accuracy and scalability of single-cell data anal-

ysis. For our evaluation, we compared scDHA against state-of-the-arts using 34 real

scRNA-seq datasets in four different research sub-fields including de novo cluster-

ing of cells, visualizing the transcriptome landscape, classifying cells, and inferring

pseudo-time. We showed that scDHA outperforms other methods in each sub-fields

by having significantly higher accuracy and lower time complexity.

Third, we proposed a new method, name single-cell Imputation via Subspace Re-

gression (scISR), to mitigate the effects of dropout events that frequently happen

during the sequencing process of individual cells. The contribution of scISR is two-

fold. First, by introducing a hypothesis testing procedure, we avoid altering true

zero values. Second, the subspace regression provides a more accurate imputation by

limiting the imputation to gene groups with similar expression patterns. We com-

pared our approach with state-of-the-art methods using 25 real scRNA-seq datasets
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and 46 simulated datasets. We demonstrated that scISR outperforms other imputa-

tion methods in improving the quality of clustering analysis. At the same time, we

also demonstrated that scISR preserves the transcriptome landscape of each dataset.

Lastly, we showed that scISR is robust against different dropout rates and distribu-

tions. Moreover, because scISR is capable of improving data quality without filtering

out features from data, it can be seamlessly incorporated into other single-cell analysis

pipelines.

Finally, we introduced two new methods, single-cell Imputation using Neural Net-

work (scINN) and single-cell Imputation using Residual Network (scIRN), to recover

the missing data caused by dropout events in scRNA-seq data. We compared our

methods with four state-of-the-art imputation methods using 10 scRNA-seq datasets.

Both methods outperformed existing approaches in improving the identification of

cell sub-populations. They also improved the quality of transcriptome landscapes

generated by UMAP. A potential improvement of this research is to investigate the

scalability of scINN by analyzing datasets with higher number of cells. Another direc-

tion is to investigate the imputation method in other research applications, including

pseudo-time trajectory inference and supervised learning.



164

Chapter 9

Future Research

For future work, I plan to modify the proposed methods so that they can be applied

in conjunction with other analysis methods that the colleagues in my current research

laboratory is developing, including gene networks [65, 181–192], meta-analysis [193–

198], cancer subtyping [44, 45, 199–211], single-cell analysis [158, 176, 178, 212–218],

and other important research areas [219–232]. There are also two immediate directions

that can be investigated to improve the accuracy of the developed techniques:

• Early multi-omics data integration: The current approach used in SCFA in-

cludes analyzing and subtyping each data type individually, then generating

consensus subtypes from these results. This approach is categorized as a late

stage data integration approach. While SCFA is capable of producing signifi-

cantly different subtypes, the limitation of this approach is that it does not take

into consideration the direct interactions between different data types within in

the cell, e.g., miRNA can prevent protein translation of mRNA, or methyla-

tion of DNA can deactivate a gene transcription. We will work on developing

a method that can generate a single low-dimensional representation of multi-

ple data types. Because this representation is not only expected to contain the
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condensed information from different data types, but also their interactions, the

subtyping result using the representation should be more accurate and clinically

relevant.

• Improvement of autoencoder-based scRNA-seq analysis framework: The scDHA

framework is built upon the Variational Autoencoder, which assumes that the

latent space is normally distributed. Although the current framework is able to

remove noise from the original data and generate an informative low-dimensional

representation, the latent space with normal distribution might not be the best

choice to represent the original data. We will investigate the performance of

scDHA framework with other latent distributions that could be more suitable

for single-cell data including Poisson, Negative Binomial, and Zero-Inflated Neg-

ative Binomial distributions, etc. We can also replace Variational Autoencoder

with a more recent architecture such as Generative Adversarial Network [233].

Finally, we can extend the scDHA framework to be able to utilize the available

single-cell data to a new dataset through transfer learning.

For the longer term, I plan to further improve the proposed techniques by improv-

ing the based computational model using more advanced techniques. By continuously

refining and expanding these computational tools, the scientific community can har-

ness the full potential of biological data and accelerate the discovery of novel biological

insights, ultimately benefiting human health and well-being.
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Michaela Wilsch-Bräuninger, Eric Lewitus, Alex Sykes, Wulf Hevers, Madeline

Lancaster, Juergen A Knoblich, Robert Lachmann, Svante Pääbo, Wieland
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Appendix A

Evaluation metrics

Adjusted Rand Index (ARI) [148] is the corrected-for-chance version of the Rand

Index, which measures the agreement between a given clustering and the ground

truth. RI is calculated as:

RI =
a + b

a + b + c + d
=

a + b(
N
2

) (A.1)

where a is the number of pairs that belong to the same true group and are clustered

together, b is the number of pairs that belong to different true groups and are not

clustered together, c is the number of pairs that belong to the same groups and are

not clustered together, d is the number of pairs that belong to different groups and

are clustered together, and
(
N
2

)
is the number of possible pairs that can be formed

from the N patients. The ARI takes values from -1 to 1, with the ARI expected to

be 0 for a random clustering.

Jaccard index (JI) is also known as Intersection over Union. In our context, The

Jaccard index is basically the number of pairs that belong to the same true group

and are clustered together (a), divided by the number of pairs that are either in the
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same true group (b) or are clustered together (c). JI is calculated as:

J =
a

a + b + c
(A.2)

Normalized Mutual Information (NMI) is a normalized version of Mutual Infor-

mation (MI). Denoting X as the true labeling of the samples and Y is the partitioning

obtained from a clustering method, the NMI is calculated as:

NMI =
1

2
× I(X;Y )

H(X) + H(Y )
(A.3)

where I(X;Y ) is the mutual information between X and Y . H(X) is the entropy of

the true partition X and H(Y ) is the entropy of the partition obtained from clustering.

The NMI value take a range from 0 to 1 in which 1 indicates a perfect match between

true labels and clusters. In contrast, 0 value means no mutual information between

true labels and clusters.
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