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Abstract. One main challenge in modern medicine is the discovery of
molecular disease subtypes characterized by relevant clinical differences,
such as survival. However, clustering high-dimensional expression data
is challenging due to noise and the curse of high-dimensionality. This
article describes a disease subtyping pipeline that is able to exploit the
important information available in pathway databases and clinical vari-
ables. The pipeline consists of a new feature selection procedure and
existing clustering methods. Our procedure partitions a set of patients
using the set of genes in each pathway as clustering features. To select
the best features, this procedure estimates the relevance of each pathway
and fuses relevant pathways. We show that our pipeline finds subtypes of
patients with more distinctive survival profiles than traditional subtyp-
ing methods by analyzing a TCGA colon cancer gene expression dataset.
Here we demonstrate that our pipeline improves three different clustering
methods: k-means, SNF, and hierarchical clustering.

This is an author-version of an article presented at International
Workshop on Machine Learning, Optimization and Big Data 2016.
The final publication is available at http://www.springerlink.com

1 Introduction

Identifying homogeneous subtypes in complex diseases is crucial for improving
prognosis, treatment, and precision medicine [1]. Disease subtyping approaches
have been developed to identify clinically relevant subtypes. High-throughput
technologies can measure the expression of more than ten thousand genes at
a time. Subtyping patients using the whole-genome scale measurement is chal-
lenging due to the curse of high-dimensionality. Several clustering methods have
been developed [2–5] to handle this type of high-dimensional data. Other ap-
proaches, such as iCluster [6], rely on feature selection to reduce the complexity
of the problem.

There are many widely used feature selection methods [7–11]. The simplest
way to perform unsupervised feature selection for subtyping is by ranking the
list of genes and filtering out those with low rankings. For example, genes can
be ranked using Fisher score-based methods [8, 9] or t-test based methods [10].
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Other methods, such as [11], use general purpose filtering metrics like Informa-
tion Gain [12], Consistency [13], Chi-Squared [14] and Correlation-Based Feature
Selection [15]. These filter-based methods are computationally efficient, but they
do not account for dependency between genes or features. To address this, wrap-
per methods [16, 17] use learning algorithms to find subsets of related features
or genes. Even though these methods consider feature dependency, they have a
high degree of computational complexity due to repeated training and testing of
predictors. This makes them impractical for analyzing high-dimensional data.

Meanwhile, some approaches incorporate to gene-expression-based subtyp-
ing other types of data such as clinical variables [18–20] and multi ‘omics’
data [6, 21, 22]. These types of data are more and more available nowadays.
Large public repositories, including the Cancer Genome Atlas (TCGA) (can-
cergenome.nih.gov), accumulate clinical and multi ‘omics’ data from thousands
of patients. Clinical variables used for subtyping include survival data [18], epi-
demiological data [19], clinical chemistry evaluations and histopathologic ob-
servations [20]. These variables have shown to provide useful information for a
better subtyping.

Subtyping patients using gene expression data has additional challenges be-
cause genes do not function independently. They function in synchrony to carry
on complex biological processes. Knowledge of these processes is usually accu-
mulated in biological pathway databases, such as KEGG [23] and Reactome [24].
Biological pathways are graphical representations of common knowledge about
genes and their interactions on biological processes. This valuable information
has been used to cluster related genes using gene expression [25–28] and should
be used to identify disease subtypes as well. Clinical data and biological knowl-
edge are complementary to gene expression and can leverage disease subtyping.

Here we present a disease subtyping pipeline that includes a new feature se-
lection approach and any existing unsupervised clustering method. To the best
of our knowledge, this is the first approach that integrates pathway knowledge
and clinical data with gene expression for disease subtyping. Our framework is
validated using gene expression and clinical data downloaded from the Cancer
Genome Atlas (TCGA) and pathways from the Kyoto Encyclopedia of Genes
and Genomes (KEGG). Using the features selected with our approach and three
different clustering methods (k-means, SNF, and hierarchical clustering), our
pipeline is able to identify subtypes that have significantly different survival
profiles. This pipeline was developed in R programming language. The source
code is available on github (http://datad.github.io/disSuptyper) to ease the re-
producibility of the methods presented here [29, 30].

2 Method

In this section, we introduce a new feature selection framework for disease sub-
typing. Figure 1 presents the overall pipeline of our framework. The input in-
cludes i) gene expression data, ii) survival data, and iii) biological pathways (see
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Figure 1a). The output is a set of selected genes (Figure 1f) for finding subtypes
with significantly distinct survival patterns (Figure 1g).

Gene expression data can be represented as a matrix D ∈ RM×N , where the
rows are different patients having the same disease and columns are different
features (i.e. genes). M is the number of patients and N is the number of genes.
For gene expression data, N can be as large as 20, 000. The survival data include
patient’s vital status (dead or alive) and follow-up information (time and cen-
sored/uncensored). The biological pathways are collected from public pathway
databases. In this work, our data analysis are based on KEGG pathways [23],
but other databases can also be used.

First, we partition the rows (patients) of gene expression matrix D using
the features provided by each pathway in the pathway database (Figure 1b).
Formally, let us denote P as the pathway database which has n = |P| signaling
pathways. We have P = {Pi} where i ∈ [1..n]. For each pathway Pi, we cluster
the rows using genes that belong to the pathway Pi as features resulting in a
partitioning Ci.

Second, we perform survival analysis on each of the pathway-based clusterings
Ci (Figure 1c). We calculate Cox log-rank p-value for the subtypes defined by Ci

using the input survival information. This Cox p-value represents how likely the
survival curves’ difference is observed by chance. So far, we have n Cox p-values,
one per pathway.

Now the question is whether the features provided by the pathway Pi help
to better differentiate the subtypes. We will answer this question by using ran-
dom sampling technique. Denote |Pi| as the number of genes in the pathway Pi.
We randomly select |Pi| genes from the original set of N genes. We partition
the patients using this randomly selected set of genes and then compute the
Cox p-value. We repeat this random selection 10, 000 times which results in a
distribution that has 10, 000 Cox p-values (Figure 1d). This distribution repre-
sents the distribution of Cox p-values when randomly selecting |Pi| features for
subtyping. In Figure 1d, the vertical red line shows the real Cox p-value cal-
culated from the actual genes in Pi, whereas the green distribution shows the
10, 000 random Cox p-values. Now we compare the Cox p-value obtained from
the pathway Pi with the distribution of randomly selected genes. We estimate
the probability of obtaining this Cox p-value (using genes in Pi) by computing
the ratio of the area to the left of this Cox p-value divided by the total area
of the distribution. We denote this probability as pi. In total, we have n values
{pi, i ∈ [1..n]}, one for each pathway. Each of these p-values pi quantifies how
likely it is to observe by chance a Cox log-rank statistic as extreme or more than
the one observed. Therefore, this p-value of a pathway Pi represents how likely
the features provided by the pathway help to improve the subtyping.

The third step is to choose a set of pathways that certainly help to improve
the subtyping. To do this, we adjusted the p-values for multiple comparisons
using False Discovery Rate (FDR), we rank the set of pathways and select those
that have the corresponding nominal p-values less than or equal to the signifi-
cance threshold of 5%. Let us name the pathways yielding significantly distinct
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Fig. 1: New feature selection pipeline for disease subtyping using biological
knowledge. (a) The input includes i) gene expression data, ii) survival data,
and iii) pathways downloaded from a database. (b) First, we partition the gene
expression data using the set of genes in each pathway as features. (c) Second,
we perform survival analysis on each resulting partition. (d) Third, we compute
the p-value that represents how likely the pathway improves the subtyping. (e)
Fourth, we rank the list of pathways by corrected p-value and select pathways
that have a nominal p-value less than or equal to the significance threshold 5%.
(f) Fifth, we merge the relevant pathways to construct the final set of features.
(g) Finally, we subtype the patients using the selected features. The clustering
is demonstrated in the first two principal components, but we use all dimen-
sions/genes for clustering. Note: IBD pathway stands for Inflammatory Bowel
Disease pathway.
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Table 1: List of pathways selected by our approach when using RSS k-means. We
first ranked the pathways by FDR adjusted p-value (p-value.fdr), then selected
the pathways with a nominal p-value ≤ 0.05 as relevant pathways.

Pathway p-value p-value.fdr

Complement and coagulation cascades 0.00020 0.03680
AGE-RAGE signaling pathway in diabetic complications 0.00420 0.38640
Peroxisome 0.00670 0.41093
Cytokine-cytokine receptor interaction 0.01040 0.45448
Fc gamma R-mediated phagocytosis 0.01650 0.45448
Phagosome 0.01840 0.45448
Inflammatory bowel disease (IBD) 0.02050 0.45448
Staphylococcus aureus infection 0.02150 0.45448
Leukocyte transendothelial migration 0.02330 0.45448
NF-kappa B signaling pathway 0.03710 0.50048
Renin secretion 0.03850 0.50048
Malaria 0.04780 0.51326

Platelet activation 0.06980 0.54970

survival curves as relevant pathways. For example, In Figure 1e, the horizon-
tal red line shows the significance threshold of 5%. In this example, the relevant
pathways are Coagulation cascades, Peroxisome, Fc gamma phagocytosis, Phago-
some, Inflammatory Bowel Disease (IBD) pathway, and Staphylococcus infection.

Considering all the genes in the relevant pathways as favorable features, we
merge these pathways to get a single set of genes (Figure 1f). We use this merged
set of genes as the selected features for our final subtyping. In our example, the
final selected genes are the genes in the six pathways listed above. We then use
these genes to construct the final clustering as shown in Figure 1g.

We note that this feature selection procedure can be used in conjunction with
any clustering method. In our experimental studies, we used three clustering
methods that belong to different clustering models. The first method is the
classical k-means. It is well-known that k-means does not always converge to a
global optimal point, it depends on the initialization. To overcome this problem,
we ran k-means several times and chose the partitioning that has the smallest
residual sum of squares (RSS). In the rest of the manuscript, we refer to this
as “RSS k-means”. The second method is Similarity Network Fusion (SNF) [4],
which is based on spectral clustering. The third one is the traditional hierarchical
clustering using cosine similarity as the distance function. We will show that our
framework helps to improve the subtyping using any of the three mentioned
clustering methods.
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a) Survival curve, k−means, all genes

 Cox p−value =  0.129
group 1 (23)
group 2 (31)
group 3 (38)
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b) Survival curve, k−means, filtered genes

 Cox p−value =  0.0156
group 1 (27)
group 2 (24)
group 3 (41)

Fig. 2: Kaplan-Meier survival analysis of the obtained subtypes using RSS k-
means algorithm. a) Survival curves using all genes. b) Survival curves using
selected genes.

3 Results

In this section,we assess the performance of our feature selection for disease sub-
typing framework using gene expression data (Agilent G4502A-07 platform level
3) generated by the Cancer Genome Atlas (TCGA) (cancergenome.nih.gov). We
selected the samples that have miRNA and methylation measurements as were
selected in SNF [22]. A copy of the dataset is available in the github repository
(http://datad.github.io/disSuptyper). The number of patients is M = 92, and
the number of genes is N = 17, 814. For all the performed clusterings, we set
the number of clusters as k = 3 according to prior knowledge of the number of
subtypes of colon cancer [4]. When running our method, we used 184 pathways
from the KEGG pathway database [23].

As described in Section 2, our framework can be used in conjunction with
any unsupervised clustering algorithm. Here we test it using three clustering
methods: RSS k-means, SNF [22], hierarchical clustering [2]. For all clustering
methods, we first clustered the patients using all the measured genes, then clus-
tered the patients using only the genes selected by our technique. To contrast
the difference between the three traditional clustering methods and our pipeline
results, we performed survival analysis for all the cases using Kaplan-Meier anal-
ysis and Cox p-value.

3.1 Subtyping using k-means

We clustered the patients from the TCGA colon adenocarcinoma dataset using
our pipeline in conjunction with RSS k-means. We used the 184 signaling path-
ways from the KEGG database [23]. For each pathway Pi, we partitioned the
patients using the genes in the pathway Pi as features to get a clustering Ci.

After this step, we got a total of 184 clusterings, one per pathway. Also
for each pathway, we constructed the empirical distribution and then estimated
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Fig. 3: Kaplan-Meier survival analysis of the obtained subtypes using SNF. a)
Survival curves using all genes. b) Survival curves using the selected genes.
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a) Survival curve, SNF, all genes

 Cox p−value =  0.184
group 1 (22)
group 2 (32)
group 3 (38)
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b) Survival curve, SNF, filtered genes

 Cox p−value =  0.0207
group 1 (29)
group 2 (32)
group 3 (31)

the p-value of how likely the pathway helps to improve disease subtyping. The
p-values of relevant pathways are shown in Table 1. The horizontal red line
represents the significance cutoff at 5%. There are 12 relevant pathways. We
then merged the relevant pathways to get a single set of genes that we used as
clustering features. This final set of features consists of 851 genes when using
RSS k-means algorithm. Finally, we performed RSS k-means clustering using
these 851 genes.

Figure 2 shows the survival analysis of the resultant clusterings. Figure 2a
shows the resultant clustering when using RSS k-means for all 17, 814 genes. The
Cox p-value of this clustering is 0.129, which is not significant. Figure 2b shows
the resultant clustering using the 851 selected genes. The resultant Cox p-value
is 0.0156, which is approximately ten times lower than using all genes.

3.2 Subtyping using SNF

Similar to the assessment performed for k-means, we clustered the patients from
the TCGA colon adenocarcinoma dataset using our pipeline in conjunction with
SNF. To perform SNF clustering, we ran the SNFtool Bioconductor package with
the parameters suggested by the authors [4]. We used the same input (KEGG
pathways), settings (three clusters), and process previously described.

After this step, we obtained 184 clusterings, one per pathway. Then for each
pathway, we constructed the empirical distribution and estimated the p-value
of how likely the pathway helps to improve disease subtyping. The estimated p-
values are shown in Table 2. The horizontal red line represents the significance
threshold of 5%. There are 10 relevant pathways. We merged these relevant path-
ways to get a single set of genes that we used as our final set of selected features.
This feature set contains 764 genes for SNF method. Finally, we performed SNF
clustering using these 764 genes.

Figure 3 shows the survival analysis of the resultant clusterings. Figure 3a
shows the clustering when using SNF for all 17, 814 genes. The Cox p-value of
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Table 2: List of pathways that contain relevant genes obtained with our approach
when using SNF. We first ranked the pathways by p-value.fdr, then selected the
pathways with a nominal p-value ≤ 0.05.

Pathway p-value p-value.fdr

HTLV-I infection 0.00400 0.37765
Endocrine and other factor-regulated calcium reabsorption 0.00680 0.37765
Complement and coagulation cascades 0.00800 0.37765
Aldosterone-regulated sodium reabsorption 0.00830 0.37765
AMPK signaling pathway 0.01410 0.51324
Phagosome 0.02150 0.54196
Fc epsilon RI signaling pathway 0.02290 0.54196
Cytosolic DNA-sensing pathway 0.02680 0.54196
Peroxisome 0.03900 0.61320
Leishmaniasis 0.04300 0.61320

Non-alcoholic fatty liver disease (NAFLD) 0.05400 0.66544

this clustering is 0.1836, which is not significant (this resultant is identical to
the result reported in [4]). Figure 3b shows the resultant clustering when using
the 764 selected genes. The Cox p-value is 0.0207, which is approximately ten
times lower than using all genes. Despite this meaningful improvement, none of
the pathways has a corrected p-value.fdr ≤ 0.05. This shows a lack of statistical
power on our approach and an opportunity for improvement.

3.3 Subtyping using hierarchical clustering

Alike the assessment performed previously, we clustered the colon adenocarci-
noma patients using our pipeline in conjunction with Hierarchical Clustering
(HC) [2]. We used the 184 signaling pathways from KEGG [23]. The estimated
p-values of the relevant pathways obtained with HC are shown in Table 3. The
horizontal red line represents the significance threshold of 5%. We merged these
three relevant pathways to get our final set of selected features. This feature set
contains 195 genes for HC. Finally, we performed hierarchical clustering using
the selected genes only.

Figure 4 shows the survival analysis of the resultant clusterings. Figure 4a
shows the clustering when using HC for all 17, 814 genes. The Cox p-value of
this clustering is 0.799 which is not significant. Figure 4b shows the resultant
clustering when using the 195 selected genes. The Cox p-value is 0.151 which is
lower than using all genes, but it is still not significant. The subtypes obtained
with hierarchical clustering do not separate the patients in clinically meaningful
subtypes in any of the cases (neither using all genes nor filtered genes).

Given that our approach requires resampling for computing the p-values pi,
this pipeline is more time consuming than traditional approaches. For the com-
putational experiments presented here, we generated 10, 000 random samplings
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Table 3: List of pathways selected by our approach when using hierarchical
clustering. We first ranked the pathways by FDR adjusted p-value (p-value.fdr),
then selected the pathways with a nominal p-value ≤ 0.05 as relevant pathways.

Pathway p-value p-value.fdr

Cytosolic DNA-sensing pathway 0.01140 0.63874
Peroxisome 0.01200 0.63874
Fc epsilon RI signaling pathway 0.04090 0.63874

Complement and coagulation cascades 0.12390 0.80770

Fig. 4: Kaplan-Meier survival analysis of the obtained subtypes using hierarchical
clustering (HC). a) Survival curves using traditional HC. b) Survival curves using
HC in our pipeline.
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a) Survival curve, hierarchical, all genes

 Cox p−value =  0.799
group 1 (30)
group 2 (31)
group 3 (31)
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a) Survival curve, hierarchical, filtered genes

 Cox p−value =  0.151
group 1 (26)
group 2 (33)
group 3 (33)

and clusterings per each pathway (184 pathways in total). Our pipeline took sev-
eral hours to subtype the set of patients (about 8 hours for k-means, 17 hours
for SNF, and 46 hours for hierarchical clustering) while running any traditional
clustering method takes only some minutes (less than 6 minutes). We ran these
experiments on a typical desktop workstation with a 2.6 GHz Intel Core i5, 8GB
of RAM, on a single thread, and the OS X 10.11 operative system.

4 Conclusions

In this article, we describe a framework to combine gene expression data, sur-
vival data, and biological knowledge available in pathway databases for a better
disease subtyping. The performance of the new approach was demonstrated on
the colon adenocarcinoma data downloaded from TCGA. The described frame-
work was tested in conjunction with k-means, Similarity Network Fusion (SNF)
and hierarchical clustering. For these clustering algorithms, our approach greatly
improves the subtyping. In all cases, the Cox p-value is folds lower when using
the selected features. Cox p-value improved from 0.129 to 0.0156 for k-means,
from 0.184 to 0.0207 for SNF, and from 0.799 to 0.151 for hierarchical clustering.
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Our contribution is two-folds. First, this framework introduces a way to ex-
ploit the additional information available in biological databases. Although the
framework was demonstrated on KEGG pathways, it can exploit information
available in other databases, such as functional modules available in Gene Ontol-
ogy database or protein-protein interactions available in the STRING database.
Second, this framework is the first one that integrates clinical data, biological
pathways, and gene expression data for disease subtyping. For future work, we
plan to use other clinical variables besides survival information and integrate
multiple datatypes, such as microRNA, for a more comprehensive analysis [31].
Additionally, we plan to analyze the performance of feature selection methods
from other contexts into the context of disease subtyping.
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Computational and Mathematical Methods in Medicine, Computational and Math-
ematical Methods in Medicine 2014, 2014 (September 2014) e432109

12. Sebastiani, F.: Machine Learning in Automated Text Categorization. ACM Com-
put. Surv. 34(1) (March 2002) 1–47

13. Liu, Y., Schumann, M.: Data mining feature selection for credit scoring models.
Journal of the Operational Research Society 56(9) (April 2005) 1099–1108

14. Zheng, Z., Wu, X., Srihari, R.: Feature Selection for Text Categorization on Im-
balanced Data. SIGKDD Explor. Newsl. 6(1) (June 2004) 80–89

15. Hall, M.A.: Correlation-based feature selection for machine learning. PhD thesis,
The University of Waikato (1999)

16. Diaz-Uriarte, R., Alvarez de Andres, S.: Gene selection and classification of mi-
croarray data using random forest. BMC Bioinformatics 7 (2006) 3

17. Sharma, A., Imoto, S., Miyano, S., Sharma, V.: Null space based feature selection
method for gene expression data. International Journal of Machine Learning and
Cybernetics 3(4) (2011) 269–276

18. Bair, E., Tibshirani, R.: Semi-Supervised Methods to Predict Patient Survival
from Gene Expression Data. PLOS Biol 2(4) (April 2004) e108

19. Paoli, S., Jurman, G., Albanese, D., Merler, S., Furlanello, C.: Integrating gene
expression profiling and clinical data. International Journal of Approximate Rea-
soning 47(1) (January 2008) 58–69

20. Bushel, P.R., Wolfinger, R.D., Gibson, G.: Simultaneous clustering of gene expres-
sion data with clinical chemistry and pathological evaluations reveals phenotypic
prototypes. BMC Systems Biology 1 (2007) 15

21. Chalise, P., Koestler, D.C., Bimali, M., Yu, Q., Fridley, B.L.: Integrative clustering
methods for high-dimensional molecular data. Translational cancer research 3(3)
(June 2014) 202–216

22. Wang, B., Mezlini, A.M., Demir, F., Fiume, M., Tu, Z., Brudno, M., Haibe-Kains,
B., Goldenberg, A.: Similarity network fusion for aggregating data types on a
genomic scale. Nature Methods 11(3) (2014) 333–337

23. Kanehisa, M., Goto, S.: KEGG: Kyoto Encyclopedia of Genes and Genomes.
Nucleic Acids Research 28(1) (2000) 27–30

24. Croft, D., Mundo, A.F., Haw, R., Milacic, M., Weiser, J., Wu, G., Caudy, M.,
Garapati, P., Gillespie, M., Kamdar, M.R., Jassal, B., Jupe, S., Matthews, L., May,
B., Palatnik, S., Rothfels, K., Shamovsky, V., Song, H., Williams, M., Birney, E.,
Hermjakob, H., Stein, L., D’Eustachio, P.: The Reactome pathway knowledgebase.
Nucleic Acids Research 42(D1) (2014) D472–D477

25. Hanisch, D., Zien, A., Zimmer, R., Lengauer, T.: Co-clustering of biological net-
works and gene expression data. Bioinformatics 18(suppl 1) (July 2002) S145–S154

26. Huang, D., Pan, W.: Incorporating biological knowledge into distance-based clus-
tering analysis of microarray gene expression data. Bioinformatics 22(10) (May
2006) 1259–1268

27. Rapaport, F., Zinovyev, A., Dutreix, M., Barillot, E., Vert, J.P.: Classification of
microarray data using gene networks. BMC Bioinformatics 8 (2007) 35



12 Diana Diaz1, Tin Nguyen1, and Sorin Draghici1,2,∗

28. Pok, G., Liu, J.C.S., Ryu, K.H.: Effective feature selection framework for cluster
analysis of microarray data. Bioinformation 4(8) (February 2010) 385–389
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