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Abstract 
Motivation: Cell annotation is fundamental for single-cell data interpretation. Accurate annotation allows us to identify 
cell types, understand their functions, trace developmental trajectories, and pinpoint alterations associated with a condi
tion of interest. However, this complex process demands extensive manual curation, domain expertise, and proficiency 
across diverse bioinformatics tools. These challenges impede reproducibility and consistency.

Results: We have developed a new approach for semi-automatic cell type annotation, powered by large language models 
(LLMs). Given the input single-cell data, we first perform dimension reduction, clustering, and differential analysis to 
identify distinct cell groups and their respective markers. Next, we utilize Meta’s Llama and structured prompting to infer 
potential cell types. This approach greatly reduces manual labor from researchers while maintaining biological accuracy 
through enforced ontology, tissue context, and marker gene signatures. Our solution is freely accessible through our web- 
based platform named CytoAnalyst, hosted on a high-performance infrastructure with optimized networking and storage 
capabilities. CytoAnalyst also offers capabilities for quality control, embedding analysis, clustering, differential analysis, 
gene set analysis, cell enrichment, cell type annotation, and pseudo-time trajectory inference.

Availability and implementation: CytoAnalyst is freely available at https://cytoanalyst.tinnguyen-lab.com/. The 
CytoAnalyst handbook, including step-by-step tutorials and example case studies, is available at https://cytoanalyst.tinn 
guyen-lab.com/docs/.

1 Introduction
Cell type annotation is a crucial yet challenging step in the 
analysis of single-cell RNA sequencing data (scRNA-Seq) 
(Pasquini et al. 2021, Hou and Ji 2024). Despite advances in 
single-cell technologies and method development, accurate 
identification of cell types using scRNA-Seq remains complex. 
The process typically involves a sequence of steps: quality 
control, normalization, dimensionality reduction, clustering, 
and differential analysis to pinpoint biomarkers. The final step— 
cell type identification—heavily relies on expert knowledge and 
manual curation using biomarkers (Stuart et al. 2019, Cheng 
et al. 2023). Such a process is inherently time-consuming, sub
jective, and prone to inconsistencies across different studies 
(Clarke et al. 2021, Hao et al. 2021, Quan et al. 2023).

There exist tools that attempt to automate certain 
steps in the annotation process, but they lack the flexibility 
needed to handle diverse experimental contexts, or cannot iden
tify novel cell types (Aran et al. 2019, Pliner et al. 2019, Pasquini 

et al. 2021, Ji et al. 2023). Additionally, many tools focus on spe
cific analytical aspects but lack integrated workflows that 
smoothly connect data processing, visualization, and annota
tion in a unified framework (Heumos et al. 2023).

With the advancement of AI, especially Large Language 
Models (LLMs), we have the opportunity to automate many 
steps in the interpretation of complex biomedical data (Jumper 
et al. 2021, Lu et al. 2024, Boehm et al. 2025). Foundation LLMs, 
trained on massive data corpora and biomedical knowledge, 
can be fine-tuned or adjusted for the inference of cell types 
using tissue context, biomarkers, and cell ontology hierarchy. 
Notably, GPTCelltype represents the first methodology to lever
age GPT-4 for inferring cell type names from marker genes (Hou 
and Ji 2024). However, the effective integration of LLM-based 
inference with traditional bioinformatics workflows for single-cell 
annotation is still largely unexplored.

In this manuscript, we introduce a comprehensive annotation 
workflow that leverages the power of LLMs to identify potential 
cell types from scRNA-Seq. The workflow is freely accessible 
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through CytoAnalyst (Bya et al. 2025), a web-based platform hosted 
on our internal servers. The platform provides a complete single- 
cell data analysis pipeline, as well as free storage and computa
tional resources for all researchers, supporting comprehensive anal
yses of large single-cell datasets (Section 2, available as 
supplementary data at Bioinformatics Advances online and Fig. 10, 
available as supplementary data at Bioinformatics Advances online).

2 Workflow
Figure 1 shows the overall workflow of our annotation approach. 
The analysis begins with data upload and quality control, which 
filters low-quality cells and genes based on expression metrics, 
followed by a marker discovery to identify marker genes for 
LLM-powered inference and interactive annotation. The detailed 
pipeline is shown in Section 1, available as supplementary data
at Bioinformatics Advances online.

2.1 Data upload and quality control
The annotation workflow begins with data upload and quality 
control (Fig. 1A). Accepted input includes 10X Genomics Cell 
Ranger output (.tar.gz or .h5) and AnnData (.h5ad) objects, along 
with optional metadata containing sample information and ex
perimental conditions for cell type identification. The platform 
visualizes key metrics, unique molecular identifier counts, gene 
detection rates, and mitochondrial gene percentages (Fig. 1, 
available as supplementary data at Bioinformatics Advances on
line), allowing users to filter out low-quality cells and genes.

2.2 Cell segmentation and markers
Following quality control, users can transform the high- 
dimensional expression data into a transcriptome landscape 
where cells of similar types cluster together (Fig. 1B1). The work
flow includes a comprehensive embedding analysis with cus
tomizable parameters for normalization, variable gene 
selection, and dimensionality reduction. The software supports 
multiple normalization methods and sample integration 
approaches to ensure that cell type identification reflects bio
logical differences rather than technical batch effects (Fig. 2, 
available as supplementary data at Bioinformatics Advances on
line). Users can skip this step if the dataset already contains cal
culated embeddings, reducing computational overhead.

The next step is cluster analysis, which groups similar cells 
into distinct populations that correspond to potential cell types 
(Fig. 1B2). We implement three clustering algorithms to accom
modate diverse data characteristics: Louvain (Blondel et al. 
2008), Leiden (Traag et al. 2019), and k-means (Kodinariya and 
Makwana 2013). Users can create multiple clustering analysis 
instances simultaneously with different parameters to 
identify optimal cell type boundaries. The software enables visu
alization of clustering results across different embeddings and 
comparison of outcomes, ensuring identified populations accu
rately reflect biological cell types rather than analytical artifacts 
(Fig. 3, available as supplementary data at Bioinformatics 
Advances online).

After cluster analysis, the next step is to perform differential 
analysis to identify marker genes of each cell group. These 

marker genes represent molecular signatures essential for cell 
type annotation (Fig. 1B3). The platform supports five methods: 
Wilcoxon rank-sum test (Wilcoxon et al. 1970), MAST (Finak et al. 
2015), ClusterDE (Song et al. 2025), DESeq2 (Love et al. 2014), 
and logistic regression (Butler et al. 2018), all followed by 
Benjamini-Hochberg adjustment for multiple comparisons 
(Benjamini and Hochberg 1995). It is important to note that rely
ing on P-values alone to select marker genes will likely lead to 
many false positives. This is because each cell group often con
sists of many cells, meaning even a small change in expression 
values can yield a statistically significant P-value. Therefore, the 
software integrates interactive visualization with advanced fil
tering capabilities to identify marker genes that are specific for 
each cell group (Fig. 5, available as supplementary data at 
Bioinformatics Advances online).

Alternatively, users can perform embedding, clustering, and 
differential analyses externally using their preferred tools and 
upload the results in AnnData format (.h5ad). They can also up
load external gene lists (e.g., gene markers extracted from differ
ential analysis, gene sets from curated databases) as .gmt files 
using the geneset management module.

2.3 LLM-powered cell type inference and 
interactive annotation
We implement an analysis workflow that enables automated 
cell annotation yet allows for flexible customization (Fig. 1C). 
For automated cell type prediction, we leverage Llama 3.3, a 
state-of-the-art LLM developed by Meta and accessed through 
the Ollama API gateway (Grattafiori et al. 2024). We utilize the 
pre-trained LLM without additional training or fine-tuning. To 
counter potential API failures and unreliable responses, we im
plement an automatic 20-try retry process. We inject user- 
provided gene markers and tissue information into a carefully 
crafted prompt that enforces strict ontological compliance with 
the Cell Ontology and CellxGenes databases (Fig. 1C1).

We set up the prompt to generate hierarchical cell type classi
fications and follow the format “Cell type ! A ! B ! C ! D 
! E !Cells: [markers]”, which enforces at least a 4-level par
ent hierarchy, with “Cells” being the top ancestor. After obtain
ing the results from LLMs, we perform a post-processing 
validation using pattern matching to extract cell type hierarchy, 
followed by gene filtering against the input set to keep only the 
supported markers in the predictions. The LLM is prompted to 
predict cell lineages with associated marker genes, which are 
subsequently filtered to retain only those present in the user- 
provided marker list. If all predicted lineages lack supporting 
markers after this filtering, the system reruns the prompt until it 
obtains lineages with validated marker support. This approach 
combines the LLM’s ability to process the hierarchical prompt 
with domain-specific biological knowledge while maintaining 
strict output formatting and validation requirements. This LLM- 
based cell annotation greatly reduces the manual labor required 
for initial cell type assignment. Researchers can further vali
date annotation results through additional analysis and valida
tion (Fig. 7, available as supplementary data at Bioinformatics 
Advances online).

Additionally, we provide an interactive interface where 
researchers can assign predicted cell types to corresponding 

2                                                                                                                                                                                                                                         Bioinformatics Advances, 2026, Vol, 6, Issue 1 

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

aticsadvances/article/doi/10.1093/bioadv/vbag001/8442891 by guest on 09 February 2026

https://academic.oup.com/bioinformaticsadvancesarticle-lookup/doi/10.1093/bioadv/vbag001#supplementary-data
https://academic.oup.com/bioinformaticsadvancesarticle-lookup/doi/10.1093/bioadv/vbag001#supplementary-data
https://academic.oup.com/bioinformaticsadvancesarticle-lookup/doi/10.1093/bioadv/vbag001#supplementary-data
https://academic.oup.com/bioinformaticsadvancesarticle-lookup/doi/10.1093/bioadv/vbag001#supplementary-data
https://academic.oup.com/bioinformaticsadvancesarticle-lookup/doi/10.1093/bioadv/vbag001#supplementary-data
https://academic.oup.com/bioinformaticsadvancesarticle-lookup/doi/10.1093/bioadv/vbag001#supplementary-data
https://academic.oup.com/bioinformaticsadvancesarticle-lookup/doi/10.1093/bioadv/vbag001#supplementary-data
https://academic.oup.com/bioinformaticsadvancesarticle-lookup/doi/10.1093/bioadv/vbag001#supplementary-data
https://academic.oup.com/bioinformaticsadvancesarticle-lookup/doi/10.1093/bioadv/vbag001#supplementary-data
https://academic.oup.com/bioinformaticsadvancesarticle-lookup/doi/10.1093/bioadv/vbag001#supplementary-data
https://academic.oup.com/bioinformaticsadvancesarticle-lookup/doi/10.1093/bioadv/vbag001#supplementary-data
https://academic.oup.com/bioinformaticsadvancesarticle-lookup/doi/10.1093/bioadv/vbag001#supplementary-data
https://academic.oup.com/bioinformaticsadvancesarticle-lookup/doi/10.1093/bioadv/vbag001#supplementary-data
https://academic.oup.com/bioinformaticsadvancesarticle-lookup/doi/10.1093/bioadv/vbag001#supplementary-data
https://academic.oup.com/bioinformaticsadvancesarticle-lookup/doi/10.1093/bioadv/vbag001#supplementary-data
https://academic.oup.com/bioinformaticsadvancesarticle-lookup/doi/10.1093/bioadv/vbag001#supplementary-data


Figure 1 LLM-powered cell annotation for single-cell RNA sequencing data (scRNA-Seq). (A) Data upload and quality control. Data upload imports 
single-cell data (in 10X Genomics Cell Ranger or AnnData format) and metadata, while quality control filters out low-quality cells and genes. 
(B) Marker discovery pipeline, including: (1) embedding analysis, (2) visualization, (3) clustering, and (4) marker discovery through interactive 
differential analysis. (C) LLM-powered cell type inference and interactive annotation. The inference workflow uses a structured prompt template that 
guides the LLM to predict potential cell types using the provided gene sets, tissue information, and cell ontology, ensuring biologically meaningful 
predictions. The interactive annotation interface allows users to combine automatic annotation and domain expertise with advanced cell filtering 
capabilities. (D1–D5) Analysis results of the case study using bone marrow organoids. The left panels show the inferred lineage hierarchies and 
predicted cell types, while the right panels show the expression patterns of marker genes for the five cell groups identified by the platform.
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clusters and edit annotations (Fig. 1C2). The process combines 
LLM inference with manual curation capabilities, allowing 
researchers to create biologically meaningful cell type labels. 
The software supports two manual annotation strategies: (i) a 
systematic approach where users can automatically assign cell 
types to clusters based on marker genes enrichment results (Fig. 
8C, available as supplementary data at Bioinformatics Advances 
online), and (ii) a targeted approach, where users can select in
dividual cells or clusters to assign cell types using marker genes 
expression and also enrichment results (Fig. 9, available as sup
plementary data at Bioinformatics Advances online). Users can 
combine these strategies to create a flexible annotation work
flow that suits their needs. The purpose is to ensure that the fi
nal annotation reflects multiple lines of evidence, enhancing 
confidence in cell type assignments.

3 Results
3.1 Case study of bone marrow organoids
We demonstrate the capabilities of the proposed approach 
through the analysis of a single-cell dataset (31,040 cells), which 
contains bone marrow organoids generated from human in
duced pluripotent stem cells (Frenz-Wiessner et al. 2024). The 
analysis results are summarized in Fig. 1D (D1–D5), and the 
details are provided in Section 3, available as supplementary 
data at Bioinformatics Advances online. The dataset is available 
at https://cellxgene.cziscience.com/collections/59cd85c5-3b22- 
4035-b628-2a20810ad54b.

Following embedding analysis and visualization, we identify 
three potential cell populations (I, II, III) that correspond to 
the three cell islands (Fig. 11A, available as supplementary 
data at Bioinformatics Advances online). Louvain clustering 
with different parameters identifies substantially more cell 
clusters (Fig. 11B and C, available as supplementary data at 
Bioinformatics Advances online), with the number of clusters in 
the range of 10–20. However, all clustering results also confirm 
that the data can be divided into three main populations. Next, 
we perform differential analysis and visualize the expression 
patterns of the marker genes for each population. The patterns 
of the markers in population III, combined with cluster analy
sis, reveal that the cells in this population are not truly homo
geneous and can be divided into three different subgroups 
(Fig. 11D–G, available as supplementary data at Bioinformatics 
Advances online). Through differential analysis, visualization, 
and cluster analysis verification, we identify five cell groups 
and their markers.

For each of the five cell groups, the software performs LLM- 
based inference to identify biologically meaningful cell type line
ages (Table 1, available as supplementary data at Bioinformatics 
Advances online). Panels D1–D5 in Fig. 1D show the expression 
patterns of the markers for each cell population, along with the 
predicted lineages. Following our selection strategy, we choose 
the most frequently appearing label in the top 5 lineages as the 
predicted cell type. If there are multiple labels with the same fre
quency, we choose the cell type with the lowest order (most 
fine-grained) in the cell ontology.

At the end, based on the LLM inference, we label the cell 
groups as follows: (i) mesenchymal cells for Groups I and IV 
(Fig. 1D1 and D4), (ii) hematopoietic cells for Group II (Fig. 1D2), 
(iii) endothelial cells for Group III (Fig. 1D3), and (iv) mesodermal 
cells for Group V (Fig. 1D5). The LLM annotation aligns well with 
the original annotation provided by the authors of the single-cell 
dataset (Fig. 12, available as supplementary data at Bioinformatics 
Advances online). The figure shows that the two annotations share 
99% similarity, with the difference being that the LLM assigns cells 
in group IV to mesenchymal instead of epithelial cells. We hypothe
size that the authors of the dataset were able to distinguish be
tween the two cell types using external evidence from flow 
cytometry data (e.g., cell size, morphology, etc.), evidence that 
may not be present or visible in the gene expression data that we 
analyze (Frenz-Wiessner et al. 2024).

3.2 Systematic benchmarking
We perform a comprehensive assessment of the proposed ap
proach using four different tissues. To demonstrate the suitabil
ity of LLMs in cell type annotation, we now include four LLMs, 
Llama 3.3 (70B parameters) (Grattafiori et al. 2024), Gemma 3 
(27B) (Team et al. 2025), TxGemma (27B) (Wang et al. 2025), and 
Qwen 3 (30B) (Yang et al. 2025), and three standard annotation 
tools, scCATCH (Shao et al. 2020), scType (Ianevski et al. 2022), 
and SingleR (Aran et al. 2019).

The four datasets collectively contain 28 distinct cell types. 
The Bone Marrow dataset consists of 31,040 cells from bone 
marrow organoids, encompassing five cell types: mesenchymal 
cell, hematopoietic cell, endothelial cell, epithelial cell, and me
sodermal cell (Frenz-Wiessner et al. 2024). The Breast Cancer 
dataset contains 35,214 cells from 26 primary breast tumors 
that have five cell types: CD4-positive, CD8-positive (alpha-beta 
T cell), mature NK T cell, natural killer cell, and T cell (Wu et al. 
2021). The Lobes of Liver dataset includes 16,665 cells sourced 
from 24 neurologically deceased donor human livers and con
tains eight cell types: CD4-positive, CD8-positive (alpha-beta T 
cell), erythroblast, hepatic pit cell, lymphocyte, mature B cell, 
myeloid cell, and natural killer cell (Andrews et al. 2024). Finally, 
the Zone of Skin dataset contains 15,457 cells from five healthy 
male donors and has the highest diversity with ten cell types: 
endothelial cell of lymphatic vessel, endothelial cell of vascular 
tree, erythrocyte, keratinocyte, macrophage, melanocyte, peri
cyte, skin fibroblast, stem cell of epidermis, and T cell (Sol�e- 
Boldo et al. 2020).

For each dataset, we group cells based on annotated cell 
types provided by the data sources. Assuming that the cell types 
are unknown, we follow the instructions of scCATCH, scType, 
and SingleR to identify the cell type of each cell group. The 
method scCATCH uses self-identified DE genes and user- 
provided tissue/species to query a built-in database, scoring 
candidates by matched markers and supporting publications. 
The method scType queries its own database for tissue-related 
markers and scores cell types based on the expression level of 
those markers within the group. In contrast, SingleR bypasses 
DE gene identification, assigning cell type labels by calculating 
the correlation between the expression profile of each cell group 
and the profiles in the reference dataset (the Human Primary 
Cell Atlas was used). Ultimately, all three methods assign the 
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highest-scoring or most correlated cell type as the prediction for 
the respective group.

To demonstrate that LLMs do not overfit, we apply five differ
ent metrics to choose marker genes. Denoting log 2FC as the 
log-fold-change, log 10p as the log10 P-value, log 10padj as the 

log10 adjusted P-value, and pct as the percentage of cells 
expressing the gene, the metrics are as follows:

• Significance-weighted log-fold-change (sig_weighted_logfc): 
The first metric is the log2 fold-change weighted by statistical 

Figure 2 Benchmarking results comparing four LLMs (Llama 3.3, Gemma 3, TxGemma, and Qwen 3) and three standard annotation tools (scCATCH, 
scType, and SingleR) using four single-cell datasets. For each cell group in each dataset, we use five different metrics to rank the genes, selecting the 
top 10, 15, and 20 genes as marker genes. These marker genes are the input of the LLMs to identify the potential cell type of each cell group. For 
standard tools (scCATCH, scType, and SingleR), we follow the authors’ published instructions to infer the cell type name of each cell group. After 
obtaining the results, we use Gemini 2.5 Pro to assess the accuracy of cell type inference. A score of 1 was assigned if the predicted cell type was an 
exact match, a subtype, or a descendant of the ground-truth cell type; otherwise, a score of 0 was assigned. A method’s final score for a dataset is 
the average score across all cell types. Overall, all four LLMs greatly outperform the standard tools by a significant margin, irrespective of the ranking 
methods or the number of differentially expressed (DE) genes chosen. Llama 3.3, which has the highest number of parameters among the four LLMs, 
has the highest score. Specifically, the average scores of Llama 3.3, Gemma 3, TxGemma, and Qwen 3 are 0.776, 0.709, 0.731, and 0.708, respectively. 
These LLM scores are substantially higher than the average scores of scCATCH (0.375), scType (0.425), and SingleR (0.425).
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significance (P-value), which is calculated as sig weighted logfc¼

− log 10p � log 2FC. This approach ranks genes highly only when 
they show both significant expression changes and strong statis
tical support. 

• Expression percentage difference (exp_pct_diff): This metric is 
the difference in the percentage of cells expressing the gene 
between the underlying group and other groups. This metric 
assigns higher ranks to genes that are expressed in a larger 
proportion of cells in the underlying group (compared to 
other groups). 

• Percentage-weighted log-fold-change (pct_weighted_logfc): 
The third metric is the log2 fold-change weighted by the ab
solute expression percentage difference, which is calculated 
as pct weighted logfc¼ jexp pct diff j � log 2FC. This metric 
assigns higher ranks to genes that have both higher log-fold- 
change and more cells expressing the gene. 

• Percentage-weighted significance (pct_weighted_sig): The 
fourth metric is the minus log10 adjusted P-value, weighted 
by expression percentage difference. In other words, 
pct weighted sig¼ − log 10padj � signð log 2FCÞ � jexp pct diff j. 
In this formula, we multiply the weighted significance score 
by the sign of log-fold-change to preserve direction. Genes 
are ranked highly when they show both strong statistical sig
nificance and significant differences in detection frequency 
between groups. 

• Mixture of log-fold-change and statistical significance (mixed_
logfc_sig): The fifth metric is a weighted average between log- 
fold-change and minus log10 P-value. The metric is calculated 
as: mixed logfc sig¼ 0:7 � log 2FC − 0:3 � signð log 2FCÞ � log 10p. 
High-ranking genes show both high log-fold-changes and sig
nificant P-values. 

We sort the genes according to each metric and then choose 
the top 10, 15, and 20 DE genes as markers, resulting in 15 sets 
of markers for each cell group in each dataset. These markers 
serve as the input of the LLMs to predict cell types.

In total, we analyze four datasets using 63 approaches: 60 
LLM-based (4 LLMs × 5 DE metrics × 3 cutoffs) and 3 standard 
annotation tools. After obtaining the results, we use Gemini 2.5 
Pro (Comanici et al. 2025) to compare the predicted cell types 
against the ground truth to assess the performance of each ap
proach. We assign a score of 1 when the predicted cell type is an 
exact match, a subtype, or a descendant of the ground-truth cell 
type. Otherwise, we assign a score of 0 to the predicted cell 
type. The score of a method for a dataset is the average score of 
its predicted cell types.

Figure 2 shows the benchmarking results of all 63 approaches. 
Overall, all LLMs greatly outperform standard tools by having 
higher scores by large margins, regardless of ranking metrics and 
cutoff thresholds. As shown in the column DE Metric Average, the 
scores of Llama 3.3 across the five metrics (column DE Metric 
Average) are in the range of ½0:733;0:817�. Gemma 3, TxGEmma, 
and Qwen 3, being smaller LLMs than Llama 3.3, also achieved 
outstanding results with scores in the range of ½0:673;0:744�, 
½0:688;0:754�, and ½0:671;0:731�, respectively. The average scores 
of Llama 3.3, Gemma 3, TxGemma, and Qwen 3 are 0.776, 0.709, 
0.731, and 0.708, respectively. These LLM scores are substantially 
higher than the average scores of scCATCH (0.375), scType 
(0.425), and SingleR (0.425). Llama 3.3, which has the highest 

number of parameters among the four LLMs, has the highest 
score. Llama 3.3 with the pct_weighted_sig metric achieves an 
outstanding score of 0.817 across all DE cutoffs and datasets.

4 Conclusion
We introduce a novel LLM-based cell type annotation workflow 
within CytoAnalyst, a unified platform designed for comprehensive 
scRNA-Seq analysis. Our approach seamlessly integrates analytical 
methods with advanced LLMs to accelerate and enhance cell type 
annotation. The integration of Meta’s Llama 3.3 with embedding, 
clustering, and differential analysis methods for automated cell 
type inference marks a major leap in single-cell data analysis. The 
added graphical interface and interactive visualization system 
make sophisticated annotation tools accessible to researchers 
without a computational background, greatly reducing the burden 
of manual annotation for life scientists and bioinformaticians alike. 
The analysis results show promise for the application of advanced 
AI techniques in biomedical data analysis across diverse tissues 
and experimental conditions. Despite their promise, LLMs are 
prone to limitations such as overfitting and hallucination. One fu
ture direction to address this issue is Retrieval-Augmented 
Generation (RAG), where LLMs retrieve information from external, 
authoritative databases before generating a response. For future 
work, we will combine LLMs with systems-level analysis (Nguyen 
et al. 2021a, 2024b) and deep learning models (Tran et al. 2021, 
Nguyen et al. 2021b, 2024a) for practical applications in biomedical 
research. We continue to maintain and update the platform with 
the latest technologies.

Supplementary material
Supplementary material is available at Bioinformatics Advances 
online.

Conflicts of interest
None declared.

Funding
This work was partially supported by National Science 
Foundation [2343019, 2203236], National Institute of General 
Medical Sciences [R44GM152152], and National Cancer Institute 
[U01CA274573]. Any opinions, findings, and conclusions or rec
ommendations expressed in this material are those of the 
authors and do not necessarily reflect the views of any of the 
funding agencies.

Data availability
The data underlying this article are available in the CellxGene 
data portal at https://cellxgene.cziscience.com/. The datasets 
were derived from sources in the public domain: Frenz-Wiessner 
et al. 2024 (https://cellxgene.cziscience.com/collections/59cd85c5- 
3b22-4035-b628-2a20810ad54b), Wu et al. 2021 (https://cellxgene. 

6                                                                                                                                                                                                                                         Bioinformatics Advances, 2026, Vol, 6, Issue 1 

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

aticsadvances/article/doi/10.1093/bioadv/vbag001/8442891 by guest on 09 February 2026

https://academic.oup.com/bioinformaticsadvancesarticle-lookup/doi/10.1093/bioadv/vbag001#supplementary-data
https://cellxgene.cziscience.com/
https://cellxgene.cziscience.com/collections/59cd85c5-3b22-4035-b628-2a20810ad54b
https://cellxgene.cziscience.com/collections/59cd85c5-3b22-4035-b628-2a20810ad54b
https://cellxgene.cziscience.com/collections/dea97145-f712-431c-a223-6b5f565f362a


cziscience.com/collections/dea97145-f712-431c-a223-6b5f565f362a), 
Andrews et al. 2024 (https://cellxgene.cziscience.com/collections/ 
0c8a364b-97b5-4cc8-a593-23c38c6f0ac5), and Sol�e-Boldo et al. 2020
(https://cellxgene.cziscience.com/collections/c353707f-09a4-4f12- 
92a0-cb741e57e5f0).

References
Andrews TS, Nakib D, Perciani CT et al. Single-cell, single- 

nucleus, and spatial transcriptomics characterization of the 
immunological landscape in the healthy and PSC human liver. 
J Hepatol 2024;80:730–43.

Aran D, Looney AP, Liu L et al. Reference-based analysis of lung 
single-cell sequencing reveals a transitional profibrotic mac
rophage. Nat Immunol 2019;20:163–72.

Benjamini Y, Hochberg Y. Controlling the false discovery rate: a 
practical and powerful approach to multiple testing. J R Stat 
Soc Ser B (Methodol) 1995;57:289–300.

Blondel VD, Guillaume J-L, Lambiotte R et al. Fast unfolding 
of communities in large networks. J Stat Mech 2008; 
2008:P10008.

Boehm KM, El Nahhas OSM, Marra A et al. Multimodal histopath
ologic models stratify hormone receptor-positive early breast 
cancer. Nat Commun 2025;16:2106.

Butler A, Hoffman P, Smibert P et al. Integrating single-cell tran
scriptomic data across different conditions, technologies, and 
species. Nat Biotechnol 2018;36:411–20.

Bya P, Tran D, Nguyen K et al. CytoAnalyst web platform facili
tates comprehensive single cell RNA sequencing analysis. Sci 
Rep 2025;15:28736.

Cheng C, Chen W, Jin H et al. Review of single-cell RNA-seq anno
tation, integration, and cell–cell communication. Cells 2023; 
12:1970.

Clarke ZA, Andrews TS, Atif J et al. Tutorial: guidelines for anno
tating single-cell transcriptomic maps using automated and 
manual methods. Nat Protoc 2021;16:2749–64.

Comanici G, Bieber E, Schaekerm M et al. Gemini 2.5: Pushing 
the frontier with advanced reasoning, multimodality, long 
context, and next generation agentic capabilities. arXiv, 
arXiv:2507.06261, 2025, preprint: not peer reviewed.

Finak G, McDavid A, Yajima M et al. MAST: a flexible statistical 
framework for assessing transcriptional changes and charac
terizing heterogeneity in single-cell RNA sequencing data. 
Genome Biol 2015;16:278.

Frenz-Wiessner S, Fairley SD, Buser M et al. Generation of com
plex bone marrow organoids from human induced pluripo
tent stem cells. Nat Methods 2024;21:868–81.

Grattafiori A, Dubey A, Jauhri A et al. The llama 3 herd of models. 
arXiv, arXiv:2407.21783, 2024, preprint: not peer reviewed.

Hao Y, Hao S, Andersen-Nissen E et al. Integrated analysis of 
multimodal single-cell data. Cell 2021;184:3573–87.e29.

Heumos L, Schaar AC, Lance C et al.; Single-cell Best Practices 
Consortium. Best practices for single-cell analysis across mo
dalities. Nat Rev Genet 2023;24:550–72.

Hou W, Ji Z. Assessing GPT-4 for cell type annotation in single- 
cell RNA-seq analysis. Nat Methods 2024;21:1462–5.

Ianevski A, Giri AK, Aittokallio T et al. Fully-automated and ultra- 
fast cell-type identification using specific marker combinations 

from single-cell transcriptomic data. Nat Commun 2022; 
13:1246.

Ji X, Tsao D, Bai K et al. Scannotate: an automated cell-type an
notation tool for single-cell RNA-sequencing data. Bioinform 
Adv 2023;3:vbad030.

Jumper J, Evans R, Pritzel A et al. Highly accurate protein struc
ture prediction with AlphaFold. Nature 2021;596:583–9.

Kodinariya T, Makwana P. Review on determining number of 
cluster in K-Means clustering. Int J Adv Res Comput Sci 
Management Stud 2013;1:01.

Love MI, Huber W, Anders S et al. Moderated estimation of fold 
change and dispersion for RNA-seq data with DESeq2. 
Genome Biol 2014;15:550.

Lu MY, Chen B, Williamson DFK et al. A visual-language foundation 
model for computational pathology. Nat Med 2024;30:863–74.

Nguyen H, Tran D, Galazka JM et al. CPA: a web-based platform 
for consensus pathway analysis and interactive visualization. 
Nucleic Acids Res 2021a;49:W114–24.

Nguyen H, Tran D, Tran B et al. A comprehensive survey of regu
latory network inference methods using single-cell RNA se
quencing data. Brief Bioinform 2021b;22:1–15.

Nguyen H, Nguyen H, Tran D et al. Fourteen years of cellular 
deconvolution: methodology, applications, technical evalua
tion and outstanding challenges. Nucleic Acids Res 2024a; 
52:4761–83.

Nguyen H, Pham V-D, Nguyen H et al. CCPA: cloud-based, self- 
learning modules for consensus pathway analysis using GO, 
KEGG and reactome. Brief Bioinf 2024b;25:bbae222.

Pasquini G, Rojo Arias JE, Sch€afer P et al. Automated methods 
for cell type annotation on scRNA-seq data. Comput Struct 
Biotechnol J 2021;19:961–9.

Pliner HA, Shendure J, Trapnell C et al. Supervised classification 
enables rapid annotation of cell atlases. Nat Methods 2019; 
16:983–6.

Quan F, Liang X, Cheng M et al. Annotation of cell types (ACT): a 
convenient web server for cell type annotation. Genome Med 
2023;15:91.

Shao X, Liao J, Lu X et al. scCATCH: automatic annotation on cell 
types of clusters from single-cell RNA sequencing data. 
iScience 2020;23:100882.

Sol�e-Boldo L, Raddatz G, Sch€utz S et al. Single-cell transcrip
tomes of the human skin reveal age-related loss of fibroblast 
priming. Commun Biol 2020;3:188.

Song D, Chen S, Lee C et al. Synthetic control removes spurious 
discoveries from double dipping in single-cell and spatial tran
scriptomics data analyses. In: International Conference on 
Research in Computational Molecular Biology. Switzerland, 
Cham: Springer Nature, 2025, 400–4.

Stuart T, Butler A, Hoffman P et al. Comprehensive integration of 
single-cell data. Cell 2019;177:1888–902.e21.

Team G, Kamath A, Ferret J et al. Gemma 3 Technical Report. 
arXiv, arXiv:2503.19786, 2025, preprint: not peer reviewed.

Traag VA, Waltman L, van Eck NJ et al. From Louvain to Leiden: 
guaranteeing well-connected communities. Sci Rep 2019; 
9:5233–12.

Tran D, Nguyen H, Tran B et al. Fast and precise single-cell data 
analysis using hierarchical autoencoder. Nat Commun 2021; 
12:1029.

Bioinformatics Advances, 2026, Vol, 6, Issue 1                                                                                                                                                                                                                                         7 

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

aticsadvances/article/doi/10.1093/bioadv/vbag001/8442891 by guest on 09 February 2026

https://cellxgene.cziscience.com/collections/dea97145-f712-431c-a223-6b5f565f362a
https://cellxgene.cziscience.com/collections/0c8a364b-97b5-4cc8-a593-23c38c6f0ac5
https://cellxgene.cziscience.com/collections/0c8a364b-97b5-4cc8-a593-23c38c6f0ac5
https://cellxgene.cziscience.com/collections/c353707f-09a4-4f12-92a0-cb741e57e5f0
https://cellxgene.cziscience.com/collections/c353707f-09a4-4f12-92a0-cb741e57e5f0


Wang E, Schmidgall S, Jaeger PF et al. Txgemma: Efficient and 
Agentic LLMs for Therapeutics. arXiv, arXiv:2504.06196, 2025, 
preprint: not peer reviewed.

Wilcoxon F, Katti SK, Wilcox RA. Critical values and probability 
levels for the Wilcoxon rank sum test and the Wilcoxon signed 
rank test. Selected Tables Math Stat 1970;1:171–259.

Wu SZ, Al-Eryani G, Roden DL et al. A single-cell and spatially re
solved atlas of human breast cancers. Nat Genet 2021; 
53:1334–47.

Yang A, Li A, Yang B et al. Qwen3 Technical Report. 
arXiv, arXiv:2505.09388, 2025, preprint: not peer 
reviewed.

© The Author(s) 2026. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (https://creativecommons.org/licenses/by-nc/4.0/), 
which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact 
reprints@oup.com for reprints and translation rights for reprints. All other permissions can be obtained through our RightsLink service via the Permissions link on the article 
page on our site—for further information please contact journals.permissions@oup.com.
Bioinformatics Advances, 2026, 6, 1–8
https://doi.org/10.1093/bioadv/vbag001
Application Note

8                                                                                                                                                                                                                                         Bioinformatics Advances, 2026, Vol, 6, Issue 1 

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

aticsadvances/article/doi/10.1093/bioadv/vbag001/8442891 by guest on 09 February 2026


	Active Content List
	1 Introduction
	2 Workflow
	3 Results
	4 Conclusion
	Supplementary material
	Conflicts of interest
	Funding
	Data availability
	References


