
MGKA: A genetic algorithm-based clustering
technique for genomic data

Hung Nguyen
University of Nevada

Reno, NV, USA
hungnp@nevada.unr.edu

Sushil J. Louis
University of Nevada

Reno, NV, USA
sushil@cse.unr.edu

Tin Nguyen
University of Nevada

Reno, NV, USA
tinn@unr.edu

Abstract—Advances in high-throughput technologies have gen-
erated enormous amounts of high-throughput genomic data.
Cluster analysis is often the first step to gain insights into genomic
data. K-means, the most widely used clustering algorithm, is
known to produce sub-optimal clusters depending on the choice of
initialized centers. In this paper, we propose a genetic algorithm-
based unsupervised clustering method that searches for the
optimal centers of clusters based on the concept of k-means.
The genetic algorithm reduces k-means sensitivity to randomly
initialized centers and reduces the probability of converging to
local minima. Two clustering validity indexes are introduced to
the selection process to automatically determine the appropriate
number of clusters. The proposed algorithm is applied to 16
disease datasets and four single-cell datasets to demonstrate its
performance. Results show that our approach outperforms the
current state of the art algorithms on a majority of the datasets.

Index Terms—genetic algorithm, clustering, gene expression,
single cell, disease subtyping

I. INTRODUCTION

Cluster analysis has become a widely used tool for the
exploration of high-dimensional data. Cluster analysis is an
unsupervised approach to categorize objects without any pre-
defined standards or knowledge for classification. In general,
clustering methods aim to recognize the differences and sim-
ilarities between objects so that the most similar objects will
be grouped into one cluster and vice versa. Advances in high-
throughput technologies, which produce a huge amount of ge-
nomic information, put a high demand on clustering methods
that analyze gene expression data with disease subtypes and
cell types discovery, two of the main application areas for
clustering.

Due to the noisy nature of genomic data and its undefined
structures, it is impossible to find a universal clustering
approach that works efficiently on these data. Along with
classical clustering methods such as k-means [1], partition
around medoids [2] and hierarchical clustering, many other
modern techniques have been developed recently to tackle the
clustering problems of genomic data [3]. The k-means clus-
tering method, which is a broadly used and well-considered
clustering technique, was found to be efficient for clustering
cancer datasets [3]. The k-means clustering technique is simple
to use and easy to implement and one of the most straight-
forward algorithms to understand. With a predefined number
of clusters k, the algorithm tries to find k centroids in the

multiple-dimensional space from a set of random centers so
that every data point is allocated to an adjacent centroid. A
detailed discussion about the algorithm can be found in [4].

However, the k-means algorithm is known to be sensitive
to initial conditions and does not guarantee to produce global
optimal clusters. The clustering results heavily depend on the
starting center points which are (usually) randomly initialized.
Therefore, the algorithm is susceptible to converge into to a
local optimum. Furthermore, the number of clusters must be
given as an input parameter for the k-means clustering tech-
nique. Without any prior knowledge of the data, determining
the appropriate number of clusters is considered a difficult
task.

A few efforts have been accounted for to take care of the
clustering initialization problem. The most common and naive
technique is to attempt the k-means algorithm multiple times
with different initial seeds and gather the best result. However,
the best-obtained solution from this stochastic procedure does
not often produce globally optimal clusters. Note that finding
globally optimal clusters is known to be an NP-hard problem.
Several techniques have been introduced to refine the starting
points for the k-means clustering method [5]–[9]. On the other
hand, many other studies have tried to combine k-means with
other heuristic algorithms to prevent k-means from converging
into local minima including simulated annealing [10], [11] and
genetic algorithm [12].

The genetic algorithm (GA) is a powerful technique for
optimization problems based on natural selection and ge-
netics. GAs have been applied to many function optimiza-
tion problems and have been shown to be good at finding
optimal and near-optimal solutions. The basic methods of
the genetic algorithm are designed to reproduce processes in
normal systems necessary for evolution based on the principle
of survival of the fittest. Although the initial population is
randomized, the GA is by no means random. It chronologically
directs the population in the search space by probabilistic
applying genetic operators including selection, crossover, and
mutation. In general, the selection operator selects individuals
from the current population for the next population with a
probability proportional to the individual’s fitness relative to
the fitness of the rest of the population. Crossover operates
on two individuals (parents) to produce two new individuals
(offspring) inheriting some of the attributes from their parents.

978-1-7281-2153-6/19/$31.00 c©2019 IEEE 103

The mutation operator changes the genomic structure of an
individual at some point in hope that the mutated individual
will help maintain diversity for crossover and selection to
exploit. Depending on the specificity of the problem, the
selection, the crossover, and the mutation procedures in the
GA may vary.

There have been many studies attempt to apply GA to
refine the k-means algorithm [13]–[18]. However, many of
them omit the crossover procedure and greatly depend on the
selection and mutation operator. On the other hand, none of
those methods has taken into account the problem of choosing
the appropriate number of cluster for the k-means algorithm. In
this paper, we proposed a Multi-objective Genetic algorithm-
based K-means Algorithm (MGKA) to refine the k-means
clustering algorithm and to automatically determine a suitable
number of clusters. The algorithm presents each individual
as a set of centroids for a solution. It at the same time
holds a population of individuals that encode for different
numbers of clusters. MGKA will concurrently optimize the k-
means objective function and also a clustering validity index
to evaluate the fitness of an individual. The performance of
the proposed algorithm is evaluated by comparing with naive
k-means on simulated datasets. With real datasets, we compare
our method with five other methods that were particularly
developed for clustering genomic data. We compare our al-
gorithm with three other well-known methods developed for
disease subtyping including Consensus Clustering [19], Simi-
larity Network Fusion [20] and iClusterPlus [21] on 16 disease
datasets. Lastly, we evaluate our algorithm on four single-
cell datasets and compare it with two methods developed for
single-cell clustering including SC3 [22] and SEURAT [23]
methods.

II. RELATED WORK ON GENETIC CLUSTERING ALGORITHM

Several studies address genetic algorithm to solve clustering
problems using label-based representation for solution [13],
[15], [18], [24]. Label-based representation uses integer encod-
ing to present cluster membership. For example, providing k
number of clusters (e.g. k = 3), the integer vector [111222233]
indicates that the first three data points belong to the cluster
#1, the next four data points belong to cluster #2, and the last
two data points belong to cluster #3. This encoding is however
redundant. For example, the cluster membership integer vector
[111222233] is equivalent to [222111133]. With the same
solution, there will be k! different encodings. Therefore, the
size of the search space for genetic algorithm significantly
increases when the number of clusters k increases, which may
reduce the efficiency of the genetic algorithm.

Comparing to label-based representation, medoid-based and
centroid-based representations, which encode only the centers
of the clusters, are more efficient in terms of the size of
the search space. However, the ultimate benefits of each
representation are still hard to evaluate and compare because
performance also greatly depends on the design of the fitness
function. Several methods make use of medoid-based represen-
tation using integer encoding to encode the solution [25], [26].

The previous cluster membership example [111222233] can be
encoded as [2 5 8] in k-medoids approach in which the second,
fifth, and eighth data points are three centers represented for
three clusters. Other data points are then assigned to each
cluster using these centers. Centroid-based representation, on
the other hand, uses real-number encoding to represent the
center of clusters. Unlike medoid-based representation which
uses data points in the input data as cluster centers, cluster
centers in centroid-based representation can be any point in
the multi-dimensions space. Therefore, a solution now is rep-
resented by a set of coordinates. For example, the real-number
vector [7.2 0.3 8.4 4.2 7.5 6.1] illustrates three cluster centers
A(7.2, 0.3), B(8.4, 4.2), and C(7.5, 6.1). This representation
is adopted by Maulik and Bandyopadhyay [27] and several
other papers [28]–[30].

Traditional genetic crossover is strongly adopted in genetic-
based clustering algorithms. Many studies applied one-point
crossover to produce offspring for both integer encoding
solutions and real-number encoding solutions [24], [27]–[29].
Figure 1 describes one point crossover for integer encoding (A)
and real-number encoding (B). However, the naive one-point
crossover can produce invalid offspring as described in Figure
1C. On the other hand, one-point crossover on a real-number
encoding can be very destructive to the population since it
can generate significantly different offspring compared to its
parents. In high dimension data, this operation tends to swap
the centers between parents rather than moving them in the
high-dimensional space. Crossover can also be omitted, such
as in Krishna and Murty’s method [13].

1 1 1 2 2 2 2 3 31 1 1 2 2 2 2 3 3
2 2 1 1 1 3 3 3 3

1 1 1 2 2 3 3 3 3
2 2 1 1 1 2 2 3 3

7.2 0.3 8.4 4.2 7.5 6.1

3.8 6.3 8.1 3.5 9.6 6.5

7.2 0.3 8.4

4.2 7.5 6.13.8 6.3 8.1

3.5 9.6 6.5

A B

1 1 1 1 1 2 2 3 3
2 2 1 1 1 3 3 3 3

1 1 1 1 1 3 3 3 3
2 2 1 1 1 2 2 3 3

C

Fig. 1. One point crossover for (A) integer encoding and (B) real-number
encoding. (C) Invalid offspring from one point crossover for integer encoding.

With label-based representation, mutation can be as simple
as assigning a data point to a random cluster. However, it
can generate invalid solutions. Krishna and Murty [13] design
a mutation operator that assigns a new cluster for a data
point based on the distances of the cluster centroids from the
corresponding data point. The cluster that has the centroid
closer to the data point will have a higher probability of
being assigned to that data point. This mutation principle is

104

also adopted by Lu et al. [15], [18]; however, such methods
have been found to create empty clusters. Other papers using
real-number encoding [27]–[29] operate mutation by slightly
modifying the centroids. By modifying the centroids, this
mutation may change the membership of some data points
in relation to the clusters represented by the solution. It can
also shake the centers out of the local optimum.

K-means is also used in several methods to refine the genetic
algorithm generated results [18], [27], [29]. With each gener-
ation, one or multiple steps of k-means are applied to certain
solutions during the mutation process or to all individuals in
the population. This operation is especially helpful in urging
the genetic algorithm to converge and in refining the ultimate
solutions. However, it can also trap solutions at local optima.

In this paper, we make use of real-number encoding to en-
code the cluster centers in a way such that the number of clus-
ters encoded by a solution is dynamic. We use simulated binary
crossover [31] which applies crossover for every dimension
of the centers in the solution. This crossover operation will
generate offspring close to their parents. Besides adding noise
to the cluster centers to avoid the convergence of the genetic
algorithm to local optimum, our mutation operation can also
change the number of clusters that a solution represents. We
also make use of the k-means operator to refine the solutions.
The details of each operation will be discussed in the next
section.

III. MULTI-OBJECTIVE GENETIC K-MEANS CLUSTERING
ALGORITHM

We describe a new multi-objective genetic k-means clus-
tering algorithm using real-number center-based encoding to
present solutions with a dynamic number of clusters. Each
solution (chromosome) has two encoded regions as shown in
Figure 2. The first region encodes the status of each center,
which is either active (1) or disabled (0). The second region
encodes the coordinates of each center. Figure 2 represents
a solution for two-dimensional input data where the number
of clusters is two. In this example, the maximum number of
clusters is three. However, this number can be higher. The
number of coordinates for each center depends on the number
of dimensions in the input data.

4.2 7.5 6.13.8 6.3 8.1
center1 center2 center3

1 0 1

(active) (active)(disabled)

coordinatescenter status

Fig. 2. Chromosome encoding of a two-cluster solution for two-dimension
data with the maximum cluster it can encode is three.

This chromosome encoding allows us to hold solutions with
different numbers of clusters in the same population. It also
allows us to change the number of cluster of a solution through
mutation, which prevents solutions with the same number of
clusters from dominating the population.

The population is randomly initialized by selecting random
data points and assigning their coordinates to cluster centers.
With predefined maximum cluster numbers kMax from users,
each number of clusters k is initialized with the same number
of solutions.

A. The fitness functions
The fitness of individuals is evaluated using three different

criteria including: i) within-cluster sum of squares, ii) Davies
and Bouldin index [32], and iii) Silhouette index [33]. We
describe each of these in turn below.

Within cluster sum of squares (WCSS) is the objective
function of the original k-means. Denoting k as the number
of clusters, {ci, i ∈ [1..k]} as the cluster centers, and {Ci, i ∈
[1..k]} as the k clusters (each cluster consists of many data
points), the within-cluster sum of squares is defined as:

WCSS =
k∑

i=1

∑

j∈Ci

‖xj − ci‖2

where ‖xj − ci‖2 is the Euclidean squared distance between
data point xj and center ci. A better solution will have a
smaller WCSS value.

Davies and Bouldin (DB) index is a function of the
sum of within-cluster scatter to between-cluster separation. A
better solution will have a smaller DB(k) value. DB index is
calculated as follows:

DB(k) =
1

k

k∑

i=1

max
i6=j

(
δi + δj
dij

)

where
• k is the number of clusters,
• i, j are the ith and jth cluster respectively,
• dij is the distance between centers ci and cj ,
• δi and δj are the dispersion measure of a cluster Ci and
Cj , respectively. For example, Ci the standard deviation
of the distance of data points in cluster Ci to the center
of this cluster ci.

Silhouette index (SI) measures how similar an object
is to its own cluster (cohesion) compared to other clusters
(separation). A better solution will have higher SI value. The
silhouette index is computed as follows:

SI =

∑n
i=1

b(i)−a(i)
max{a(i);b(i)}
n

where
• a(i) =

∑
j∈{Cr\i} dij

nr−1 is the average dissimilarity of the
ith object to all other objects of cluster Cr,

• b(i) = min
s6=r
{diCs}, in which diCs =

∑
j∈Csdij

ns
is the

average dissimilarity of the ith object to all objects of
cluster Cs.

By using all of the three metrics (WCSS, DB, and SI), the
fitness function will evaluate how similar each member is in
the same cluster and how well the clusters are separated.

105

B. The crossover operator

The crossover operator is performed by using the simulated
binary crossover proposed by Agrawal, R. B. et al. [31] on
parents that have the same number of clusters. The crossover
operator is performed by using the simulated binary crossover
proposed by Agrawal et al. [31]. The crossover procedure is
described as in Figure 3. For each pair of parents (Parent1
and Parent2) that have the same number of clusters selected
randomly from the population, the simulated crossover is
applied to each coordinate of the centers in Parent1 with
the corresponding coordinate of the centers in Parent2.

4.2 7.5 6.13.8 6.3 8.11 0 1

0.5 5.7 4.54.7 2.45.51 1 0

Parent1

Parent2

center1 center2

center1 center2

SBX

Fig. 3. Crossover procedure between two parents. Simulated binary crossover
is applied to (1) each coordinate of center1 of Parent1 with corresponding
coordinate of center2 of Parent2, and (2) each coordinate of center2 of
Parent1 with corresponding coordinate of center1 of Parent2.

First, the Euclidean distance is calculated between any
centers of Parent1 and Parent2. Simulated binary crossover
is then applied to each coordinate of the corresponding dimen-
sion of the closest centers between two parents. These centers
are then removed from the crossover center list. The procedure
is applied to the rest of the centers of the two parents until no
center is left. The results of another example of the crossover
operator can be seen in Figure 4.

C. The mutation operator

Mutation shakes the centers out of a local optimum and
moves them, hopefully, towards the global optimum. Within
the mutation operator, there are two functions that can be
applied to each solution including (1) adding noise to the
centers of each cluster and (2) changing the number of clusters.

Noise is added to the centers of each cluster using Gaussian
noise. The noise added to the data will have the variance equal
to the variance of the data. By setting the variance of the
added noise equal to the median variance of the data, we aim
to sufficiently shake the centers out of local optima. If the
added noise is considerably higher, the new centers will be
moved further from the original points, which can destroy the
solution. On the other hand, if the noise is low, the new centers
will only move close to the original centers which can result
in being trapped in a local optimum.

The mutation operator can also change the number of
clusters and solutions by activating or disabling a center.
Activating a center will select a random data point and add
its coordinates to a new center. Disabling a center will select
a random center in the solution and mark it as disabled.

−20 −10 0 10 20 30

−2
0

−1
5

−1
0

−5
0

5
10

PC1
PC

2

Crossover operator

Parents’ centers
Offspring’s centers

Fig. 4. Offspring resulted from simulated binary crossover. Red dots represent
centers of two parents and green dots represent centers of two corresponding
offspring .

D. The k-means operator

The k-means operator is applied to speed up the conver-
gence of the algorithm by applying one step of the k-means
algorithm to the solution. For each generation, the k-means
operator is applied with a predefined probability by the users
for each solution. The procedure starts with assigning each
data points to the closest center in the solution, the centers
are then adjusted using the mean of the data points assigned
to that center.

The k-means operator, however, can produce an illegal
solution with empty clusters. If the adjusted solution contains
empty clusters, a random data point will replace the center
having empty members. The k-means operator is then re-
applied until a valid solution is produced.

E. The selection operator

The goal of the selection operator is to find the Pareto
front of the three objective functions. In this paper, we make
use of the selection procedure proposed by Deb, K. et al.
[34]: Non-dominated Sorting Genetic Algorithm (NSGA-II).
The principle of the selection is to arrange the population
into a hierarchy of non-dominated Pareto fronts and use a
crowding distance to prevent solutions from concentrating in
the region at the level of the Pareto fronts (Figure 5). The
detail implementation of the algorithm is described in [34].

F. Evaluating the ultimate solution

Although NSGAII was designed to produce a dispersed
pareto front and in practice we can present the entire pareto
front to a domain expert user to choose from, we may still wish
to identify an “ultimate” solution as the result of our algorithm.
We start by considering all individuals in the final Pareto front.

106

-

Rejected

Non-dominated
sorting

Crowding distance
sorting

Pt

Qt

Rt

F1

F2

F3

Pt+1

Fig. 5. Non-dominated Sorting Genetic Algorithm (NSGA-II) where t is the
population generation, P is the parents, Q is the offspring, and Fi is the
Pareto front level ith.

We then select the best solution along each objective. If the
best solutions for two index value are different, each solution
will be ranked based on its other index value compared to
other solutions in our pareto set. The solution that has better
rank will be extracted as the ultimate solution.

IV. EXPERIMENTAL RESULTS

A. Results on simulation

We first validate the framework from a theoretical perspec-
tive by comparing the new method with the original k-means.
In this section, we compare the performance of MGKA with
k-means on generated datasets with a large number of clusters.
It is known that k-means does not produce a global optimum.
Therefore, we run k-means multiple times in order to obtain
results that are at least close to global optimum. Here we set
the number of times we run k-means equal to the population
size of MGKA, which is 50. The simulation generates datasets
with the number of clusters from 10 to 15; each cluster is well
separated and has 10 members. The landscape of the simulated
data with k = 10 is described as in Figure 6. We use the
kmeans function in stats package, R programming language
to obtain the clustering result from k-means algorithm.

The average result of 30 runs for each k is represented in
Table I. We use the within-cluster sum of square errors and
Adjusted Rand Index (ARI) to compare the result between two
algorithms. Table I shows that MGKA outperforms k-means
in all of the datasets. Adjust Rand Index (ARI) values for
clusters produced by MGKA in all datasets show that MGKA
can easily achieve the global optima in all simulated datasets.
K-means, on the other hand, produces sub-optimal solutions
most of the times. The average ARI of 30 runs also shows
that MGKA is much more stable compared to k-means. The
within-cluster sum of squares shows significant differences
among clusters produced by MKGA and k-means. The results
from k-means are also too far away from optimal solutions.

−10 0 10 20

−2
0

−1
0

0
10

20

Simulated dataset with k = 10

PC1
PC

2

Fig. 6. The landscape of simulated dataset with the number of cluster is ten.
Each cluster is well separated to each other and has ten members.

TABLE I
WITHIN CLUSTER SUM OF SQUARE ERRORS AND ADJUST RANDOM INDEX

(ARI) OF CLUSTERING RESULT PRODUCED BY MGKA AND K-MEANS
WITH RESTARTS.

#k #Samples WithinSS ARI
MGKA k-means MGKA k-means

10 100 457.237 782.051 1 0.963
11 110 461.326 996.554 1 0.954
12 120 520.686 913.989 1 0.939
13 130 598.247 910.19 0.993 0.914
14 140 547.731 1136.477 1 0.931
15 150 630.188 1074.967 1 0.929

B. Results on cancer omics data

Here we demonstrate the application MGKA in the context
of cancer subtyping using multi-omics data. In order to assess
the performance of MGKA, we compare the results of MGKA
with those of wide used methods in this field, including Con-
sensus Clustering (CC) [19] – a resampling-based approach,
Similarity Network Fusion (SNF) [20] – a graph-theoretical
approach, and iClusterPlus [21] – a mixture model approach.
We CC, SNF, and iClusterPlus, we use the default param-
eter settings. The parameters for MGKA after this section
are: population size = 20, the number of generations = 20,
crossover probability = 1, mutation probability = 0.01, and
k-means operator probability = 0.5.

First, we compare the four methods using eight mRNA
gene expression datasets with known disease subtypes.
The 5 datasets with accession id GSE10245, GSE19188,
GSE43580, GSE15061, and GSE14924 were downloaded
from Gene Expression Omnibus (www.ncbi.nlm.nih.gov/
geo/). The other three datasets were downloaded from

107

TABLE II
DESCRIPTION OF THE EIGHT MRNA DATASETS USED IN OUR ANALYSIS. THE TOP FIVE DATASETS WERE DOWNLOADED FROM THE GENE EXPRESSION

OMNIBUS. THE BOTTOM THREE DATASETS WERE DOWNLOADED FROM THE BROAD INSTITUTE WEBSITE.

Datasets #Class #Sample #Feature Platform Description

GSE10245 [35] 2 58 19851 hgu133plus2 40 adenocarcinomas and 18 squamous cell carcinomas
GSE19188 [36] 3 91 19851 hgu133plus2 45 adenocarcinomas, 19 large cell carcinomas, and 27 squamous cell carcinomas
GSE43580 [37] 2 150 19851 hgu133plus2 77 adenocarcinomas and 73 squamous cell carcinomas
GSE14924 [38] 2 20 19851 hgu133plus2 10 acute myeloid leukemia CD4 T cell and 10 CD8 T cell
GSE15061 [39] 2 366 19851 hgu133plus2 202 acute myeloid leukemia samples and 164 myelodyplastic syndrome samples
Lung2001 [40] 4 237 8641 hgu95a 190 adenocarcinomas, 21 squamous cell carcinomas, 20 carcinoid, and 6 small-

cell lung carcinomas
AML2004 [41], [42] 3 38 5000 hgu6800 11 acute myeloid leukemia, 19 acute lymphoblastic leukemia B cell, and 8 T

cell
Brain2002 [43] 5 42 5299 hgu6800 10 meduloblastomas, 10 malignant gliolas, 10 atypical teratoid/rhaboid tumors,

4 normal cerebellums, and 8 primitive neuroectodermal tumors

the Broad Institute: Lung2001 (www.broadinstitute.org/mpr/
lung/), AML2004 (www.broadinstitute.org/cancer/pub/nmf),
and Brain2002 (www.broadinstitute.org/MPR/CNS/). Details
of the 8 datasets are described in Table II. The results of clus-
tering for eight mRNA datasets are represented in Table III. We
use the Adjusted Rand Index (ARI) to assess the performance
of the resulted subtypes. Among the eight datasets that we
tested, MGKA outperforms other methods in six methods.
SNF and iClusterPlus however crashed with GSE14924 and
AML2004 and are represented with NA in the table.

TABLE III
THE PERFORMANCE OF MGKA, CONSENSUS CLUSTERING (CC),
SIMILARITY NETWORK FUSION (SNF), AND ICLUSTERPLUS IN

DISCOVERING SUBTYPES FROM GENE EXPRESSION DATA. FOR EACH
DATASET (ROW), CELLS HIGHLIGHTED IN GREEN HAVE THE HIGHEST

ADJUSTED RAND INDEX (ARI).

Dataset Samples #Class MGKA CC SNF iCluster+

GSE10245 58 2 0.80 0.32 0.38 0.22

GSE19188 91 3 0.84 0.6 0.12 0.19

GSE43580 150 2 0.44 0.37 0.15 0.21

GSE15061 366 2 0.78 0.43 0.05 0.15

GSE14924 20 2 1.00 0.25 NA 0.73

Lung2001 237 4 0.54 0.11 0.28 0.11

AML2004 38 3 0.41 0.56 0.17 NA

Brain2002 42 5 0.15 0.46 0.13 0.32

Secondly, we compare the four methods using DNA methy-
lation datasets from The Cancer Genome Atlas (TCGA). In
the comparison, we use eight datasets downloaded from the
TCGA website (cancergenome.nih.gov and firebrowse.org).
Eight datasets include Glioblastoma multiforme (GBM), Thy-
moma (THYM), Glioma (GBMLGG), Kidney renal papillary
cell carcinoma (KIRP), Kidney Chromophobe (KICH), Uveal
Melanoma (UVM), Pancreatic adenocarcinoma (PAAD), and
Adrenocortical carcinoma (ACC). These datasets, however, do
not contain subtypes for each disease. Instead, with known
survival outcome, we use Cox regression to assess the survival
difference of the discovered subtypes. The Cox p-values of
the subtypes discovered by each of the four approaches are
presented in table IV. Again, among eight datasets, MGKA
outperforms other methods in six datasets. Moreover, while

MGKA can discover subtypes with significant cox-p value
(at the threshold of 5%) for all datasets, CC, SNF, and
iClusterPlus can only discover subtypes with significant cox-p
value for three, seven, and five datasets respectively.

TABLE IV
THE PERFORMANCE OF MGKA, CONSENSUS CLUSTERING (CC),
SIMILARITY NETWORK FUSION (SNF), AND ICLUSTERPLUS IN

DISCOVERING SUBTYPES FROM DNA METHYLATION DATA. CELLS
HIGHLIGHTED IN YELLOW HAVE SIGNIFICANT COX P-VALUES AT THE

THRESHOLD OF 5%. FOR EACH DATASET (ROW), CELLS HIGHLIGHTED IN
GREEN HAVE THE MOST SIGNIFICANT COX P-VALUE.

Dataset Samples MGKA CC SNF iCluster+

GBM 273 1.2e−4 0.075 0.017 0.103

THYM 119 0.006 0.053 0.04 0.068

GBMLGG 510 3.3e−16 3e−9 1.9e−12 5.4e−14
KIRP 271 5.1e−18 0.299 2.8e−13 0.013

KICH 65 1e−4 0.88 1e−4 0.788

UVM 80 7.1e−4 9.8e−4 0.005 0.003

PAAD 178 0.002 6.6e−4 0.346 3.8e−4
ACC 79 6.2e−4 0.06 0.047 6.6e−5

C. Results on single-cell transcriptomics data

We also test our method on four different single-cell datasets
with known cell types (Table V). Yan’s dataset contains 90
human embryo samples in six different stages. Goolam’s, and
Deng’s datasets contain mouse embryo samples in different
stages. Pollen’s dataset contains 301 samples of different
human tissues. The references for each dataset are given in
Table V. We compare our method with SC3 [22] method - a
consensus clustering method of single-cell RNA-seq data, and
SEURAT [23] - a graph-based clustering approach for single-
cell RNA-seq data. Table V shows the ARI values obtained
by MGKA, SC3, and SEURAT on those four datasets. MGKA
produces the best clusters in three out of four tested datasets.

V. CONCLUSION AND FUTURE WORK

K-means clustering is a simple, fast and unsupervised
approach. However, it suffers from some limitations such as
the initial centroids problem and the selection of the appro-
priate number of clusters. This paper describes and evaluates

108

TABLE V
THE PERFORMANCE OF MGKA, SC3, AND SEURAT IN DISCOVERING

CELL TYPES FROM GENE EXPRESSION DATA. FOR EACH DATASET (ROW),
CELLS HIGHLIGHTED IN GREEN HAVE THE HIGHEST ADJUSTED RAND

INDEX (ARI). MGKA PRODUCES CLUSTERS WITH HIGHEST ARI VALUE
FOR THREE OUT OF FOUR DATASETS.

Dataset Samples #Class MGKA SC3 SEURAT

Yan (GSE36552) [44] 90 6 0.67 0.63 0.53

Goolam (E-MTAB-3321) [45] 124 5 0.72 0.63 0.57

Deng (GSE45719) [46] 268 6 0.60 0.55 0.51

Pollen (SRP041736) [47] 301 11 0.88 0.93 0.70

a new approach that uses an evolutionary multi-objective
algorithm to find a set of pareto optimal solutions along
three measures of cluster goodness. A new representation
directly addresses the initial centroid problem and the non-
dominated sorting genetic algorithm maintains a population
with a diverse number of high performing clusters. That is,
while many current approaches integrate genetic algorithm
with k-means to find the global optimum for a fixed number of
clusters, our method, MGKA, is able to maintain and evaluate
solutions with different numbers of clusters at the same time.
By using simulated binary crossover, our crossover operator
is less destructive compared to naive one-point crossover and
generates offspring close to the parents rather than exchanging
dataset members or center coordinates.

The multi-objective genetic algorithm allows us to optimize
the solution with different cluster validity index so that at the
same time, we can also evaluate the appropriate number of
clusters. By using Davies & Bouldin index and Silhouette
index, the best solutions will have the most similar members
in the same cluster and have well separated clusters. Our
experiment on different simulated datasets shows that MGKA
is better than naive k-means in finding the global optimum.
Other experiments on 16 disease datasets and five single-cell
datasets indicate that MGKA outperforms other state-of-the-art
algorithms discovering disease subtypes and cell types. This
provides strong evidence of the viability of our approach for
clustering applications especially in the biomedical domain.

REFERENCES

[1] J. MacQueen et al., “Some methods for classification and analysis
of multivariate observations,” in Berkeley Symposium on Mathematical
Statistics and Probability, vol. 1, Oakland, CA, USA. Berkeley, USA:
University of California Press, 1967, pp. 281–297.

[2] L. Kaufman and P. J. Rousseeuw, “Partitioning around medoids (program
pam),” Finding groups in data: an introduction to cluster analysis, pp.
68–125, 1990.

[3] J. Oyelade, I. Isewon, F. Oladipupo, O. Aromolaran, E. Uwoghiren,
F. Ameh, M. Achas, and E. Adebiyi, “Clustering algorithms: Their ap-
plication to gene expression data,” Bioinformatics and Biology insights,
vol. 10, pp. BBI–S38 316, 2016.

[4] A. K. Jain and R. C. Dubes, Algorithms for clustering data. Upper
Saddle River, NJ, USA: Prentice-Hall, Inc., 1988.

[5] P. S. Bradley and U. M. Fayyad, “Refining initial points for k-means
clustering.” in ICML, vol. 98. Citeseer, 1998, pp. 91–99.

[6] S. J. Redmond and C. Heneghan, “A method for initialising the k-means
clustering algorithm using kd-trees,” Pattern Recognition Letters, vol. 28,
no. 8, pp. 965–973, 2007.

[7] M. Laszlo and S. Mukherjee, “A genetic algorithm that exchanges
neighboring centers for k-means clustering,” Pattern Recognition Letters,
vol. 28, no. 16, pp. 2359–2366, 2007.

[8] J.-F. Lu, J. Tang, Z.-M. Tang, and J.-Y. Yang, “Hierarchical initialization
approach for k-means clustering,” Pattern Recognition Letters, vol. 29,
no. 6, pp. 787–795, 2008.

[9] X. Qin and S. Zheng, “A new method for initialising the k-means clus-
tering algorithm,” in 2009 2nd International Symposium on Knowledge
Acquisition and Modeling, KAM 2009, vol. 2. IEEE, 2009, pp. 41–44.

[10] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by
simulated annealing,” Science, vol. 220, no. 4598, pp. 671–680, 1983.

[11] S. Bandyopadhyay, U. Maulik, and M. K. Pakhira, “Clustering us-
ing simulated annealing with probabilistic redistribution,” International
Journal of Pattern Recognition and Artificial Intelligence, vol. 15, no. 02,
pp. 269–285, 2001.

[12] J. Holland, “Adaptation in natural and artificial systems: an introductory
analysis with application to biology,” Control and artificial intelligence,
1975.

[13] K. Krishna and M. N. Murty, “Genetic k-means algorithm,” IEEE
Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics),
vol. 29, no. 3, pp. 433–439, 1999.

[14] M. Anusha and J. Sathiaseelan, “An enhanced k-means genetic algo-
rithms for optimal clustering,” in 2014 IEEE International Conference
on Computational Intelligence and Computing Research, IEEE ICCIC
2014. IEEE, 2014, pp. 1–5.

[15] Y. Lu, S. Lu, F. Fotouhi, Y. Deng, and S. J. Brown, “Fgka: A fast
genetic k-means clustering algorithm,” in Proceedings of the 2004 ACM
symposium on Applied computing. ACM, 2004, pp. 622–623.

[16] D. K. Roy and L. K. Sharma, “Genetic k-means clustering algorithm
for mixed numeric and categorical data sets,” International Journal of
Artificial Intelligence & Applications, vol. 1, no. 2, pp. 23–28, 2010.

[17] Z. Feng, “Data clustering using genetic algorithms,” Evolutionary Com-
putation: Project Report, CSE484, 2012.

[18] Y. Lu, S. Lu, F. Fotouhi, Y. Deng, and S. J. Brown, “Incremental genetic
k-means algorithm and its application in gene expression data analysis,”
BMC bioinformatics, vol. 5, no. 1, p. 172, 2004.

[19] S. Monti, P. Tamayo, J. Mesirov, and T. Golub, “Consensus clustering: a
resampling-based method for class discovery and visualization of gene
expression microarray data,” Machine Learning, vol. 52, no. 1-2, pp.
91–118, 2003.

[20] B. Wang, A. M. Mezlini, F. Demir, M. Fiume, Z. Tu, M. Brudno,
B. Haibe-Kains, and A. Goldenberg, “Similarity network fusion for
aggregating data types on a genomic scale,” Nature Methods, vol. 11,
no. 3, p. 333, 2014.

[21] Q. Mo, S. Wang, V. E. Seshan, A. B. Olshen, N. Schultz, C. Sander,
R. S. Powers, M. Ladanyi, and R. Shen, “Pattern discovery and cancer
gene identification in integrated cancer genomic data,” Proceedings of
the National Academy of Sciences, p. 201208949, 2013.

[22] V. Y. Kiselev, K. Kirschner, M. T. Schaub, T. Andrews, A. Yiu,
T. Chandra, K. N. Natarajan, W. Reik, M. Barahona, A. R. Green et al.,
“Sc3: Consensus clustering of single-cell rna-seq data,” Nature methods,
vol. 14, no. 5, p. 483, 2017.

[23] A. Butler, P. Hoffman, P. Smibert, E. Papalexi, and R. Satija, “Integrating
single-cell transcriptomic data across different conditions, technologies,
and species,” Nature biotechnology, vol. 36, no. 5, p. 411, 2018.

[24] R. Krovi, “Genetic algorithms for clustering: a preliminary investiga-
tion,” in System Sciences, 1992. Proceedings of the Twenty-Fifth Hawaii
International Conference on System Sciences, vol. 4. IEEE, 1992, pp.
540–544.

[25] C. B. Lucasius, A. D. Dane, and G. Kateman, “On k-medoid clustering
of large data sets with the aid of a genetic algorithm: background,
feasiblity and comparison,” Analytica Chimica Acta, vol. 282, no. 3,
pp. 647–669, 1993.

[26] W. Sheng and X. Liu, “A hybrid algorithm for k-medoid clustering of
large data sets,” in Proceedings of the 2004 Congress on Evolutionary
Computation (IEEE Cat. No.04TH8753), vol. 1. IEEE, 2004, pp. 77–82.

[27] S. Bandyopadhyay and U. Maulik, “An evolutionary technique based on
k-means algorithm for optimal clustering in rn,” Information Sciences,
vol. 146, no. 1-4, pp. 221–237, 2002.

[28] U. Maulik and S. Bandyopadhyay, “Genetic algorithm-based clustering
technique,” Pattern recognition, vol. 33, no. 9, pp. 1455–1465, 2000.

[29] P. Scheunders, “A genetic c-means clustering algorithm applied to color
image quantization,” Pattern recognition, vol. 30, no. 6, pp. 859–866,
1997.

109

[30] J. Kivijärvi, P. Fränti, and O. Nevalainen, “Self-adaptive genetic algo-
rithm for clustering,” Journal of Heuristics, vol. 9, no. 2, pp. 113–129,
2003.

[31] R. B. Agrawal, K. Deb, and R. Agrawal, “Simulated binary crossover for
continuous search space,” Complex Systems, vol. 9, no. 2, pp. 115–148,
1995.

[32] D. L. Davies and D. W. Bouldin, “A cluster separation measure,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. PAMI-
1, no. 2, pp. 224–227, 1979.

[33] P. J. Rousseeuw, “Silhouettes: a graphical aid to the interpretation and
validation of cluster analysis,” Journal of Computational and Applied
Mathematics, vol. 20, pp. 53–65, 1987.

[34] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: Nsga-ii,” IEEE transactions on evolu-
tionary computation, vol. 6, no. 2, pp. 182–197, 2002.

[35] R. Kuner, T. Muley, M. Meister, M. Ruschhaupt, A. Buness, E. C. Xu,
P. Schnabel, A. Warth, A. Poustka, H. Sultmann, and H. Hoffmann,
“Global gene expression analysis reveals specific patterns of cell junc-
tions in non-small cell lung cancer subtypes,” Lung Cancer, vol. 63,
no. 1, pp. 32–38, 2009.

[36] J. Hou, J. Aerts, B. Den Hamer, W. Van Ijcken, M. Den Bakker,
P. Riegman, C. van der Leest, P. van der Spek, J. A. Foekens, H. C.
Hoogsteden, F. Grosveld, and S. Philipsen, “Gene expression-based
classification of non-small cell lung carcinomas and survival prediction,”
PLoS ONE, vol. 5, no. 4, p. e10312, 2010.

[37] A. L. Tarca, M. Lauria, M. Unger, E. Bilal, S. Boue, K. K. Dey,
J. Hoeng, H. Koeppl, F. Martin, P. Meyer, P. Nandy, R. Norel, M. Peitsch,
J. J. Rice, R. Romero, G. Stolovitzky, M. Talikka, Y. Xiang, C. Zech-
ner, and IMPROVER DSC Collaborators, “Strengths and limitations
of microarray-based phenotype prediction: lessons learned from the
IMPROVER diagnostic signature challenge,” Bioinformatics, vol. 29,
no. 22, pp. 2892–2899, 2013.

[38] R. Le Dieu, D. C. Taussig, A. G. Ramsay, R. Mitter, F. Miraki-Moud,
R. Fatah, A. M. Lee, T. A. Lister, and J. G. Gribben, “Peripheral blood
T cells in acute myeloid leukemia (AML) patients at diagnosis have
abnormal phenotype and genotype and form defective immune synapses
with AML blasts,” Blood, vol. 114, no. 18, pp. 3909–3916, Oct. 2009.

[39] K. I. Mills, A. Kohlmann, P. M. Williams, L. Wieczorek, W.-m. Liu,
R. Li, W. Wei, D. T. Bowen, H. Loeffler, J. M. Hernandez, W.-K.
Hofmann, and T. Haferlach, “Microarray-based classifiers and prognosis
models identify subgroups with distinct clinical outcomes and high risk
of AML transformation of myelodysplastic syndrome,” Blood, vol. 114,
no. 5, pp. 1063–1072, 2009.

[40] A. Bhattacharjee, W. Richards, J. Staunton, C. Li, S. Monti, P. Vasa,
C. Ladd, J. Beheshti, R. Bueno, M. Gillette, M. Loda, G. Weber,
E. Mark, E. Lander, W. Wong, B. Johnson, T. Golub, D. Sugarbaker,
and M. Meyerson, “Classification of human lung carcinomas by mRNA
expression profiling reveals distinct adenocarcinoma subclasses,” Pro-
ceedings of the National Academy of Sciences, vol. 98, no. 24, pp.
13 790–5, Nov. 2001.

[41] T. R. Golub, D. K. Slonim, P. Tamayo, C. Huard, M. Gaasenbeek, J. P.
Mesirov, H. Coller, M. L. Loh, J. R. Downing, M. A. Caligiuri, C. D.
Bloomfield, and E. S. Lander, “Molecular classification of cancer: class
discovery and class prediction by gene expression monitoring,” Science,
vol. 286, no. 5439, pp. 531–537, 1999.

[42] J.-P. Brunet, P. Tamayo, T. R. Golub, and J. P. Mesirov, “Metagenes and
molecular pattern discovery using matrix factorization,” Proceedings of
the National Academy of Sciences, vol. 101, no. 12, pp. 4164–4169,
Mar. 2004.

[43] S. Pomeroy, P. Tamayo, M. Gaasenbeek, L. Sturla, M. Angelo,
M. McLaughlin, J. Kim, L. Goumnerova, P. Black, C. Lau, J. Allen,
D. Zagzag, J. Olson, T. Curran, C. Wetmore, J. Biegel, T. Pog-
gio, S. Mukherjee, R. Rifkin, A. Califano, G. Stolovitzky, D. Louis,
J. Mesirov, E. Lander, and T. Golub, “Prediction of central nervous
system embryonal tumour outcome based on gene expression,” Nature,
vol. 415, no. 6870, pp. 436–442, January 2002.

[44] L. Yan, M. Yang, H. Guo, L. Yang, J. Wu, R. Li, P. Liu, Y. Lian,
X. Zheng, J. Yan et al., “Single-cell rna-seq profiling of human preim-
plantation embryos and embryonic stem cells,” Nature Structural &
Molecular Biology, vol. 20, no. 9, p. 1131, 2013.

[45] M. Goolam, A. Scialdone, S. J. Graham, I. C. Macaulay, A. Jedrusik,
A. Hupalowska, T. Voet, J. C. Marioni, and M. Zernicka-Goetz, “Het-
erogeneity in oct4 and sox2 targets biases cell fate in 4-cell mouse
embryos,” Cell, vol. 165, no. 1, pp. 61–74, 2016.

[46] Q. Deng, D. Ramsköld, B. Reinius, and R. Sandberg, “Single-cell rna-
seq reveals dynamic, random monoallelic gene expression in mammalian
cells,” Science, vol. 343, no. 6167, pp. 193–196, 2014.

[47] A. A. Pollen, T. J. Nowakowski, J. Shuga, X. Wang, A. A. Leyrat,
J. H. Lui, N. Li, L. Szpankowski, B. Fowler, P. Chen et al., “Low-
coverage single-cell mrna sequencing reveals cellular heterogeneity and
activated signaling pathways in developing cerebral cortex,” Nature
Biotechnology, vol. 32, no. 10, p. 1053, 2014.

110

