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Abstract

Motivation: Recent advances in biomedical research have made massive amount of transcriptomic

data available in public repositories from different sources. Due to the heterogeneity present in the

individual experiments, identifying reproducible biomarkers for a given disease from multiple inde-

pendent studies has become a major challenge. The widely used meta-analysis approaches, such

as Fisher’s method, Stouffer’s method, minP and maxP, have at least two major limitations: (i) they

are sensitive to outliers, and (ii) they perform only one statistical test for each individual study, and

hence do not fully utilize the potential sample size to gain statistical power.

Results: Here, we propose a gene-level meta-analysis framework that overcomes these limitations

and identifies a gene signature that is reliable and reproducible across multiple independent stud-

ies of a given disease. The approach provides a comprehensive global signature that can be used

to understand the underlying biological phenomena, and a smaller test signature that can be used

to classify future samples of a given disease. We demonstrate the utility of the framework by con-

structing disease signatures for influenza and Alzheimer’s disease using nine datasets including

1108 individuals. These signatures are then validated on 12 independent datasets including 912

individuals. The results indicate that the proposed approach performs better than the majority of

the existing meta-analysis approaches in terms of both sensitivity as well as specificity. The pro-

posed signatures could be further used in diagnosis, prognosis and identification of therapeutic

targets.

Contact: sorin@wayne.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Massive amounts of transcriptomic data have been accumulated in

public repositories, such as gene expression omnibus (GEO; Barrett

et al., 2005), Array Express (Rustici et al., 2013) and TCGA [http://

cancergenome.nih.gov], etc. Typically, a gene expression experiment

generates a list of genes that are differentially expressed (DE) across

two given phenotypes (e.g. disease versus control) with statistical

and/or biological significance (e.g. fold change). These lists of genes

provide crucial biological insights and serve as input for further

downstream analysis. Because these techniques have been available

for a number of years, now there is an abundance of gene expression

data regarding the same condition studied in different experiments

by different groups. However, due to the biological variabilities

(i.e. genetic heterogeneity, tissue heterogeneity, environment varia-

bles, etc.) and technical variabilities (i.e. batch effect, experiment
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protocol, etc.), DE genes obtained from different studies of the same

condition often show a very poor agreement with each other

(Ein-Dor et al., 2005, 2006; Tan et al., 2003). As a result, gene

expression studies often produce results that are unreliable and irre-

producible (Dr�aghici et al., 2006; Ramasamy et al., 2008).

One of the widely used techniques to tackle this reproducibility

issue involves combining the results from several related individual

studies for a given disease. This approach is known as a meta-

analysis (Normand, 1999). A meta-analysis can be beneficial in

many different ways such as by providing additional statistical

power to detect the effect of a treatment by increasing the sample

size, identifying treatment effects that are consistent across multiple

studies, identifying treatment effects that may be specific to a par-

ticular study, etc. Over the past few years, meta-analysis techniques

have been used in a number of directions such as DE gene detection

(Hong and Breitling, 2008; Miller and Stamatoyannopoulos, 2010),

perturbed pathway identification (Nguyen et al., 2016a), sub-

network detection (Wang et al., 2006; Zhou et al., 2005), class pre-

diction (Subramanian and Simon, 2010), gene clustering (Pennings

et al., 2008) and others (Tseng et al., 2012). In order to detect DE

genes, information from multiple studies can be combined in several

ways, such as combining effect sizes, combining P-values, combining

ranks, direct merging after normalization, etc. Pros and cons of dif-

ferent meta-analysis techniques have been thoroughly discussed and

compared in the literature (Hong and Breitling, 2008; Ramasamy

et al., 2008; Tseng et al., 2012). The most frequently used strategies

include effect-size-based approaches and P-value-based approaches.

The former integrates the effect-sizes while the latter combines

P-values obtained from independent studies. One major advantage

of the P-value-based strategy is that it is extensible for a variety of

outcome variables (e.g. experiment with more than two phenotypes,

continuous response parameter, etc.). Since P-values are

always ranged from 0 to 1, P-value-based meta-analysis can com-

bine results coming from different platforms or analysis, without

performing any data normalization. Because of its flexibility,

the P-value-based meta-analysis is more popular than other alterna-

tives (Tseng et al., 2012). Thus, in this work, we will focus on

P-value-based meta-analysis methods.

Rhodes et al. were among the earliest to identify DE genes by

using a meta-analysis technique (Rhodes et al., 2002). They used the

classical Fisher’s method (Fisher, 1925) to combine P-values from

prostate cancer datasets. Afterwards, other statistical methods such

as Stouffer’s method (Stouffer et al., 1949), minP (Tippett, 1931),

maxP (Wilkinson, 1951) or weighted Fisher’s methods (Li and

Ghosh, 2014; Li and Tseng, 2011) have been applied to combine

gene P-values to detect DE genes (Wang et al., 2012).

One of the major drawbacks of the existing P-value-based

approaches is that they are sensitive to outliers. For example,

Fisher’s method relies on the summation of log-transformed

P-values. As a result, if one of the individual P-values approaches

zero, the meta-P-value approaches zero regardless of the other indi-

vidual P-values. Note that a zero P-value from an individual study is

not uncommon in gene level since it often represents significance of

the gene perturbation in a particular signaling pathway, calculated

using permutation or bootstrap procedure (Shafi et al., 2015).

Hence, this limitation can lead to unexpected downstream results.

Stouffer’s method, which is closely related to Fisher’s method, relies

on z-scores instead of P-values and has a similar limitation. MinP

and maxP methods are sensitive towards outliers as well. The addi-

tive method (Edgington, 1972; Irwin, 1927) is another approach to

combine independent studies which overcomes the above mentioned

limitation by taking the summation of P-values instead of log-

transformed P-values. However, the additive method has a different

limitation: its probability density function (pdf) involves division by

a factorial, which can lead to an ‘arithmetic underflow’ problem

(Nguyen et al., 2016a).

Another limitation of existing P-value-based meta-analysis

approaches is that, because they perform just one statistical test for

each individual experiment, they may not fully exploit the potentially

large number of samples within individual studies. As such, while the

power of the classical t-test increases as the number of samples

increases, a set of 20 experiments with 5 samples each has more power

than a single experiment comprised of the same 100 samples (Nguyen

et al., 2016a). This can be due in part to a mathematical design of

existing hypothesis testing methods, which favor a moderate or small

number of samples, but may fail to fully exploit large sample sizes.

In this manuscript, we propose a new meta-analysis framework,

gene signature using meta-analysis (GSMA), that that can leverage

multiple smaller independent experiments in order to identify a ro-

bust and reproducible gene signature. To combine P-values, we use

an additive approach based on the central limit theorem (CLT)

which is robust against outliers (Nguyen et al., 2017). To gain statis-

tical power from large sample size, we perform meta-analysis at two

levels: intra-level and inter-level. At the intra-level analysis, we split

each dataset, obtain the list of DE genes from each subset and then

combine P-values for each gene. At the inter-level analysis, we com-

bine the intra-level P-values from each dataset. In addition, after

performing the intra-level analysis on the original dataset, we con-

currently perform a leave-one-out (LOO) analysis to avoid potential

influence from one single study. The capability of intra- and inter-

level analysis was first demonstrated in one of our previous works

for the identification of significantly impacted pathways (Nguyen

et al., 2016a). However, this technique has never been utilized for

the identification of gene-level biomarkers.

Meta-analysis techniques are usually used in class comparison

tasks, where the goal is to get a comprehensive list of genes that be-

have differently across the phenotypes, list that can be subsequently

used to understand the underlying disease mechanisms. Henceforth,

we will refer to such a comprehensive list of genes capturing all

aspects of the differences between the phenotypes as a global signa-

ture. However, another very important task is class prediction,

where the goal is to get a gene signature that is as small as possible

but still allow us to distinguish between the given classes. We will

refer to such a minimal but discriminating set of genes as a test sig-

nature. The technique presented here can be used to identify both

global signatures as well as test signatures.

We apply our proposed framework on 1108 samples from 9 in-

dependent studies related to Alzheimer’s disease (AD) and influenza

disease. The framework identifies global signatures of 89 genes for

AD and 153 genes for influenza, which are significantly enriched in

relevant signaling pathways. The framework also provides test sig-

natures of seven genes for AD and 11 genes for influenza, which are

validated on additional 912 samples from 12 completely independ-

ent validation studies. To demonstrate the broader applicability of

the proposed framework, we compare our results with the results of

eight other existing meta-analysis approaches covering three concep-

tual alternatives (four P-value based, three effect-size based and one

rank aggregation based). For both diseases, our proposed frame-

work outperforms the existing approaches, both in terms of identify-

ing global signatures that capture relevant biological mechanisms, as

well as in terms of identifying test signatures that distinguish symp-

tomatic individuals from the healthy ones with significant P-values.
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2 Materials and methods

2.1 Combining gene level P-values
To combine gene level P-values, we use addCLT (Nguyen et al.,

2017, 2016a, b), which utilizes the additive method (Edgington,

1972) in conjunction with the CLT (Kallenberg, 2002). If the num-

ber of studies is small (<20), addCLT utilizes the additive method

but using average of P-values as test statistics instead of summation

of P-values. If we denote the P-values of a particular gene resulting

from m individual studies as P1, P2, P3,. . ., Pm and their average

as X ¼
Pm

i¼1
Pi

m , then the probability density function (pdf) is derived

from a linear transformation of the Irwin–Hall distribution (Hall,

1927; Irwin, 1927) as follows:

f ðxÞ ¼ m

ðm� 1Þ!
Xbm:xc
i¼0

ð�1Þi m
i

� �
ðm:x� iÞm�1 (1)

The corresponding cumulative distribution function (cdf) is

derived as follows:

FðxÞ ¼ 1

ðmÞ!
Xbm:xc
i¼0

ð�1Þi m
i

� �
ðm:x� iÞm (2)

When the number of samples is large (� 20), addCLT uses the

CLT to overcome the ‘arithmetic underflow’ issue. The gene level

P-values from m independent studies are independent and identical-

ly distributed (i.i.d) random variables; therefore, the mean of these

variables (i.e. X in this case) follows a normal distribution with

mean l ¼ 1
2 and variance r2 ¼ 1

12m, i.e. X Z N 1
2 ;

1
12m

� �
.

2.2 GSMA framework
The proposed framework (Fig. 1), GSMA, takes multiple independ-

ent studies of the same condition as input. Each independent study

consists of gene expression data from a group of disease samples

and a group of healthy samples. The output is a comprehensive list

of genes that are DE across the phenotypes together with their meta-

P-values. The proposed list of genes can be referred as the global sig-

nature or disease associated genes that can further be used in related

downstream analysis. The key advantage of the list of genes identi-

fied by the proposed approach is that they are robust and reprodu-

cible, compared to the classical approach which identifies DE genes

from one single dataset or the existing P-value based meta-analysis

approaches (e.g. Fisher’s method, Stouffer’s method, etc.) which are

sensitive to outliers and do not fully utilize the potentially large

number of samples to increase statistical power.

2.3 Intra- and inter-level analysis
The framework performs gene level meta-analysis in two stages:

intra-level analysis and inter-level analysis. A detailed version of the

meta-analysis algorithm is shown in the Supplementary Figure S1.

Briefly, the intra-level analysis works on a single study at a time.

Each study DSi (i 2 ½1 . . .m�) is divided into ni smaller datasets such

that each smaller dataset dsi1; . . . ; dsini
consists of all the control

Fig. 1. The overall pipeline of the proposed framework. The framework takes multiple independent gene expression studies of the same condition as input and

performs gene level meta-analysis in two stages: intra-level analysis and inter-level analysis. In the intra-level analysis, each dataset is divided into smaller data-

sets such that each smaller dataset consists of all the control samples and a subset of the disease samples (the algorithm is shown in the Supplementary Fig. S1).

For each gene, P-values are calculated using moderated t-test and later combined using addCLT. In the inter-level analysis, intra-level P-values coming from indi-

vidual datasets are combined using the same technique in order to compute meta-P-value for each gene. Concurrently, a LOO analysis is carried out to avoid the

influence from a single study. The final output of the framework is a list of DE genes that are robust and reproducible across the independent studies of a given

disease (referred as the global signature in this manuscript)

GSMA: Gene signatures using meta-analysis 3
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samples and a subset of the disease samples present in DSi. The size

of the subsets of disease samples is determined by a predefined

threshold (default size ¼ 5). For each smaller dataset, gene P-values

are calculated using a classical hypothesis test such as a moderated

t-test (Smyth, 2005). Note that each smaller dataset within a study

DSi has equal number of genes. Therefore, a list of ni P-values are

produced for each gene G1; . . . ;Gp present in the study DSi. These

ni P-values are then combined into one P-value using addCLT for

each gene. The output of one intra-level analysis is the intra-level

P-values of all the genes present in that particular study.

The second stage of the framework is the inter-level analysis

which combines multiple independent studies. A list of intra-level

P-values (denoted as intraListi in the Fig. 1) are produced from each

individual study DSi. Thus, m P-values are produced for the genes

that are present across all the studies––one P-value from each study.

For each gene, these m P-values are combined to a meta-P-value

using addCLT. The meta-P-values are corrected for multiple

comparison using FDR approach. Top 5% significant genes are

then considered as the list of candidate genes (denoted as

Candidateoriginal in the Fig. 1).

2.4 Identifying global signature using LOO analysis
At this stage, we have a list of candidate genes with their

meta-P-values, which represent the significance of their differential

expression across the phenotypes for a given condition. Due to the

heterogeneity present in the data, this list of genes might be signifi-

cantly influenced by a single study and hence might fail to identify

the true mechanism of a given condition. Therefore, while the results

of the intra-level analysis are passed to the inter-level analysis, a

LOO analysis is carried out concurrently. This step is crucial to se-

lect the genes that are robust against outliers.

In the LOO analysis, inter-level analysis is performed m times.

In each round, one intraList is taken out. Inter-level analysis is

performed on the remaining m – 1 studies, and a list of candidate

DE genes (denoted as Candidate LOOi in the Fig. 1) is obtained by

taking the top 5% significant genes. Thus, m lists of DE genes are

obtained, which are combined and used to refine the original candi-

date genes. Finally, the refined genes are considered as the proposed

global signature for the given condition.

2.5 Identifying test signature
Since the aim of identifying global signature is class comparison

where the goal is to understand the underlying disease mechanism, it

might not be optimal for class prediction that is, distinguishing

patients from healthy individuals. Moreover, clinical validation of

the identified global signature is less feasible if the number of gene is

too big. Therefore, a test signature is obtained by taking the top sig-

nificant genes from the global signature. The optimal length of the

test signature is calculated from the given individual studies.

In order to calculate the number of genes in test signature, a

score is defined for each sample within a study using the following

formula:

Scores ¼
Yk
q¼1

expsðgqÞ

0
@

1
A

1
k

(3)

Here, exps denotes the log normalized expression value of the

qth significant gene of the global signature in sample s and Scores

represents the total score of that sample. The value of k is varied

from 5 to 25 (set as default threshold). For a given value of k, these

scores are used to calculate the area under the receiver-operating

characteristics curve (AUC-ROC) for each study. Thus, AUC-ROC

scores are calculated for m studies, and the median of the m

AUC-ROC scores is considered as the representative. The value of k

that provides the highest median AUC-ROC score is considered as

the optimal length of the test signature. Finally, top k significant

genes from the global signature are selected as the test signature.

3 Results

The proposed technique was tested on 1108 samples from 9 inde-

pendent datasets related to 2 human diseases: AD (924 samples

from 5 datasets) and influenza (184 samples from 4 datasets). Using

the AD datasets, at first, we illustrate the importance of performing

a meta-analysis when identifying DE genes from multiple datasets.

This is done by comparing the results of the proposed meta-analysis

with the results of individual analyses that identify DE genes from

one single dataset at a time.

We compared the results of the proposed meta-analysis frame-

work (GSMA) with the results of eight other existing meta-analysis

approaches for both diseases. Among them, four approaches are

based on P-value (Fisher’s, Stouffer’s, minP and maxP methods),

three approaches are based on effect-size [inmex fixed-effect model

(inmex_FEM) Xia et al. (2013), inmex random-effect model

(inmex_REM) Xia et al. (2013) and MetaIntergrator Haynes et al.

(2017)] and one approach is based on rank aggregation

[RankAggreg Pihur et al. (2009)]. Details and implementation of

these frameworks are described in the Supplementary Materials.

The most widely adopted procedure to evaluate a list of DE

genes is by calculating the enrichment of known biological pathways

in those genes. This is usually done by calculating a hyper-geometric

P-value to identify the pathways in which the DE genes are over-

represented. A perfect method that identifies DE genes would find

relevant pathways of a given disease as significantly enriched and

rank them on top. This approach is commonly used to validate glo-

bal signatures. Another widely accepted procedure to validate a list

of DE genes is by assessing their ability to distinguish the given phe-

notypes from independent validation datasets. This procedure is typ-

ically used to validate test signatures.

We evaluate the proposed global signatures using a target path-

way approach (Tarca et al., 2012) using the KEGG database

(Kanehisa and Goto, 2000) (version 84.0) that includes 204 signal-

ing pathways. For both AD and influenza, there are pathways in

KEGG, Alzheimer’s disease and Influenza A, that describe the

known mechanisms involved in these two diseases. These will be tar-

get pathways for these two diseases. In addition, for AD there are

two other neurological disorder pathways, Parkinson’s disease and

Huntington’s disease, that share similar mechanisms with AD

(Ehrnhoefer et al., 2011; Ramanan and Saykin, 2013; Xie et al.,

2014). Hence, an ideal global signature for AD would find all three

neurological disorder pathways, Alzheimer’s disease, Parkinson’s

disease and Huntington’s disease, as significantly enriched and rank

them on top. For both diseases, an adjusted P-value of less than

0.005 is chosen as the significance threshold [recommended by

(Benjamin et al., 2018)].

In order to evaluate the proposed test signatures, we analyze 912

additional samples from 12 independent datasets of AD (668 sam-

ples from 6 datasets) and influenza (244 sample from 6 datasets).

We calculate AUC-ROC scores of these independent datasets using

the Equation (3) for each framework. The following subsections

provide the results of the applied frameworks on AD and influenza,

which show that the proposed framework outperforms the existing

4 A.Shafi et al.
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frameworks by identifying robust and reproducible disease

signatures.

3.1 Alzheimer’s disease
We apply the proposed framework, the classical approach and the

eight other meta-analysis approaches on the following 5 AD data-

sets: GSE48350 (173 controls and 80 cases), GSE1297 (9 controls

and 22 cases), GSE26927 (18 controls and 100 cases), GSE63060

(104 controls and 145 cases) and GSE63061 (134 controls and 139

cases). All the datasets are downloaded from GEO. Data preprocess-

ing procedure and normalization are described in the Supplementary

Materials.

The proposed framework, GSMA, identifies 89 genes as a global

signatures and 7 genes as a test signature. Table 1 shows the top five

signaling pathways that are enriched with the genes present in the

global signature. The red line represents the significance threshold

(FDR P-value <0.005). As expected, all three neurological disorder

pathways are significantly enriched and ranked within the top four

positions. The target pathway is ranked first with an adjusted P-

value of 2:24E� 07. Interestingly, the other significant pathways,

non-alcoholic fatty liver disease (NAFLD) and Retrograde endocan-

nabinoid signaling, are also known to be involved in AD (Bedse

et al., 2015; Kim et al., 2016; Mulder et al., 2011).

The results were validated on 6 independent AD datasets:

GSE5281 (74 controls and 87 cases), GSE12685 (8 controls and

6 cases), GSE15222 (187 controls and 176 cases), GSE28146 (8 con-

trols and 22 cases), GSE39420 (7 controls and 14 cases) and

GSE36980 (47 controls and 32 cases). AUC-ROC scores on the six

validation datasets based on the proposed test signature are pre-

sented in Supplementary Table S4. The median AUC-ROC score is

84.33%.

To apply the classical approach, we select most significant 89

genes from each given study and perform pathway enrichment using

over representation analysis. To make a fair comparison, the num-

ber of significant genes is chosen as 89 based on the length of the

global signature identified by GSMA. Results of the classical ap-

proach are shown in Supplementary Table S2. For three out of five

given datasets, the classical approach failed to identify the neuro-

logical disorder pathways as significant.

We then selected the most significant seven genes (the number of

genes included in the test signature identified by GSMA) from each

given study and computed the AUC-ROC on the six independent

validation datasets. Figure 2 shows the comparison of the AUC-

ROC scores obtained by GSMA versus results obtained on individ-

ual datasets. The median AUC-ROC score obtained by GSMA is

significantly higher (P-value ¼ 0.0003) than all other median

AUC-ROC scores obtained on the individual datasets. AUC-ROC

plots of the individual validation datasets are illustrated in the

Supplementary Figure S2. In summary, from both the global signa-

ture and the test signature validations, it is clear that the results

obtained on any individual dataset are not reproducible across mul-

tiple datasets. Hence, meta-analysis is crucial to identify a set of ro-

bust and reproducible list of DE genes.

Stouffer’s method, Fisher’s method, minP, maxP, inmex_FEM,

inmex_REM, MetaIntegrator and RankAggreg identify 73, 52, 23,

55, 2065, 722, 154 and 380 genes, respectively, as global signatures;

and 5, 5, 21, 9, 6, 23, 25 and 25 genes, respectively, as test signa-

tures. Using the global signatures identified by the Stouffer’s

method, Fisher’s method, and RankAggreg, enrichment analysis

finds all three neurological disorder pathways (Alzheimer’s disease,

Parkinson’s disease and Huntington’s disease) as significant. In

contrast, the enrichment analysis performed with the global signa-

tures identified by minP and maxP do not report any pathway as sig-

nificant. MetaIntegrator reports two of the neurological disorder

pathways as significant and rank them on top. inmex_FEM and

inmex_REM report some pathways as significantly enriched but

none of them are the neurological disorder pathways (see details in

the Supplementary Table S3).

The AUC-ROC scores on the six independent validation datasets

are listed in the Supplementary Table S4. The median AUC-ROC

scores based on the identified genes present in the test signature are

76.89%, 79.64%, 78.67%, 66.53%, 76.70%, 80.05%, 58.63%

and 71.50% for Stouffer’s method, Fisher’s method, minP, maxP,

inmex_FEM, inmex_REM, MetaIntegrator and RankAggreg, re-

spectively. AUC-ROC scores on the six validation datasets are listed

in the Supplementary Table S4.

Figure 3 shows the comparison between GSMA and the eight

other existing approaches. Panel A of the Figure 3 shows the AUC

plots across three independent validation datasets (out of six) based

on the test signature of each framework. For each of these three

datasets, GSMA achieved higher AUC-ROC score compared to the

other approaches. AUC plots across all six independent datasets are

presented in the Supplementary Figure S3. The left box-plot in panel

B shows the AUC-ROC scores across all six validation datasets. The

Table 1. A summary of the enrichment analysis performed on the

genes in the global signatures for AD identified by the proposed

meta-analysis framework (GSMA)

Pathway P-value.fdr

1 Alzheimer’s disease 2.24E-07

2 Parkinson’s disease 2.24E-07

3 NAFLD 3.63E-06

4 Huntington’s disease 3.12E-05

5 Retrograde endocannabinoid signaling 0.0028
———————————————————————————————

Note: The red line represents 0.5% threshold and the green highlighted cell

represents the target pathway (see details in the Supplementary Table S3).

Fig. 2. Comparison of the AUC-ROC scores across the six independent valid-

ation datasets based on the test signature, identified by the proposed meta-

analysis framework–GSMA versus using one given discovery dataset at a

time. Here, the median AUC-ROC score obtained by GSMA is significantly

higher (P-value ¼ 0.0003) than all other median AUC-ROC scores obtained on

any individual dataset. This comparison shows that the proposed meta-ana-

lysis yield better results that any single analysis

GSMA: Gene signatures using meta-analysis 5
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median AUC-ROC score obtained by using GSMA is significantly

higher than the median AUC-ROC scores obtained by each of the

other category of approach(es) (i.e. P-value ¼ 0.009 for four other

P-value-based approaches, P-value ¼ 0.045 for three other effect-

size-based approaches, P-value ¼ 0.047 for the rank aggregation

based approach, using Wilcoxon rank sum test). In addition to com-

paring the AUC-ROC scores based on the variable length test signa-

ture chosen by each method, we compare the AUC-ROC scores

based on a fixed length test signature. In order to do this, we choose

a fixed number of genes ranged from 5 to 50 as the length of the test

signature for each framework and compute AUC-ROC scores on the

independent datasets. The right box-plot in panel B shows that, re-

gardless of the length of the test signature, GSMA achieved higher

average AUC-ROC scores compared to the others approaches in

most of the cases.

3.2 Influenza
For influenza, we apply GSMA and the other existing approaches

on the following 4 influenza datasets: GSE17156 (17 controls and

17 influenza), GSE42026 (33 controls and 19 influenza), GSE21802

(4 controls and 19 influenza) and GSE40012 (36 controls and 39

influenza).

The proposed framework, GSMA identifies 153 genes as global

signature and 11 genes as test signature. Table 2 shows the top five

pathways that are enriched with the genes present in global signature.

The target pathway is significantly enriched and ranked second. Other

significant pathways such as Herpes simplex infection, Staphylococcus

aureus infection and Leishmaniasis are also known to have similar

mechanisms like influenza (Hassman and DiLoreto, 2016; Lee et al.,

2010; Robinson et al., 2014; Rynda-Apple et al., 2015).

To evaluate the 11 genes identified in the test signature, we com-

pute AUC-ROC scores on the following 6 independent datasets:

GSE29366 (12 controls and 19 influenza), GSE30550 (16 controls

and 17 influenza), GSE20346 (26 bacterial pneumonia and 19 influ-

enza), GSE34205 (22 controls and 28 influenza), GSE82050 (15

A

B

Fig. 3. A comparison between the proposed meta-analysis framework—GSMA and eight other existing meta-analysis approaches—Stouffer’s method, Fisher’s

method, minP, maxP, inmex_FEM, inmex_REM, MetaIntegrator and RankAggreg, using AD datasets. Panel A shows the AUC plots across three (out of six) inde-

pendent validation datasets based on the test signature identified by each framework. For each of these three datasets, GSMA achieved higher AUC-ROC score

compared to other approaches. The left plot in panel B shows the comparison of the AUC-ROC scores across all six validation datasets. The median AUC-ROC

score obtained by using GSMA is significantly higher than the median AUC-ROC scores obtained by each category of approach(es) (P-value ¼ 0.009 for four other

P-value-based approaches, P-value ¼ 0.045 for three other effect-size based approaches, P-value ¼ 0.047 for the rank aggregation based approach, using

Wilcoxon rank sum test). Finally, the right plot in panel B shows that, regardless of the length of the test signature, GSMA achieved higher average AUC-ROC

scores compared to the others approaches in most of the cases

Table 2. A summary of the enrichment analysis performed on the

genes in the global signatures for influenza identified by the pro-

posed meta-analysis framework (GSMA)

Pathway P-value.fdr

1 Herpes simplex infection 5.01E-07

2 Influenza A 8.42E-06

3 Staphylococcus aureus infection 1.61E-05

4 Leishmaniasis 0.0012
———————————————————————————————
5 Systemic lupus erythematosus 0.0057

Note: The red line represents 0.5% threshold and the green highlighted cell

represents the target pathway (see details in the Supplementary Table S5).
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controls and 24 influenza) and GSE38900 (30 rhinovirus and 16 in-

fluenza). These are presented in the Supplementary Table S6. The

median AUC-ROC score is 87.95%.

Subsequently, we apply the other eight existing meta-analysis

frameworks on the same training datasets. Stouffer’s method,

Fisher’s method, minP, maxP, inmex_FEM, inmex_REM,

MetaIntegrator and RankAggreg identify 174, 146, 104, 132, 4219,

1167, 104 and 622 genes, respectively, as global signatures. The cor-

responding test signatures identified by the same methods include

16, 13, 8, 21, 10, 24, 22 and 25 genes, respectively. The global sig-

natures identified by the Stouffer’s method, inmex_FEM and

inmex_REM are significantly enriched in genes associated with the

target pathway. The signatures produced by the other five existing

methods are not enriched in genes associated with the target path-

way to a significant level (see details in the Supplementary Table

S5). The AUC-ROC scores on the six independent validation data-

sets based on the identified genes present the test signature are pre-

sented in the Supplementary Table S6. The median AUC-ROC

scores are 81.56%, 76.22%, 82.67%, 79.85%, 87.36%, 79.49%,

84.52% and 82.19% for Stouffer’s method, Fisher’s method, minP,

maxP, inmex_FEM, inmex_REM, MetaIntegrator and RankAggreg,

respectively.

Figure 4 shows the comparison between GSMA and the eight

existing approaches on the independent validation influenza data-

sets. Panel A of the Figure 4 shows the AUC plots across three valid-

ation datasets (out of six) based on the test signature identified by

each framework. In two of these datasets, GSMA achieved higher

AUC-ROC score compared to the other approaches. AUC plots

across all six independent datasets are presented in the

Supplementary Figure S5.

The left plot in panel B of Figure 4 shows the comparison of the

AUC-ROC scores across all six validation datasets. The median AUC-

ROC score obtained by GSMA is significantly higher (P-value ¼ 0.032)

than all the median AUC-ROC scores obtained by the other P-value-

based approaches. Similar to the AD case study, we compare the AUC-

ROC scores based on a fixed length test signature ranged from 5 to 50

for each framework and compute AUC-ROC scores on the 6 independ-

ent datasets. The right plot in panel B shows that, regardless of the

length of the test signature, GSMA achieved higher average AUC-ROC

scores compared to the others approaches in most of the cases.

A

B

Fig. 4. A comparison between the proposed meta-analysis framework—GSMA and the eight other existing meta-analysis approaches—Stouffer’s method,

Fisher’s method, minP, maxP, inmex_FEM, inmex_REM, MetaIntegrator and RankAggreg, using influenza disease datasets. Panel A shows the AUC plots across

three (out of six) independent validation datasets based on the test signature identified by each framework. In two out of these three datasets, GSMA achieved

higher AUC-ROC score compared to other approaches. The left plot in panel B shows the comparison of the AUC-ROC scores across all six validation datasets.

The median AUC-ROC score obtained by GSMA is significantly higher (P-value ¼ 0.032) than all other median AUC-ROC scores obtained by the other P-value

based approaches. Finally, the right plot in panel B shows that, regardless of the length of the test signature, GSMA achieved higher average AUC-ROC scores

compared to the others approaches in most of the cases

GSMA: Gene signatures using meta-analysis 7
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4 Discussion

The goal of the proposed approach is to integrate multiple independ-

ent gene expression studies of a given disease and identify a robust

and reproducible gene level meta signature. Using the proposed

framework, we have identified global signatures for AD (89 genes)

and influenza (153 genes), which could be useful to understand the

underlying disease mechanisms and find potential drug targets. This

is expected to be of interest to life scientists seeking biomarkers for

various phenotypes for which multiple datasets are already available

in repositories such as ArrayExpress and GEO. To provide an

enhanced clinical utility and to provide an optimal set of genes that

can distinguish patients from healthy individuals, we also propose

test signatures. This test signatures will be of interest to bioinforma-

ticians developing predictors for various diseases.

Although by default, the length of a test signature is chosen

based on the given discovery datasets, a user can choose any number

of genes (fewer than the global signature) according to the need. The

genes in the test signature were selected from the global signature

using a ranking based filter technique (Lazar et al., 2012). We use

AUC-ROC as the scoring function to rank the gene subsets. Other

techniques based on wrapper or embedded techniques with different

scoring functions could utilized as well.

In addition to validating the identified global signature using tar-

get pathway enrichment (Tables 1 and 2), we are interested to see

the position of the target pathway genes that are present in the glo-

bal signature. Supplementary Figures S4 and S6 show the

Alzheimer’s disease and the Influenza A pathways generated by the

tool iPathwayGuide [https://www.advaitabio.com/ipathwayguide.

html], respectively. For both pathways, red colors represent the posi-

tively perturbed genes whereas the blue colors represent the nega-

tively perturbed genes. In the AD pathway, the majority of the

pathway genes identified in the global signature are part of the mito-

chondrial dysfunction process, which is a key factor for AD progres-

sion (Wang et al., 2014; Yan et al., 2013). In the Influenza A

pathway, the majority of the positively perturbed genes are part of a

coherent cascade creating a sub-network.

In order to demonstrate the novelty of the proposed framework,

we compare the list of pathways that are enriched with the identified

global signatures and the list of impacted pathways identified by the

bi-level meta-analysis approach (BLMA; Nguyen et al., 2016a). We

apply BLMA for both AD and influenza, using the same set of dis-

covery datasets used in this manuscript. The results shown in the

Supplementary Tables S7 and S8 clearly indicate that the gene-level

meta-analysis is more powerful and provides more specific results

than the pathway-level meta-analysis, in terms of identifying rele-

vant pathways.

Although several gene signatures associated with AD have been

previously proposed by different groups, they show very little over-

lap each other (Karch and Goate, 2015; Ravetti and Moscato,

2008). Similarly, several gene markers have been proposed for influ-

enza but the set of genes do not show agreement with each other

(Henn et al., 2013; Josset et al., 2010). One of the main reasons for

the small overlap across different signatures is that the majority of

the results are obtained from single-cohort analysis, and they are not

validated on a large number of independent datasets. In order to

identify a robust and reproducible gene signature, it is important to

perform multi-cohort meta-analysis and validate the identified sig-

nature in a large number of independent datasets.

One practical limitation of the proposed framework is that it

does not take into account the effect size of the genes. Despite of

that, as discussed in the Section 3, our proposed framework is

powerful enough to identify better signatures than atleast three

other popular effect-size based meta-analysis frameworks.

Moreover, one can use the average log fold change of a given gene

as its effect and use that in addition to the P-value provided by the

proposed framework.

5 Conclusion

In this article, we present a novel gene-level meta-analysis framework

that is able to combine multiple gene expression studies of a given dis-

ease and identify a gene signature that is reliable and reproducible

across multiple independent studies. We use intra- and inter-level

meta-analysis to gain statistical power from large sample size. We use

addCLT to combine gene level P-values, which is robust against out-

liers. Importantly, our framework include a LOO analysis to minimize

the influence that might come from any individual study.

We applied our proposed framework on 1108 samples from 9 in-

dependent studies related to AD and influenza. We used an addition-

al 912 samples from 12 independent cohorts for validation

purposes. We demonstrated that, for both diseases, our proposed

framework outperforms the existing meta-analysis approaches by:

(i) consistently identifying better global signatures that are associ-

ated with the underlying disease mechanisms and (ii) identifying test

signatures that can distinguish patients from other individuals

(either healthy or suffering from other diseases) with significantly

higher AUC-ROC score. The signatures identified by the proposed

framework could be used for various purposes such as understand-

ing disease mechanism, sub-network identification (Shafi et al.,

2019), identifying potential drug targets, disease diagnosing and

prognosis, etc.
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