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Background
To date, cancer ranks 2nd among the world’s causes of death behind cardiovascular dis-
ease [1]. Genes carrying mutations are a potential culprit for establishing and develop-
ing cancer [2–6]. This is a strong motivation pushing cancer researchers to identify and 
analyze cancer-associated genes [7–15], possibly advancing cancer therapeutics. Our 
previous work [16] have shown disagreement on a unifying pipeline for cancer driver 
identification and analysis, and then introduced a complete one with two main contribu-
tions: (1) collection of the most widely used analysis steps with advanced statistical tools 
in the field, and (2) reasonable selection of the best parameters of those tools for each 
particular case.

However, our pipeline gradually manifests its weaknesses. It may take time for begin-
ners interested in this field but unfamiliar with programming (i.e., they must learn 
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complex concepts and run lengthy R codes). Besides, we realize that all the methods are 
web-based apps or R packages that may lead the users to a little inconvenience while 
using our pipeline. Moreover, although many driver gene identification tools have been 
proposed, driver gene analysis tools have been minimal, generally integrated with the 
identification tools and only focusing mainly on enrichment analysis [17–19]. Inspired 
by these, we have built DrGA based on the aforementioned pipeline as a solution to 
simplify the analysis process. In particular, DrGA offers several additional improve-
ments, including an automatic implementation for analyses in R only and the best set-
tings/parameters are automatically but flexibly selected case-by-case. These help cancer 
researchers at different programming skill levels to effortlessly issue consistent and 
reproducible results.

In this study, we present two applications of the DrGA on two case studies of human 
breast cancer and mouse metabolic syndrome using multi-omics datasets. We hypoth-
esize that DrGA with high-end tools that support the individual- and system-level analy-
ses will be efficient in characterizing cancer driver genes as well as genetic biomarkers.

Implementation

Figure  1 illustrates a four-module framework of DrGA, including enrichment analysis, 
individual gene-clinical feature association analysis, functional module-clinical feature 
association analysis, and patient stratification, to discover driver genes. At first, DrGA func-
tionally enriched the candidate drivers using R package gprofiler2 [20] (module 1). Then, 
it further investigated the associations between expression levels of each gene versus each 
clinical feature of choice (e.g., tumor stages, weight, glycemic index,…), and versus patient 
outcomes as well (module 2). In parallel, DrGA also performed the association analyses of 
functional gene modules (identified by an agglomerative hierarchical clustering [21]) with 
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Fig. 1  Framework of DrGA. DrGA, armed with the four widely used analyses, dealt automatically with 
identified driver genes, and then provided the users with analysis results moved directly to predefined R 
working directory or printed out in R console results
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those clinical features using an improved version of WGCNA [22] proposed by us before 
[16] (module 3). At last, the tool clustered samples using all the identified driver genes from 
-omics data (e.g., copy number alteration, or methylation, or gene expression, or the like) 
using the same clustering method (module 4). Given the user’s -omics data, they now only 
detected driver genes using advanced driver gene identification tools and then processed 
data following an easy-to-meet format required by DrGA (see Additional file 1). All detailed 
comparisons of methods/tools included in each DrGA’s module with other state-of-the-art 
techniques as well as previously proposed improvements were thoroughly discussed in the 
original paper [16]. Here, aside from summarizing important changes proposed in [16], we 
also indicated that DrGA offered several additional improvements.

Module 1: enrichment analysis

In our prior study [16], we recommended the users to choose g:Profiler [20] instead of 
GSEA [23], DAVID [24, 25], Gene Ontology [26], KEGG [27] or IPA [28] for this task since 
it was the rich-annotated, friendly web-based, freely used, and monthly up-to-date enrich-
ment analysis source. However, we then realized that it would be inconvenient for the users 
to use multiple platforms (web-based apps and R-packages) when dealing with their set of 
predictive driver genes. From that, we decided to integrate an R-package, gprofiler2 [20], 
into DrGA, and so DrGA was able to automatically analyze enrichment on those driver 
genes. Especially, to apply DrGA to any organism, e.g., human, mouse, yeast, etc., the users 
only needed to use the argument ‘organism’. The analysis results of module 1 would move 
to the predefined working directory as a txt file. DrGA considered the driver gene as sig-
nificantly enriched with GO terms and pathways if Q-value ≤ 0.05 (g:SCS multiple testing 
correction method [20], two-sided).

Module 2: association analyses

We previously indicated that selecting the P-value adjustment method was not often speci-
fied, resulting in having difficulty reproducing analysis results, such as ref. [11]. Therefore, 
DrGA now included the Benjamini–Hochberg procedure [29] and automatically analyzed 
associations between the expression levels of each driver gene versus each clinical feature 
of interest and versus patient survival, rendering respective analysis results formatted as txt 
files and placed at the user’s predefined R working directory.

The users could use different correlation methods by feeding one of the three optional 
choices: pearson, spearman, or kendall to the argument ‘methodCC’ (i.e., Pearson’s correla-
tion, Spearman’s rank-order correlation or Kendall’s tau correlation, respectively) to per-
form associations between expression levels of each driver gene and each clinical feature 
of interest over samples. The Pearson’s /Spearman’s /Kendall’s coefficients (r) of each driver 
gene with one clinical feature of choice were calculated as follows (Eq. 1–3):

(1)rp =
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where rp, rs, and rk were the Pearson, Spearman, and Kendall’s correlation coefficients, 
respectively; n was number of pairs; Xi and Yi were the ith expression level of a driver 
gene and ith value of a clinical feature of choice over patients; x and y  were the mean 
expression level of that driver gene and mean value of that clinical feature over patients. 
rxi and ryi were the ith ranked expression levels of a driver gene and ith ranked values of 
a clinical feature of choice over patients, rx and ry  were the average rank of expression 
levels of that driver gene and average rank of values of that clinical feature over patients. 
C and D were the number of concordant pairs and discordant pairs, respectively.

DrGA also helped the users analyze the prognostic effects of predicted driver genes 
automatically. The tool required gene expression profiles, divided into two groups: up or 
down expression groups based on mean/median expression levels, and survival informa-
tion of patients included in the clinical data as input. Then, a log-rank test in univari-
ate Cox regression analysis with a proportional hazards model [30] was performed to 
compute those associations. Next, hazard ratios (HR) with their 95% confidence inter-
vals (CI), Cox P-values, and Q-values were recorded and reported as a txt file. DrGA 
considered the driver gene as significantly associated with survival rate if Q-value ≤ 0.05 
(Benjamini–Hochberg procedure, two-sided).

Module 3: construction of co‑expressed gene modules

Numerous existing studies have reported that multifactorial diseases, like cancer, have 
been caused by a group of genes instead of individual genes [31, 32]. Besides, gene co-
expression networks are one of the most common ways to reveal a collection of genes 
functioning collaboratively [33, 34] as well as a collection of hub genes that are of utmost 
importance in a certain disease, and that WGCNA is a pioneer in this problem. Basically, 
WGCNA attempts to build co-expressed modules of genes based on a gene–gene simi-
larity matrix across a group of patients having a tendency to show a coordinated expres-
sion pattern [22]. Our previous study [16] introduced an improved version of WGCNA, 
temporarily called iWGCNA in this study, and confirmedly outperformed its original 
version in the ability to detect functional gene modules [35]. Specifically, we predeter-
mined which cluster distance measure, including the single-linkage, complete-linkage, 
average-linkage, or Ward’s minimum variance [36] methods (Table  1 and Fig.  2), was 
appropriate for each particular case based on agglomerative coefficients, helping meas-
ure the number of clustering structures found and specify the agglomeration method 
to be used. To simplify this process, DrGA was now able to do this task automatically. 
Next, Pearson’s correlation coefficients and corresponding P-values between each iden-
tified co-expressed module and clinical features of choice were computed automatically 
and outputted as a publication-quality figure in PDF format. Also, DrGA automatically 
reported the top-five hub genes (i.e., genes with high intramodular connectivity) in each 
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co-expressed module, indicating possession of a vast range of interactions with other 
genes as well as playing a crucial role in the co-expression network of those genes.

Module 4: hierarchical clustering of cancer patients

Many works [11, 14] used the agglomerative hierarchical clustering technique at a 
basic level to partition the cancer patients into different subgroups that could be 

Table 1  Four agglomeration methods considered automatically in DrGA to specify the appropriate 
one

D(X,Y) the distance between X and Y, c1 and c2 cluster 1 and cluster 2, x1 and x2 a point in cluster 1 and a point in cluster 2, 
TDtotal distance, µ mean

Cluster distance measure Description Formula

Single method The distance between two clusters, 
c1 and c2, is defined as the shortest 
distance between two points, x1 and x2 
in each cluster

D(c1, c2) = min
x1∈c1,x2∈c2

D(x1, x2) (4)

Complete method The distance between two clusters, c1 
and c2, is defined as the longest distance 
between two points, x1 and x2 in each 
cluster

D(c1, c2) = max
x1∈c1,x2∈c2

D(x1, x2) (5)

Average method The distance between two clusters, c1 
and c2, is defined as the average dis‑
tance between each point in one cluster 
to every point in the other cluster

D(c1, c2) =
1

nc1nc2

nc1
∑

i=1

nc2
∑

j=1

D
(

xi , xj
)

(6)

Ward’s method Minimizes the total within-cluster error 
sum of squares, and then, at each stage, 
iteratively identifies pairs of groups with 
minimum between-group distance and 
carry out the merger of those two

TDc1∪c2 =
∑

x∈c1∪c2

D
(

x ,µc1∪c2

)2
(7)

c1 c2

a b

c d

c1 c2

c1 c2 c1 c2

Fig. 2  Illustration of four agglomeration methods included in DrGA. The number of subgroups was two for 
example purpose. a single-linkage method. b complete linkage method. c average-linkage method. d Ward’s 
minimum variance method. c1 and c2, cluster 1 and cluster 2
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improved. Indeed, similar to module 3, DrGA also re-determined automatically 
which agglomeration method was optimal. Besides, one important task in the clus-
tering problem was how many subgroups were optimal. Prior works sometimes 
ignored this step or made it ambiguous [11]. To solve this problem, DrGA auto-
matically and simultaneously implemented three common indices: the average Sil-
houette index [37], the Dunn’s index [38, 39], and the connectivity. The average 
Silhouette took a value between − 1 (poorly clustered observations) and 1 (well 
clustered observations), and the place where the black line of the Silhouette plot 
peaks at, which implied that that subgroup number was optimal. The Dunn’s index 
took a value between zero (poorly clustered observations) and infinity (well clus-
tered observations), and the place where the black line of Dunn’s index plot peaks 
at, which implied that that group number was optimal. The connectivity showed 
the connectedness of a given cluster partitioning and took a value between 0 and 
infinity. The user should choose a point reaching the most minimized value. Figure 4 
shows gained results for illustrative purpose. In practice, the optimal number of sub-
groups would be the number of being selected by the three indices. If not, two out 
of the three indices; otherwise, DrGA would report that it did not find any optimal 
number (a sporadic case).

To examine possible differences between involved subgroups in patient survival 
and clinical features, DrGA first automatically implemented survival analysis using 
the Cox regression between the identified subgroups, and outputted the P-value and 
the HR with its 95% CI in the R environment. Then, DrGA also automatically per-
formed comparison between the identified subgroups in terms of the selected clini-
cal features using statistical tests. The results were moved into the working directory 
as an xlsx file. Noticeably, DrGA automatically recognized whether those clinical 
features were continuous normal-distributed, continuous non-normal distributed, 
or categorical to select an appropriate statistical test. The way to let DrGA be able to 
do that was by using the Shapiro–Wilk test for normality [40]. Given a certain clini-
cal feature, the null hypothesis Ho was that the clinical feature followed a normal 
distribution. Then if the P value ≤ 0.05, DrGA rejected Ho.

Note that we discussed exhaustedly how to use DrGA and interpret the results in 
the section ‘Understanding the tool and gained results’ in Additional file 1.

Results
Human breast cancer

Here we re-used-omics data used in our prior study [16], downloaded from the cBio-
Portal for Cancer Genomics (http://​www.​cbiop​ortal.​org) [41, 42], including somatic 
mutation, gene expression, and copy number alterations, in a cohort of breast cancer 
patients. We decided to apply DrGA to these datasets to demonstrate that DrGA 
were well able to reproduce all the results indicated in [16] but in a surprisingly rapid 
way. More details of the pre-processing procedures and analysis processes could be 
found in the Additional file 1. As expected, we inputted processed data into DrGA 
and received the same results relative to [16] in only about 30 s.

http://www.cbioportal.org
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Mouse metabolic syndrome

Here we strived to go beyond the initial goal of DrGA with an example of mouse meta-
bolic syndrome (obesity, insulin resistance, and dyslipidemia) [43]. The data were gene 
expressions in the liver from female mice and a set of physiologically relevant genes. In 
this section, to avoid using too many clinical features for the analysis process, we also 
added a corresponding mini-step in pre-processing procedures (Additional file  1: Fig. 
S15). As a result, eight out of 20 physiological features were kept, including bodyweight, 
body length, abdominal fat, total fat, ulcerative colitis, free fatty acids, glycemic index, 
and two LDL and VLDL cholesterol levels.

Full findings of DrGA, in this case, could be found in our Github (https://​github.​com/​
huyng​uyen2​50896/​DrGA). Here we wanted to discuss more the most interesting results 
than the analysis results of [43]. As shown in Fig. 3a, DrGA discovered 12 co-expressed 
gene modules, consistent with the module number reported in [43], and the top-five hub 
genes were detected automatically and printed out in the R console results. These genes 
were extremely interesting since it was evident that genes with very high connectivity in 
lower organisms were confirmedly associated with lethal phenotypes [44–46]. In addi-
tion, Fig. 3b reports genes belonging to the green module were jointly expressed, which 
resulted in the most positive correlation with the syndrome. The opposite was seen in 
the turquoise module.

Next, DrGA tried stratifying the mice using the methodology described in the Meth-
ods section. As a result, all the three indices reported the two subgroups were optimal 
(Fig.  4a-c). Figure  4d shows the heatmap illustrating differences in expression events 
between the included subgroups. Finally, the comparisons between these subgroups 
in terms of the eight clinical features of choice were implemented automatically by 
DrGA (Table  2). Unfortunately, we did not see any statistically significant differences 
in the selected clinical features between the two subgroups, most possibly due to the 
small number of samples. However, we still saw that mice assigned to the first subgroup 
had partially significantly worse traits than their counterparts in the second subgroup 
(higher weight, higher total fat, higher free fatty acids levels, and higher glycemic index).

Fig. 3  Analysis results performed in module 3 of DrGA. a DrGA discovered 12 co-expressed modules with 
corresponding numbers of genes as well as top-five hub genes included in each module. b Associations 
between each module and the eight selected clinical features. weight_g, bodyweight of mice (gram unit), 
length_cm body length of mice (centimeters unit), ab_fat abdominal fat, total_fat total fat, UC ulcerative 
colitis, FFA free fatty acids, Glucose glycemic index, LDL_Plus_VLDL two LDL and VLDL cholesterol levels

https://github.com/huynguyen250896/DrGA
https://github.com/huynguyen250896/DrGA
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Fig. 4  Identification of the optimal number of subgroups. a Connectivity index selected two subgroups. b 
Dunn index selected two subgroups. c Silhouette index selected two subgroups. d Differences in expression 
events between the identified groups. Two distinct groups were found (pink and orange)

Table 2  Comparison between the involved subgroups in terms of the chosen clinical features

For the first two continuous variables: weight_g and length_cm, and the last four continuous variables: UC, FFA, Glucose, 
LDL_plus_VLDL, median [percentiles 25%; percentiles 75%] were calculated at the first two columns. For the remaining two 
ordinal variables: ab_fat and total_fat, the number of cases and the percentage of cases in each tumor stage are shown

weight_g, bodyweight of mice (gram unit); length_cm, body length of mice (centimeters unit); ab_fat, abdominal fat; 
total_fat, total fat; UC, ulcerative colitis; FFA, free fatty acids; Glucose, glycemic index; and LDL_Plus_VLDL, two LDL and 
VLDL cholesterol levels

1 (N = 125) 2 (N = 7) p value

weight_g 38.2 (6.21) 36.5 (2.24) 0.110

length_cm 10.2 (0.34) 10.2 (0.36) 1.000

ab_fat 2.53 [1.74;3.20] 2.04 [1.86;2.27] 0.268

total_fat 4.91 [3.97;5.86] 3.96 [3.55;4.19] 0.059

UC 460 (122) 417 (122) 0.401

FFA 109 (29.0) 86.0 (28.7) 0.079

Glucose 432 (97.4) 375 (71.9) 0.086

LDL_plus_VLDL 1196 (315) 1103 (246) 0.371
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For this moment, it took us only about two minutes to finish all the analysis modules.

Discussion and future work
We have described DrGA with functions in a more straightforward manner and shown 
its ability through the two benchmark datasets, including human breast cancer and 
mouse metabolic syndrome. We also have described our recent modifications to DrGA, 
which served to improve both its usability as well as its ability to keep analysis results 
consistent and reproducible without recourse to programming expertise. Besides, we 
also open up another potential application of DrGA on complex diseases from other 
species, proving DrGA is very flexible to characterize driver genes or genomic biomark-
ers and be applied to any organism such as human, mouse, yeast, etc. These will help 
expand the pool of users with different backgrounds, including biologists, bioinforma-
ticians, and computational biologists, in analyzing cancer genes and biomarkers from 
–omics data.

Nevertheless, we acknowledge that DrGA has still several limitations. Firstly, DrGA 
automatically performs the correlation analysis just using the three commonly used 
methods (i.e., Pearson’s, Spearman’s rank, and Kendall’s tau correlations), which might 
lead to forcing the users to make rigid assumptions, while there are still other advanced 
non-parametric methods should be considered. Secondly, DrGA deals with the cen-
sored data in a naive way, i.e., DrGA ignores missing survival information automati-
cally, whereas, for end-of-study and loss-to-follow-up censoring, it selects the approach 
of analyzing dichotomized data. At last, we do not automate the data pre-processing 
procedure due to the heterogeneity of the data structure. However, the last restriction 
seems to be solved easily most as the users still may benefit partly from example codes 
provided in Additional file 1.

Moreover, because our desire is to see DrGA in the future become a focal point for the 
community of cancer researchers in analyzing driver genes comprehensively, we plan to 
continue to overhaul DrGA more. Specifically, we will first overcome the first limitation 
by integrating various correlation tests into DrGA and let DrGA choose an appropriate 
method for each certain case automatically. Also, although iWGCNA better performs 
its original version in terms of identifying biologically relevant functional modules, we 
understand that there has an absolute difference between clustering patients into dif-
ferent subgroups and clustering genes into different modules. Therefore, we have raised 
this point and proposed a novel tool named oCEM to overcome it, published elsewhere 
[35]. In the future, we will consider replacing iWGCNA with oCEM.

Conclusions
In conclusion, we believe that the DrGA tool is a potential workaround for the non-tech-
nical users to efficiently implement complex analyses in R and gain reproducible and 
consistent results.
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Availability and requirements

Project name: DrGA.
Project home page: https://​github.​com/​huyng​uyen2​50896/​DrGA
Operating system(s): Any.
Programming language: R
Other requirements: None.
License: MIT.
Any restrictions to use by non-academics: none.

Abbreviations
DrGA: DriverGeneAnalysis; oCEM: Overlapping CoExpressed gene Module; WGCNA: Weighted gene co-expression 
network analysis; iWGCNA: Improved weighted gene co-expression network analysis; HR: Hazard ratios; CI: Confidence 
intervals.
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