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Abstract

Motivation: Cell annotation is fundamental for single-cell data interpretation. Accurate annotation allows us to identify
cell types, understand their functions, trace developmental trajectories, and pinpoint alterations associated with a condi-
tion of interest. However, this complex process demands extensive manual curation, domain expertise, and proficiency
across diverse bioinformatics tools. These challenges impede reproducibility and consistency.

Results: We have developed a new approach for semi-automatic cell type annotation, powered by large language models
(LLMs). Given the input single-cell data, we first perform dimension reduction, clustering, and differential analysis to
identify distinct cell groups and their respective markers. Next, we utilize Meta’s Llama and structured prompting to infer
potential cell types. This approach greatly reduces manual labor from researchers while maintaining biological accuracy
through enforced ontology, tissue context, and marker gene signatures. Our solution is freely accessible through our web-
based platform named CytoAnalyst, hosted on a high-performance infrastructure with optimized networking and storage
capabilities. CytoAnalyst also offers capabilities for quality control, embedding analysis, clustering, differential analysis,
gene set analysis, cell enrichment, cell type annotation, and pseudo-time trajectory inference.

Availability and implementation: CytoAnalyst is freely available at https://cytoanalyst.tinnguyen-lab.com/. The
CytoAnalyst handbook, including step-by-step tutorials and example case studies, is available at https://cytoanalyst.tinn
guyen-lab.com/docs/.

et al. 2021, Ji et al. 2023). Additionally, many tools focus on spe-
cific analytical aspects but lack integrated workflows that

1 Introduction

Cell type annotation is a crucial yet challenging step in the
analysis of single-cell RNA sequencing data (scRNA-Seq)
(Pasquini et al. 2021, Hou and Ji 2024). Despite advances in
single-cell technologies and method development, accurate
identification of cell types using scRNA-Seq remains complex.
The process typically involves a sequence of steps: quality
control, normalization, dimensionality reduction, clustering,
and differential analysis to pinpoint biomarkers. The final step—
cell type identification—heavily relies on expert knowledge and
manual curation using biomarkers (Stuart et al. 2019, Cheng
et al. 2023). Such a process is inherently time-consuming, sub-
jective, and prone to inconsistencies across different studies
(Clarke et al. 2021, Hao et al. 2021, Quan et al. 2023).

There exist tools that attempt to automate certain
steps in the annotation process, but they lack the flexibility
needed to handle diverse experimental contexts, or cannot iden-
tify novel cell types (Aran et al. 2019, Pliner et al. 2019, Pasquini

smoothly connect data processing, visualization, and annota-
tion in a unified framework (Heumos et al. 2023).

With the advancement of Al, especially Large Language
Models (LLMs), we have the opportunity to automate many
steps in the interpretation of complex biomedical data (Jumper
et al. 2021, Lu et al. 2024, Boehm et al. 2025). Foundation LLMs,
trained on massive data corpora and biomedical knowledge,
can be fine-tuned or adjusted for the inference of cell types
using tissue context, biomarkers, and cell ontology hierarchy.
Notably, GPTCelltype represents the first methodology to lever-
age GPT-4 for inferring cell type names from marker genes (Hou
and Ji 2024). However, the effective integration of LLM-based
inference with traditional bioinformatics workflows for single-cell
annotation is still largely unexplored.

In this manuscript, we introduce a comprehensive annotation
workflow that leverages the power of LLMs to identify potential
cell types from scRNA-Seq. The workflow is freely accessible

Received: 15 August 2025. Revised: 4 November 2025. Accepted: 23 December 2025
© The Author(s) 2026. Published by Oxford University Press.

This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (https://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial
re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact reprints@oup.com for reprints and translation rights for reprints. All
other permissions can be obtained through our RightsLink service via the Permissions link on the article page on our site—for further information please contact journals.permissions@oup.com.

920z Aieniga4 60 uo 1senb Aq 16828/ 00BEGA/APEOIG/SE0 L "0 /IOP/o]0IIB/SOOUBAPESINEWIOLUIOIG/WOD dNo™olWwapeoe//:sdiy Wwoll papeojumod


https://orcid.org/0009-0005-2517-5047
https://orcid.org/0000-0002-4756-1732
https://orcid.org/0000-0001-8001-9470
https://cytoanalyst.tinnguyen-lab.com/
https://cytoanalyst.tinnguyen-lab.com/docs/
https://cytoanalyst.tinnguyen-lab.com/docs/

Bioinformatics Advances, 2026, Vol, 6, Issue 1

through CytoAnalyst (Bya et al. 2025), a web-based platform hosted
on our internal servers. The platform provides a complete single-
cell data analysis pipeline, as well as free storage and computa-
tional resources for all researchers, supporting comprehensive anal-
yses of large single-cell datasets (Section 2, available as
supplementary data at Bioinformatics Advances online and Fig. 10,
available as supplementary data at Bioinformatics Advances online).

2 Workflow

Figure 1 shows the overall workflow of our annotation approach.
The analysis begins with data upload and quality control, which
filters low-quality cells and genes based on expression metrics,
followed by a marker discovery to identify marker genes for
LLM-powered inference and interactive annotation. The detailed
pipeline is shown in Section 1, available as supplementary data
at Bioinformatics Advances online.

2.1 Data upload and quality control

The annotation workflow begins with data upload and quality
control (Fig. 1A). Accepted input includes 10X Genomics Cell
Ranger output (.tar.gz or .h5) and AnnData (.h5ad) objects, along
with optional metadata containing sample information and ex-
perimental conditions for cell type identification. The platform
visualizes key metrics, unique molecular identifier counts, gene
detection rates, and mitochondrial gene percentages (Fig. 1,
available as supplementary data at Bioinformatics Advances on-
line), allowing users to filter out low-quality cells and genes.

2.2 Cell segmentation and markers

Following quality control, users can transform the high-
dimensional expression data into a transcriptome landscape
where cells of similar types cluster together (Fig. 1B1). The work-
flow includes a comprehensive embedding analysis with cus-
tomizable parameters for normalization, variable gene
selection, and dimensionality reduction. The software supports
multiple normalization methods and sample integration
approaches to ensure that cell type identification reflects bio-
logical differences rather than technical batch effects (Fig. 2,
available as supplementary data at Bioinformatics Advances on-
line). Users can skip this step if the dataset already contains cal-
culated embeddings, reducing computational overhead.

The next step is cluster analysis, which groups similar cells
into distinct populations that correspond to potential cell types
(Fig. 1B2). We implement three clustering algorithms to accom-
modate diverse data characteristics: Louvain (Blondel et al.
2008), Leiden (Traag et al. 2019), and k-means (Kodinariya and
Makwana 2013). Users can create multiple clustering analysis
instances simultaneously with different parameters to
identify optimal cell type boundaries. The software enables visu-
alization of clustering results across different embeddings and
comparison of outcomes, ensuring identified populations accu-
rately reflect biological cell types rather than analytical artifacts
(Fig. 3, available as supplementary data at Bioinformatics
Advances online).

After cluster analysis, the next step is to perform differential
analysis to identify marker genes of each cell group. These

marker genes represent molecular signatures essential for cell
type annotation (Fig. 1B3). The platform supports five methods:
Wilcoxon rank-sum test (Wilcoxon et al. 1970), MAST (Finak et al.
2015), ClusterDE (Song et al. 2025), DESeq2 (Love et al. 2014),
and logistic regression (Butler et al. 2018), all followed by
Benjamini-Hochberg adjustment for multiple comparisons
(Benjamini and Hochberg 1995). It is important to note that rely-
ing on P-values alone to select marker genes will likely lead to
many false positives. This is because each cell group often con-
sists of many cells, meaning even a small change in expression
values can yield a statistically significant P-value. Therefore, the
software integrates interactive visualization with advanced fil-
tering capabilities to identify marker genes that are specific for
each cell group (Fig. 5, available as supplementary data at
Bioinformatics Advances online).

Alternatively, users can perform embedding, clustering, and
differential analyses externally using their preferred tools and
upload the results in AnnData format (.h5ad). They can also up-
load external gene lists (e.g., gene markers extracted from differ-
ential analysis, gene sets from curated databases) as .gmt files
using the geneset management module.

2.3 LLM-powered cell type inference and
interactive annotation

We implement an analysis workflow that enables automated
cell annotation yet allows for flexible customization (Fig. 1C).
For automated cell type prediction, we leverage Llama 3.3, a
state-of-the-art LLM developed by Meta and accessed through
the Ollama API gateway (Grattafiori et al. 2024). We utilize the
pre-trained LLM without additional training or fine-tuning. To
counter potential API failures and unreliable responses, we im-
plement an automatic 20-try retry process. We inject user-
provided gene markers and tissue information into a carefully
crafted prompt that enforces strict ontological compliance with
the Cell Ontology and CellxGenes databases (Fig. 1C1).

We set up the prompt to generate hierarchical cell type classi-
fications and follow the format “Cell type = A — B — C — D
— E — Cells: [markers]”, which enforces at least a 4-level par-
ent hierarchy, with “Cells” being the top ancestor. After obtain-
ing the results from LLMs, we perform a post-processing
validation using pattern matching to extract cell type hierarchy,
followed by gene filtering against the input set to keep only the
supported markers in the predictions. The LLM is prompted to
predict cell lineages with associated marker genes, which are
subsequently filtered to retain only those present in the user-
provided marker list. If all predicted lineages lack supporting
markers after this filtering, the system reruns the prompt until it
obtains lineages with validated marker support. This approach
combines the LLM’s ability to process the hierarchical prompt
with domain-specific biological knowledge while maintaining
strict output formatting and validation requirements. This LLM-
based cell annotation greatly reduces the manual labor required
for initial cell type assignment. Researchers can further vali-
date annotation results through additional analysis and valida-
tion (Fig. 7, available as supplementary data at Bioinformatics
Advances online).

Additionally, we provide an interactive interface where
researchers can assign predicted cell types to corresponding
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Figure 1 LLM-powered cell annotation for single-cell RNA sequencing data (scRNA-Seq). (A) Data upload and quality control. Data upload imports
single-cell data (in 10X Genomics Cell Ranger or AnnData format) and metadata, while quality control filters out low-quality cells and genes.
(B) Marker discovery pipeline, including: (1) embedding analysis, (2) visualization, (3) clustering, and (4) marker discovery through interactive
differential analysis. (C) LLM-powered cell type inference and interactive annotation. The inference workflow uses a structured prompt template that
guides the LLM to predict potential cell types using the provided gene sets, tissue information, and cell ontology, ensuring biologically meaningful
predictions. The interactive annotation interface allows users to combine automatic annotation and domain expertise with advanced cell filtering
capabilities. (D1-D5) Analysis results of the case study using bone marrow organoids. The left panels show the inferred lineage hierarchies and
predicted cell types, while the right panels show the expression patterns of marker genes for the five cell groups identified by the platform.
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clusters and edit annotations (Fig. 1C2). The process combines
LLM inference with manual curation capabilities, allowing
researchers to create biologically meaningful cell type labels.
The software supports two manual annotation strategies: (i) a
systematic approach where users can automatically assign cell
types to clusters based on marker genes enrichment results (Fig.
8C, available as supplementary data at Bioinformatics Advances
online), and (ii) a targeted approach, where users can select in-
dividual cells or clusters to assign cell types using marker genes
expression and also enrichment results (Fig. 9, available as sup-
plementary data at Bioinformatics Advances online). Users can
combine these strategies to create a flexible annotation work-
flow that suits their needs. The purpose is to ensure that the fi-
nal annotation reflects multiple lines of evidence, enhancing
confidence in cell type assignments.

3 Results

3.1 Case study of bone marrow organoids

We demonstrate the capabilities of the proposed approach
through the analysis of a single-cell dataset (31,040 cells), which
contains bone marrow organoids generated from human in-
duced pluripotent stem cells (Frenz-Wiessner et al. 2024). The
analysis results are summarized in Fig. 1D (D1-D5), and the
details are provided in Section 3, available as supplementary
data at Bioinformatics Advances online. The dataset is available
at https://cellxgene.cziscience.com/collections/59cd85c5-3b22-
4035-b628-2220810ad54b.

Following embedding analysis and visualization, we identify
three potential cell populations (I, Il, 1ll) that correspond to
the three cell islands (Fig. 11A, available as supplementary
data at Bioinformatics Advances online). Louvain clustering
with different parameters identifies substantially more cell
clusters (Fig. 11B and C, available as supplementary data at
Bioinformatics Advances online), with the number of clusters in
the range of 10-20. However, all clustering results also confirm
that the data can be divided into three main populations. Next,
we perform differential analysis and visualize the expression
patterns of the marker genes for each population. The patterns
of the markers in population Ill, combined with cluster analy-
sis, reveal that the cells in this population are not truly homo-
geneous and can be divided into three different subgroups
(Fig. 11D-G, available as supplementary data at Bioinformatics
Advances online). Through differential analysis, visualization,
and cluster analysis verification, we identify five cell groups
and their markers.

For each of the five cell groups, the software performs LLM-
based inference to identify biologically meaningful cell type line-
ages (Table 1, available as supplementary data at Bioinformatics
Advances online). Panels D1-D5 in Fig. 1D show the expression
patterns of the markers for each cell population, along with the
predicted lineages. Following our selection strategy, we choose
the most frequently appearing label in the top 5 lineages as the
predicted cell type. If there are multiple labels with the same fre-
quency, we choose the cell type with the lowest order (most
fine-grained) in the cell ontology.

At the end, based on the LLM inference, we label the cell
groups as follows: (i) mesenchymal cells for Groups | and IV
(Fig. 1D1 and D4), (ii) hematopoietic cells for Group Il (Fig. 1D2),
(iii) endothelial cells for Group Il (Fig. 1D3), and (iv) mesodermal
cells for Group V (Fig. 1D5). The LLM annotation aligns well with
the original annotation provided by the authors of the single-cell
dataset (Fig. 12, available as supplementary data at Bioinformatics
Advances online). The figure shows that the two annotations share
99% similarity, with the difference being that the LLM assigns cells
in group IV to mesenchymal instead of epithelial cells. We hypothe-
size that the authors of the dataset were able to distinguish be-
tween the two cell types using external evidence from flow
cytometry data (e.g., cell size, morphology, etc.), evidence that
may not be present or visible in the gene expression data that we
analyze (Frenz-Wiessner et al. 2024).

3.2 Systematic benchmarking

We perform a comprehensive assessment of the proposed ap-
proach using four different tissues. To demonstrate the suitabil-
ity of LLMs in cell type annotation, we now include four LLMs,
Llama 3.3 (70B parameters) (Grattafiori et al. 2024), Gemma 3
(27B) (Team et al. 2025), TxGemma (27B) (Wang et al. 2025), and
Qwen 3 (30B) (Yang et al. 2025), and three standard annotation
tools, scCATCH (Shao et al. 2020), scType (lanevski et al. 2022),
and SingleR (Aran et al. 2019).

The four datasets collectively contain 28 distinct cell types.
The Bone Marrow dataset consists of 31,040 cells from bone
marrow organoids, encompassing five cell types: mesenchymal
cell, hematopoietic cell, endothelial cell, epithelial cell, and me-
sodermal cell (Frenz-Wiessner et al. 2024). The Breast Cancer
dataset contains 35,214 cells from 26 primary breast tumors
that have five cell types: CD4-positive, CD8-positive (alpha-beta
T cell), mature NK T cell, natural killer cell, and T cell (Wu et al.
2021). The Lobes of Liver dataset includes 16,665 cells sourced
from 24 neurologically deceased donor human livers and con-
tains eight cell types: CD4-positive, CD8-positive (alpha-beta T
cell), erythroblast, hepatic pit cell, lymphocyte, mature B cell,
myeloid cell, and natural killer cell (Andrews et al. 2024). Finally,
the Zone of Skin dataset contains 15,457 cells from five healthy
male donors and has the highest diversity with ten cell types:
endothelial cell of lymphatic vessel, endothelial cell of vascular
tree, erythrocyte, keratinocyte, macrophage, melanocyte, peri-
cyte, skin fibroblast, stem cell of epidermis, and T cell (Solé-
Boldo et al. 2020).

For each dataset, we group cells based on annotated cell
types provided by the data sources. Assuming that the cell types
are unknown, we follow the instructions of scCATCH, scType,
and SingleR to identify the cell type of each cell group. The
method scCATCH uses self-identified DE genes and user-
provided tissue/species to query a built-in database, scoring
candidates by matched markers and supporting publications.
The method scType queries its own database for tissue-related
markers and scores cell types based on the expression level of
those markers within the group. In contrast, SingleR bypasses
DE gene identification, assigning cell type labels by calculating
the correlation between the expression profile of each cell group
and the profiles in the reference dataset (the Human Primary
Cell Atlas was used). Ultimately, all three methods assign the
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Model DE Metrics lopDE Bone Marrow | Breast Cancer | Lobes of Liver | Zone of Skin pow peietc tloce Accuracy Summary
Genes Average Average Average
10 0.600 0.600 0.750 0.600 0.638
sig weighted_logfc| 15 0.600 0.600 0.875 0.800 0.719 0.733
20 1.000 0.800 0.875 0.700 0.844
10 1.000 0.600 0.625 0.600 0.706
@ exp_pct_diff 15 1.000 0.600 0.625 0.700 0.731 0.752
o 20 1.000 0.600 0.875 0.800 0.819
o 10 1.000 0.600 0.625 0.800 0.756
@ | pet_weighted_logfc| 15 0.800 0.600 0.875 0.900 0.794 0.798 0.776
£ 20 1.000 0.600 0.875 0.900 0.844
= 10 1.000 0.600 0.750 0.900 0.813
pct_weighted_sig 15 1.000 0.600 0.875 0.800 0.819 0.817
20 1.000 0.600 0.875 0.800 0.819
10 1.000 0.800 0.625 0.800 0.806
mixed_logfc_sig 15 1.000 0.600 0.750 0.700 0.763 0.779
20 0.800 0.600 0.875 0.800 0.769
10 0.600 0.600 0.500 0.800 0.625
sig weighted _logfc| 15 0.800 0.800 0.750 0.600 0.738 0.673 _
20 0.600 0.600 0.625 0.800 0.656
10 0.600 0.600 0.625 0.900 0.681
- exp_pct_diff 15 1.000 0.600 0.750 0.800 0.788 0.738 _
5 20 0.800 0.600 0.875 0.700 0.744
> 10 1.000 0.600 0.750 0.800 0.788
€ | pet_weighted logic| 15 0.800 0.600 0.500 0.800 0.675 0.744 0.709 _
£ 20 0.800 0.600 0.875 0.800 0.769
8 10 0.800 0.600 0.750 0.900 0.763
pet.y d_sig 15 0.800 0.600 0.625 0.800 0.706 0.715 _
20 0.800 0.600 0.500 0.800 0.675
10 0.600 0.600 0.375 0.700 0.569
mixed_logfc_sig 15 0.600 0.600 0.750 0.800 0.688 0.675 _
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10 0.800 0.600 0.875 0.700 0.744
sig weighted_logfc| 15 1.000 0.400 0.625 0.600 0.656 0.688 —
20 0.800 0.400 0.750 0.700 0.663
10 1.000 0.400 0.875 0.800 0.769
@ exp_pct_diff 15 1.000 0.400 0.875 0.700 0.744 0.750 _
R 20 1.000 0.400 0.750 0.800 0.738
© 10 1.000 0.400 0.750 0.900 0.763
E pct_weighted_logfc| 15 1.000 0.400 0.875 0.800 0.769 0.754 0.731 _
@ 20 0.800 0.600 0.625 0.900 0.731
"?_< 10 1.000 0.400 0.750 0.700 0.713
pct_weighted_sig 15 1.000 0.400 0.875 0.800 0.769 0.729 _
20 1.000 0.400 0.625 0.800 0.706
10 0.800 0.600 0.625 0.800 0.706
mixed_logfc_sig 15 1.000 0.600 0.750 0.900 0.813 0.733 _
20 1.000 0.400 0.625 0.700 0.681
10 1.000 0.400 0.750 0.900 0.763
sig weighted _logfc | 15 0.600 0.600 0.750 0.900 0.713 0.715 _
20 0.800 0.600 0.375 0.900 0.669
10 0.800 0.400 0.625 0.900 0.681
exp_pct_diff 15 0.800 0.400 0.625 0.900 0.681 0.671 _
@ 20 0.800 0.400 0.500 0.900 0.650
& 10 0.600 0.400 0.875 0.900 0.694
@ | pct_weighted logfc| 15 0.800 0.400 0.875 0.800 0.719 0.698 0.708 _
2 20 0.800 0.600 0.625 0.700 0.681
(<3 10 0.800 0.600 0.875 0.600 0.719
pct_weighted_sig 15 0.800 0.400 0.875 0.900 0.744 0.731 _
20 0.800 0.600 0.625 0.900 0.731
10 0.800 0.400 0.625 0.800 0.656
mixed_logfc_sig 15 0.800 0.600 0.625 1.000 0.756 0.723 _
20 1.000 0.600 0.625 0.800 0.756
SCCATCH 0.600 0.600 0.000 0.300 0.375 0.375 0375 | D
scType 0.800 0.800 0.000 0.100 0.425 0.425 0425 | D
SingleR 0.600 0.200 0.500 0.400 0.425 0.425 0425 | D

Figure 2 Benchmarking results comparing four LLMs (Llama 3.3, Gemma 3, TxGemma, and Qwen 3) and three standard annotation tools (scCATCH,
scType, and SingleR) using four single-cell datasets. For each cell group in each dataset, we use five different metrics to rank the genes, selecting the
top 10, 15, and 20 genes as marker genes. These marker genes are the input of the LLMs to identify the potential cell type of each cell group. For
standard tools (scCATCH, scType, and SingleR), we follow the authors’ published instructions to infer the cell type name of each cell group. After
obtaining the results, we use Gemini 2.5 Pro to assess the accuracy of cell type inference. A score of 1 was assigned if the predicted cell type was an
exact match, a subtype, or a descendant of the ground-truth cell type; otherwise, a score of 0 was assigned. A method’s final score for a dataset is
the average score across all cell types. Overall, all four LLMs greatly outperform the standard tools by a significant margin, irrespective of the ranking
methods or the number of differentially expressed (DE) genes chosen. Llama 3.3, which has the highest number of parameters among the four LLMs,
has the highest score. Specifically, the average scores of Llama 3.3, Gemma 3, TxGemma, and Qwen 3 are 0.776, 0.709, 0.731, and 0.708, respectively.
These LLM scores are substantially higher than the average scores of scCATCH (0.375), scType (0.425), and SingleR (0.425

highest-scoring or most correlated cell type as the prediction for logl0 adjusted P-value, and pct as the percentage of cells
the respective group. expressing the gene, the metrics are as follows:

To demonstrate that LLMs do not overfit, we apply five differ-
ent metrics to choose marker genes. Denoting log,FC as the e Significance-weighted log-fold-change (sig_weighted_logfc):
log-fold-change, logiop as the logl0 P-value, logigp.q as the The first metric is the log2 fold-change weighted by statistical
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significance (P-value), which is calculated as sig_weighted logfc =
— log10p - log,FC. This approach ranks genes highly only when
they show both significant expression changes and strong statis-
tical support.

Expression percentage difference (exp_pct_diff): This metric is
the difference in the percentage of cells expressing the gene
between the underlying group and other groups. This metric
assigns higher ranks to genes that are expressed in a larger
proportion of cells in the underlying group (compared to
other groups).

Percentage-weighted log-fold-change (pct_weighted_logfc):
The third metric is the log2 fold-change weighted by the ab-
solute expression percentage difference, which is calculated
as pctweighted_ logfc = | exp pct diff| - logaFC. This  metric
assigns higher ranks to genes that have both higher log-fold-
change and more cells expressing the gene.
Percentage-weighted significance (pct_weighted_sig): The
fourth metric is the minus logl0 adjusted P-value, weighted
by expression percentage difference. In other words,
petweighted_sig = — 108 10Paq; - SigN(log2FC) - | exp pct diff].
In this formula, we multiply the weighted significance score
by the sign of log-fold-change to preserve direction. Genes
are ranked highly when they show both strong statistical sig-
nificance and significant differences in detection frequency
between groups.

Mixture of log-fold-change and statistical significance (mixed._-
logfc_sig): The fifth metric is a weighted average between log-
fold-change and minus logl0 P-value. The metric is calculated
as:  mixed_logfcsig = 0.7 - log,FC—0.3 - sign(log,FC) - log10p.
High-ranking genes show both high log-fold-changes and sig-
nificant P-values.

We sort the genes according to each metric and then choose
the top 10, 15, and 20 DE genes as markers, resulting in 15 sets
of markers for each cell group in each dataset. These markers
serve as the input of the LLMs to predict cell types.

In total, we analyze four datasets using 63 approaches: 60
LLM-based (4 LLMs x 5 DE metrics x 3 cutoffs) and 3 standard
annotation tools. After obtaining the results, we use Gemini 2.5
Pro (Comanici et al. 2025) to compare the predicted cell types
against the ground truth to assess the performance of each ap-
proach. We assign a score of 1 when the predicted cell type is an
exact match, a subtype, or a descendant of the ground-truth cell
type. Otherwise, we assign a score of 0 to the predicted cell
type. The score of a method for a dataset is the average score of
its predicted cell types.

Figure 2 shows the benchmarking results of all 63 approaches.
Overall, all LLMs greatly outperform standard tools by having
higher scores by large margins, regardless of ranking metrics and
cutoff thresholds. As shown in the column DE Metric Average, the
scores of Llama 3.3 across the five metrics (column DE Metric
Average) are in the range of [0.733,0.817]. Gemma 3, TXGEmma,
and Qwen 3, being smaller LLMs than Llama 3.3, also achieved
outstanding results with scores in the range of [0.673,0.744],
[0.688,0.754], and [0.671,0.731], respectively. The average scores
of Llama 3.3, Gemma 3, TxGemma, and Qwen 3 are 0.776, 0.709,
0.731, and 0.708, respectively. These LLM scores are substantially
higher than the average scores of scCATCH (0.375), scType
(0.425), and SingleR (0.425). Llama 3.3, which has the highest

number of parameters among the four LLMs, has the highest
score. Llama 3.3 with the pct_weighted_sig metric achieves an
outstanding score of 0.817 across all DE cutoffs and datasets.

4 Conclusion

We introduce a novel LLM-based cell type annotation workflow
within CytoAnalyst, a unified platform designed for comprehensive
scRNA-Seq analysis. Our approach seamlessly integrates analytical
methods with advanced LLMs to accelerate and enhance cell type
annotation. The integration of Meta’s Llama 3.3 with embedding,
clustering, and differential analysis methods for automated cell
type inference marks a major leap in single-cell data analysis. The
added graphical interface and interactive visualization system
make sophisticated annotation tools accessible to researchers
without a computational background, greatly reducing the burden
of manual annotation for life scientists and bioinformaticians alike.
The analysis results show promise for the application of advanced
Al techniques in biomedical data analysis across diverse tissues
and experimental conditions. Despite their promise, LLMs are
prone to limitations such as overfitting and hallucination. One fu-
ture direction to address this issue is Retrieval-Augmented
Generation (RAG), where LLMs retrieve information from external,
authoritative databases before generating a response. For future
work, we will combine LLMs with systems-level analysis (Nguyen
et al. 2021a, 2024b) and deep learning models (Tran et al. 2021,
Nguyen et al. 2021b, 2024a) for practical applications in biomedical
research. We continue to maintain and update the platform with
the latest technologies.
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Supplementary material is available at Bioinformatics Advances
online.
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