
R Tutorial: Detection of Differentially
Interacting Chromatin Regions From
Multiple Hi-C Datasets
John C. Stansfield,1 Duc Tran,2 Tin Nguyen,2,3 and Mikhail G. Dozmorov1,3

1Department of Biostatistics, Virginia Commonwealth University, Richmond, Virginia
2Department of Computer Science & Engineering, University of Nevada, Reno, Nevada
3Corresponding authors: tinn@unr.edu; mikhail.dozmorov@vcuhealth.org

The three-dimensional (3D) interactions of chromatin regulate cell-type-
specific gene expression, recombination, X-chromosome inactivation, and
many other genomic processes. High-throughput chromatin conformation cap-
ture (Hi-C) technologies capture the structure of the chromatin on a global scale
by measuring all-vs.-all interactions and can provide new insights into genomic
regulation. The workflow presented here describes how to analyze and inter-
pret a comparative Hi-C experiment. We describe the process of obtaining Hi-C
data from public repositories and give suggestions for pre-processing pipelines
for users who intend to analyze their own raw data. We then describe the data
normalization and comparative analysis process. We present three protocols
describing the use of the multiHiCcompare, diffHic, and FIND R packages,
respectively, to perform a comparative analysis of Hi-C experiments. Finally,
visualization of the results and downstream interpretation of the differentially
interacting regions are discussed. The bulk of this tutorial uses the R program-
ming environment, and the processes described can be performed with most
operating systems and a single computer. C© 2019 by John Wiley & Sons, Inc.

Keywords: chromosome conformation capture � comparison � differential
analysis � Hi-C � HiCcompare � multiHiCcompare � normalization

How to cite this article:
Stansfield, J. C., Tran, D., Nguyen, T., & Dozmorov, M. G. (2019).
R tutorial: Detection of differentially interacting chromatin regions
from multiple Hi-C datasets. Current Protocols in Bioinformatics,

66, e76. doi: 10.1002/cpbi.76

INTRODUCTION

Early analysis of individual Hi-C datasets illuminated basic properties of the 3D structure
of the genome: A/B compartments, topologically associated domains (TADs), and chro-
matin loops (Dixon et al., 2012; Imakaev et al., 2012a; Lieberman-Aiden et al., 2009;
Rao et al., 2014; Yaffe & Tanay, 2011). One of the most important tasks in functional
genomics studies is the detection of differences between two or more conditions (Bonev
et al., 2017; Dixon et al., 2015; Rao et al., 2017), e.g., tumor and normal states (Barutcu
et al., 2015; Rickman et al., 2012; Taberlay et al., 2016). Analogous to differential gene
expression analysis, the comparative analysis of Hi-C datasets is intended to reveal pairs
of regions which are differentially interacting between conditions. These regions may be
associated with loss or gain of TAD boundaries, change in TAD sizes, or breakage or
establishment of promoter-enhancer interactions, thus pointing toward regulatory con-
sequences. The detection of differentially interacting chromatin regions requires at least
two Hi-C datasets.

Current Protocols in Bioinformatics e76, Volume 66
Published in Wiley Online Library (wileyonlinelibrary.com).
doi: 10.1002/cpbi.76
C© 2019 John Wiley & Sons, Inc.

Stansfield et al.

1 of 41

https://doi.org/10.1002/cpbi.76

Figure 1 Workflow of a comparative Hi-C analysis using multiHiCcompare.

Analysis of two or more Hi-C datasets poses a challenge related to potential bias be-
tween datasets. DNA-sequence-driven biases affect datasets to a similar extent because
comparisons are typically between datasets derived from the same species, which means
that they will have similar DNA sequences. In contrast, sequencing-technology-driven
biases unpredictably affect each dataset. Left unaccounted for, these biases thus may
be mistaken for true biological differences. Thus, joint normalization approaches for
removing the between-dataset biases are needed.

The diffHiC R package (Lun & Smyth, 2015) pioneered the removal of between-dataset
biases by implementing the joint MA (minus difference–average expression) normaliza-
tion approach, adopted from microarray technology (Dudoit, Yang, Callow, & Speed,
2002). However, MA normalization does not account for the central property of Hi-C
data — the power-law decay of chromatin interaction frequencies as the distance be-
tween interacting regions increases (Dekker, Marti-Renom, & Mirny, 2013; Fudenberg,
Getz, Meyerson, & Mirny, 2011; Lajoie, Dekker, & Kaplan, 2015; Lieberman-Aiden
et al., 2009). The HiCcompare R package was the first to implement a distance-aware
modification of the MA normalization, called MD (minus difference–distance) joint nor-
malization (Stansfield, Cresswell, Vladimirov, & Dozmorov, 2018), and other similar
techniques have also been developed based on this approach (Fletez-Brant, Qiu, Gorkin,
Hu, & Hansen, 2017). The FIND method uses matrices individually normalized through
Knight-Ruiz (KR) normalization (Knight & Ruiz, 2012), thus leaving the between-dataset
biases unaccounted for, and exploits a spatial Poisson regression to detect differentially
interacting regions (Djekidel, Chen, & Zhang, 2018). The multiHiCcompare package
(Stansfield, Cresswell, & Dozmorov, 2019) extends the MD joint normalization of two
Hi-C datasets to a cyclic normalization process for the joint normalization of multiple
Hi-C datasets.

This unit is intended as a guide for the comparative analysis of Hi-C data to detect
differentially interacting chromatin regions while accounting for between-dataset biases.Stansfield et al.

2 of 41

Current Protocols in Bioinformatics

We will discuss the joint normalization of Hi-C data and the detection of statistically
significant differences between (groups of) Hi-C datasets. In this workflow, we mostly
use the R and Bioconductor environments. Several software packages will be discussed,
including HiCcompare, multiHiCcompare, diffHic, FIND, and HiTC. The workflow
has been tested on Windows 10 (Cygwin command-line interface or the Windows 10
Linux subsystem), MacOS Sierra, and the CentOS Linux distribution. Basic Protocol 1
(Fig. 1) describes the comparative analysis process using multiHiCcompare along with
downstream interpretation of the results. Basic Protocol 2 provides an alternate approach
to comparative analysis of Hi-C data using diffHic. Finally, Basic Protocol 3 details the
steps for comparative analysis using FIND.

BASIC
PROTOCOL 1

PERFORMING A COMPARATIVE ANALYSIS OF Hi-C DATA USING
multiHiCcompare

Here we describe the process of obtaining public Hi-C data or pre-processing the user’s
data and the steps of a comparative analysis using multiHiCcompare. multiHiCcompare
provides methods for the joint normalization of multiple Hi-C datasets and a general
linear model (GLM)-based approach for performing the differential analysis. Similar to
most sequencing data, Hi-C data starts out as paired-end reads stored in fastq files. These
fastq files can be very large depending on the depth of the sequencing. Several Hi-C data
processing pipelines exist for the purpose of converting raw Hi-C data into text-based
chromatin interaction matrices (Ay & Noble, 2015). Researchers looking to generate
their Hi-C experiments will need to familiarize themselves with the Hi-C data processing
pipelines to convert their raw data into chromatin interaction matrices (Lajoie et al.,
2015). However, those who are interested in making use of the wide range of public Hi-C
data deposited in Gene Expression Omnibus (GEO) repositories can normally bypass the
data processing steps, as most deposited Hi-C data also includes the processed chromatin
interaction matrices. These matrices are typically stored in the text-based.hic or HDF5-
based .cool formats developed by the Aiden (http://aidenlab.org/data.html) and Mirny
laboratories (ftp://cooler.csail.mit.edu/coolers), respectively, and can be converted to
plain text files containing chromatin interactions in sparse matrix format (only non-zero
interactions are stored, as described below).

Like any sequencing data, Hi-C datasets contain biases. There are two primary sources of
bias, sequence driven and technology driven. The DNA-sequence-driven biases include
GC content, chromatin accessibility, and mappability (Yaffe & Tanay, 2011; O’Sullivan
et al., 2013), which tend to be consistent across datasets generated for the same organ-
ism. The technology-driven biases include cross-linking preferences, restriction enzyme
choice, batch effects, and biotin labeling (Lun & Smyth, 2015). The technology-driven
biases affect the data unpredictably and thus are harder to model. The multiHiCcompare
R package was specifically designed to correct for technology-driven biases between
datasets. Once biases have been corrected, multiHiCcompare can compare the Hi-C
datasets from different experimental groups for differences in chromatin interactions.
For simple experiments, the Fisher’s exact test can be used, and for more complex
experimental designs, the GLM framework should be used. Finally, this protocol will
detail several interpretation-oriented analyses that can be performed using the results of
multiHiCcompare.

Necessary Resources

Hardware

A computer with internet access, �35 GB of free hard drive space (if the user
wishes to perform the example analysis), and 8 GB of RAM

Stansfield et al.

3 of 41

Current Protocols in Bioinformatics

http://aidenlab.org/data.html
http://ftp://cooler.csail.mit.edu/coolers

Software

The R programming environment (version �3.5.0), a Unix-based command-line
interface (e.g., bash on Linux or MacOS, or Cygwin or the Windows 10 Linux
subsystem), and a web browser

Files

Hi-C sequencing reads in fastq format or pre-processed Hi-C matrices
(downloading and extraction of the necessary files for this example protocol are
discussed in the following sections)

Obtaining data

Public Hi-C data is available from several sources. GEO (https://www.ncbi.nlm.nih.
gov/geo/) catalogs the data from many studies, and a simple search for “Hi-C” returns
2,329 hits (as of November 6, 2018). Additionally, the Aiden lab website (https://www.
aidenlab.org/) lists many high-quality datasets that its members have generated. Finally,
there is the cooler repository (https://github.com/mirnylab/cooler), which provides a
database of Hi-C data ready for download. More Hi-C studies and data can be found in
our GitHub repository (https://github.com/mdozmorov/HiC_data).

Many sources of Hi-C data that are available for download are stored in a chro-
matin contact matrix text format. This can be in the form of full contact matrices (an
N × N matrix), where each cell represents an interaction between two genomic regions.
However, since this type of matrix is symmetric, the useful Hi-C information is effec-
tively contained in the sparse upper-triangular matrix. Such a sparse upper-triangular
matrix is stored in an N × 3 matrix in which the columns represent the start position
of the first interacting region, the start position of the second interacting region, and the
interaction frequency (IF) for the interaction. These matrices do not contain entries for
any pair of contacts with an IF of 0. The full matrix can be reconstructed from this N ×
3 matrix; hence, this format allows large savings in storage space.

When users are performing their own Hi-C experiments or the public data being used are
not available in a chromatin interaction matrix format, additional pre-processing steps
are needed (Ay & Noble, 2015; Lajoie et al., 2015). These steps are briefly described
below. The analysis steps for this tutorial require Hi-C data in a sparse upper-triangular
matrix format. The following section on aligning Hi-C data may be skipped for users
starting with processed Hi-C data in the form of chromatin contact matrices.

Preprocessing raw Hi-C Data

A typical Hi-C experiment starting with raw data will begin with fastq files. fastq files
should be familiar to anyone who has worked with other types of sequencing data.
However, the workflow for Hi-C data differs from the typical DNA sequencing (DNA-seq)
process for dealing with fastq files. Hi-C libraries are normally sequenced using paired-
end technology (Lajoie et al., 2015). As Hi-C data requires much deeper sequencing
than typical DNA-seq experiments, the fastq file size can be much larger than those
encountered with other sequencing techniques (approximately 20 times larger than a
typical RNA-seq experiment). A typical Hi-C processing workflow includes mapping the
reads, assigning fragments, filtering fragments, binning, bin-level filtering, and balancing
(normalization) of individual matrices (Lajoie et al., 2015). For the read-mapping step,
any standard alignment software can be used, such as Bowtie (Langmead & Salzberg,
2012) or the Burrows-Wheeler aligner (BWA; Li & Durbin, 2009). Although Hi-C data
consists of paired-end reads, the reads are mapped using the single-end mode to map each
read (of the pair) independently. This is because typical DNA-seq aligners often assume
that the distance between two reads in a pair fits a known distribution, whereas the insert
size of the Hi-C ligation product varies from several bases to hundreds of megabases. TheStansfield et al.

4 of 41

Current Protocols in Bioinformatics

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://www.aidenlab.org/
https://www.aidenlab.org/
https://github.com/mirnylab/cooler
https://github.com/mdozmorov/HiC_data

theoretical maximum resolution that can be achieved with Hi-C sequencing is set by the
restriction enzyme used to cut the DNA. However, most Hi-C datasets are not sequenced
deeply enough to reach this theoretical maximum, and typically one of a few fixed-size
resolutions are chosen for analyzing the data. The typical resolutions used in Hi-C data
analysis include, from low to high order, 1 Mb, 100 kb, 50 kb, 40 kb, 20 kb, 10 kb, and
5 kb. There are several Hi-C-specific processing pipelines available for aligning raw Hi-C
data. It is recommended to use one of the available Hi-C pipelines instead of attempting
to perform the processing steps individually. Two of the more popular pipelines for
aligning Hi-C data are juicer (Durand, Shamim, & Aiden, 2016) and HiC-Pro (Servant
et al., 2015).

juicer

juicer (https://github.com/aidenlab/juicer/wiki) is a full pipeline that takes fastq files as
input and aligns the data into .hic files, which store contact map information. juicer
can be run on Unix systems and uses GNU CoreUtils, BWA, and Java. juicer can be run
in the cloud, on a cluster, or on a single computer. Creating.hic files is a convenient
and common storage method for processed Hi-C data. Contact maps can be extracted
from .hic files using juicer or the command line tool straw. Below is an example of
extracting a contact map from a .hic file using straw.

Installation of straw

The straw tool can be compiled from C++ source, found at https://github.com/
theaidenlab/straw. Alternatively, a pre-compiled system-specific binary file can be down-
loaded from https://github.com/theaidenlab/straw/wiki/Download. Make sure the file is
located in one of the locations specified in the system’s path variable. On Unix-based
systems, make sure the binary has an executable attribute, chmod +x straw.

Run ./straw without arguments to see a brief help file on usage. See examples on how
to use straw at https://github.com/theaidenlab/straw/wiki/CPP#running. Briefly, straw
requires several inputs for the extraction of data from a .hic file:

<NONE/VC/VC_SQRT/KR> <hicFile(s)> <chr1>[:x1:x2]
<chr2>[:y1:y2] <BP/FRAG> <binsize>

The first field indicates the type of normalization to be applied. The vanilla coverage
(VC), square root of vanilla coverage (VC_SQRT), and Knight-Ruiz (KR) normalization
techniques are available to be applied to the contact maps. Alternatively, the raw contact
maps can be extracted by using the NONE option.

The second field is the file name of the .hic file to be extracted. The following two fields
are the chromosome numbers for the contact map desired: i.e., for the intrachromosomal
map of chromosome 1, the user would enter 1 1 in these fields. The next field determines
whether base pairs or restriction-fragment-resolution files will be returned. Typically, the
user will want to use the BP option. The final field specifies the resolution of the contact
map.

Extraction of data from .hic files

Let us assume that we have downloaded and uncompressed the GSE63525_K562_
combined_30.hic.gz file from GEO https://www.ncbi.nlm.nih.gov/geo/query/
acc.cgi?acc=GSE63525:

wget
ftp://ftp.ncbi.nlm.nih.gov/geo/series/GSE63nnn/
GSE63525/suppl/GSE63525_K562_combined_30.hic.gz

gunzip GSE63525_K562_combined_30.hic.gz Stansfield et al.

5 of 41

Current Protocols in Bioinformatics

https://github.com/aidenlab/juicer/wiki)
https://github.com/theaidenlab/straw
https://github.com/theaidenlab/straw
https://github.com/theaidenlab/straw/wiki/Download
https://github.com/theaidenlab/straw/wiki/CPP#running
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE63525:
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE63525:

To extract the raw matrix corresponding to chromosome 22 at 500-kb resolution, we
would use the following command within the terminal:

./straw NONE GSE63525_K562_combined_30.hic 22 22 BP
500000 > K562.chHCT116_r22.500 kb.txt

This will extract the matrix from the .hic file and save it to the K562.
chHCT116_r22.500 kb.txt text file, in the sparse upper-triangular matrix for-
mat. Typically, chromosome-specific matrices are saved in separate files.

HiC-Pro

HiC-Pro is another Hi-C processing pipeline that takes fastq files as input. HiC-Pro can
be run on a single computer or a cluster and can automatically apply iterative correction
and eigenvector decomposition (ICE) normalization to the Hi-C data in addition to
producing the un-normalized contact maps. HiC-Pro’s output includes two main file
types, .matrix and .bed files. The .matrix files are plain-text three-column sparse
upper-triangular matrices with the columns bini, binj, and countsij. The.bedfile contains
the genomic coordinates corresponding to each of these bini and binj values.

HiC-Pro can be installed from GitHub here: https://github.com/nservant/HiC-Pro. It re-
quires bowtie2 (>2.2.2), Python (>2.7), R (>3.4), the g++ compiler (>4.4.0), samtools
(>1.1), and the Unix “sort” command. HiC-Pro was built for Unix systems; however,
it also has support for Linux, Windows, and Mac through a Singularity image. HiC-Pro
can be used on a cluster or a single computer.

Working with processed Hi-C data

The HiCcompare R package was designed for working with processed Hi-C data. It
contains several functions that may be useful for an analysis. Hi-C data extracted from
.hic files using straw can be simply read into R in the standard fashion for loading any
text file containing data. HiCcompare can then be used to convert Hi-C data from sparse
upper-triangular matrix format into a full contact matrix using the sparse2full function.
This process can be reversed using the full2sparse function. Data aligned by HiC-Pro
can be converted into a more usable BEDPE format using the hicpro2bedpe function.
The hicpro2bedpe function takes the .matrix and .bed files produced by HiC-Pro as
input and produces a sparse upper-triangular matrix containing start and end coordinates
for each interacting region.

Comparative analysis of multiple Hi-C datasets using multiHiCcompare

The original HiCcompare R package can be used when only two Hi-C datasets are
available to be compared (Stansfield et al., 2018). HiCcompare provides a method for
the joint normalization and difference detection of two Hi-C datasets, but cannot be
generalized to higher numbers of datasets. multiHiCcompare will need to be used if
more than two Hi-C datasets are to be compared (Stansfield et al., 2019).

Obtaining and preparing the data

We begin our tutorial illustrating the processing of Hi-C datasets to prepare them for
comparative analysis. First, we will describe how to download an example set of Hi-
C data. We will use data from Rao et al. (2017). For simplicity, we will use only
two replicates for each experimental condition. The experimental conditions are normal
(untreated) HCT-116 cells and HCT-116 cells treated with auxin for 6 hr. To download the
.hic files from GEO, run the following commands in the terminal. Note: downloading
the data for this protocol will require �30 GB of hard drive space.

Stansfield et al.

6 of 41

Current Protocols in Bioinformatics

https://github.com/nservant/HiC-Pro

wget
ftp://ftp.ncbi.nlm.nih.gov/geo/samples/GSM2795nnn/
GSM2795535/suppl/GSM2795535_Rao-2017-HIC001_30.hic.gz

wget
ftp://ftp.ncbi.nlm.nih.gov/geo/samples/GSM2795nnn/
GSM2795536/suppl/GSM2795536_Rao-2017-HIC002_30.hic.gz

wget
ftp://ftp.ncbi.nlm.nih.gov/geo/samples/GSM2809nnn/
GSM2809539/suppl/GSM2809539_Rao-2017-HIC008_30.hic.gz

wget
ftp://ftp.ncbi.nlm.nih.gov/geo/samples/GSM2809nnn/
GSM2809540/suppl/GSM2809540_Rao-2017-HIC009_30.hic.gz

The next step is to extract the data from the .hic files. Now we will extract the un-
normalized data from the .hic files at 100-kb resolution:

Unzip .hic files
gunzip *.gz

Make directories for the contact map files
mkdir HIC001
mkdir HIC002
mkdir HIC008
mkdir HIC009

Extract contact maps using straw by running the
following commands in the terminal

Or, put the commands into a script file, e.g.,
‘straw.sh‘, and run it

for i in {1..22}
do

./straw NONE GSM2795535_Rao-2017-HIC001_30.hic $i $i BP
100000 > HIC001/HIC001.NONE.chr $i.100000.txt
done

./straw NONE GSM2795535_Rao-2017-HIC001_30.hic X X BP
100000 > HIC001/HIC001.NONE.chrX.100000.txt

for i in {1..22}
do

./straw NONE GSM2795536_Rao-2017-HIC002_30.hic $i $i BP
100000 > HIC002/HIC002.NONE.chr $i.100000.txt
done

./straw NONE GSM2795536_Rao-2017-HIC002_30.hic X X BP
100000 > HIC002/HIC002.NONE.chrX.100000.txt

for i in {1..22}
do

./straw NONE GSM2809539_Rao-2017-HIC008_30.hic $i $i BP
100000 > HIC008/HIC008.NONE.chr $i.100000.txt
done

./straw NONE GSM2809539_Rao-2017-HIC008_30.hic X X BP
100000 > HIC008/HIC008.NONE.chrX.100000.txt

for i in {1..22}
do

Stansfield et al.

7 of 41

Current Protocols in Bioinformatics

./straw NONE GSM2809540_Rao-2017-HIC009_30.hic $i $i BP
100000 > HIC009/HIC009.NONE.chr $i.100000.txt
done

./straw NONE GSM2809540_Rao-2017-HIC009_30.hic X X BP
100000 > HIC009/HIC009.NONE.chrX.100000.txt

These steps will create four folders containing the sparse upper-triangular matrices for
chromosomes 1 to 22 and X for each sample. HIC001 and HIC002 are the two replicates
for the normal HCT-116 cells, and HIC008 and HIC009 are the two replicates for the
auxin-treated HCT-116 cells.

We now need to read the data into R. Open R, make sure that the working directory is
set to the directory where the Hi-C data is stored, and execute the following commands:

Install, if necessary, and load necessary libraries and
set up R session

if (!requireNamespace(“BiocManager”,quietly =
TRUE))install.packages(“BiocManager”)

library(readr)# install.packages(“readr”)
library(data.table)# install.packages(“data.table”)
library(dplyr)# install.packages(“dplyr”)
library(edgeR)# BiocManager::install(“edgeR”)
library(BiocParallel)# BiocManager::install
(“BiocParallel”)

library(HiCcompare)# BiocManager::install
(“HiCcompare”), or, for the latest version,
devtools::install_github(‘dozmorovlab/HiCcompare’,
build_vignettes = TRUE, force = TRUE)

install.packages(“devtools”)
library(multiHiCcompare)# BiocManager::install
(“multiHiCcompare”, version = “devel”)

options(scipen = 10)# Output fixed numbers, not
scientific notation

Set up parameters for reading in data
chr <- paste0(‘chr’,c(1:22,‘X’))# Chromosome names
samples <- paste0(‘HIC00’,c(1,2,8,9))# Sample names
res <- 100000 # Data resolution

Read data
sample_list <- list()
chr_list <- list()
for(jin 1:length(samples)) {
for (iin 1:length(chr)) {
chr_list[[i]] <- read_tsv(paste0(samples[j],“/”,

samples[j],
“.NONE.”, chr[i],“.”, res,“.txt”),
col_names = FALSE)%>% as.data.table()
Add column indicating the chromosome
chr_list[[i]] <- cbind(i, chr_list[[i]])
colnames(chr_list[[i]]) <- c(‘chr’,‘region1’,
‘region2’,‘IF’)

}
sample_list[[j]] <- chr_list
chr_list <- list()Stansfield et al.

8 of 41

Current Protocols in Bioinformatics

}

Collapse separate chromosome lists into one table per
sample

sample_list <- lapply(sample_list, rbindlist)

We now have a list with each entry containing the sparse upper-triangular matrix for one
of the Hi-C datasets:

sample_list[[1]]

chr region1 region2 IF
1: 1 0 0 16
2: 1 0 100000 1
3: 1 500000 500000 13
4: 1 600000 600000 1
5: 1 500000 700000 4
–––

15004441: 23 154800000 155200000 53
15004442: 23 154900000 155200000 88
15004443: 23 155000000 155200000 138
15004444: 23 155100000 155200000 402
15004445: 23 155200000 155200000 814

The first column indicates the chromosome number, the second column is the start
location in base pairs for the first interacting region, the third column is the start location
for the second interacting region, and the fourth column is the interaction frequency (IF)
for the interacting pair.

Joint normalization of Hi-C datasets

First, we need to create a Hicexp object using the Hi-C data:

Create a Hicexp object for use by multiHiCcompare
(�10 min)
Four objects are assigned into two groups
rao2017 <- make_hicexp(data_list = sample_list,groups

= c(1,1,2,2))

rao2017 # class(rao2017)

Hi-C Experiment Object
2 experimental groups
Group 1 has 2 samples
Group 2 has 2 samples

The Hicexp object stores the Hi-C experiment data and is the main input into the other
functions included in multiHiCcompare. The user can view the IF information by using
the hic_table accessor function:

hic_table(rao2017)

chr region1 region2 D IF1 IF2 IF3 IF4
1: 1 0 0 0 16 10 5 13
2: 1 500000 500000 0 13 19 7 4
3: 1 500000 800000 3 8 15 3 2
4: 1 700000 700000 0 668 968 260 382
5: 1 700000 800000 1 356 449 156 179
––– Stansfield et al.

9 of 41

Current Protocols in Bioinformatics

5948969: 23 155000000 155100000 1 460 425 306 323
5948970: 23 155000000 155200000 2 138 167 65 80
5948971: 23 155100000 155100000 0 2116 2391 1220 1427
5948972: 23 155100000 155200000 1 402 436 202 222
5948973: 23 155200000 155200000 0 814 1023 392 519

When comparing multiple Hi-C datasets, a joint normalization procedure increases power
and reduces the number of false positives (Stansfield et al., 2018). The multiHiCcompare
R package includes two methods for the joint normalization of Hi-C data, cyclic loess
and fast loess (fastlo) (Ballman, Grill, Oberg, & Therneau, 2004). We will normalize the
data using fastlo.

MD plots before normalization
MD_hicexp(rao2017,plot.chr = 1,plot.loess = TRUE)

Normalize (�2 min)
rao2017 <- fastlo(rao2017)

Plot normalization results
MD_hicexp(rao2017,plot.chr = 1,plot.loess = TRUE)

Print normalized IFs
pander::pandoc.table(head(hic_table(rao2017)))

––
chr region1 region2 D IF1 IF2 IF3 IF4
––– –––––– –––––– –––––– –––––– –––––– –––––– ––––-
1 0 0 0 14.2 5.515 8.543 15.62
1 500000 500000 0 11.53 10.75 11.81 4.94
1 500000 800000 3 4.89 8.174 5.851 3.668
1 700000 700000 0 594.3 966.6 275.3 406.2
1 700000 800000 1 252.3 326.8 224.2 241.8
1 700000 900000 2 85.74 132.6 49.21 73.79
––

The IFs in the hic_table slot have been updated with their normalized values. The MD
plots (Fig. 2) show that the normalization has been performed correctly, and the cloud of
points is centered and symmetric around 0, indicating that any biases between datasets
have been removed. The MD plot displays unit genomic distance on the x axis and the
log2 difference between the two datasets on the y axis. Any shift of the points away from
y = 0 represents scaling differences between the datasets. The loess fit to the data on
the MD plot will also model any trend biases between the datasets. Correctly normalized
data should be centered around y = 0 and symmetric (without any clear trends) on the
MD plot.

Note that if multiple cores are available, the runtime of multiHiCcompare can be sped
up by using the parallel option. multiHiCcompare was built with the Bioconductor
BiocParallel package. The number of cores to be used in parallel processing can be set
as follows:

library(BiocParallel)# BiocManager::install
(“BiocParallel”)
Check how many cores are available
numCores <- parallel::detectCores()
Set the number of cores at least one less than the
total numberStansfield et al.

10 of 41

Current Protocols in Bioinformatics

Figure 2 MD plots of sample 3 vs. sample 4. Shown are plots (A) before and (B) after normal-
ization. The MD plots for the other pairs of samples, and on other chromosomes, look similar.
The x axes show the unit genomic distance that corresponds to each consecutive off-diagonal
trace of the full contact matrix. The y axes show is the log2 difference between the two samples
being compared. The red lines represent the loess fit to the data. Any trends or shift away from
y = 0 represent different between dataset biases, which are ideally removed by the normalization
procedure.

if(Sys.info()[‘sysname’] == “Windows”) {
Windows settings
register(SnowParam(workers = numCores-1),
default = TRUE)

}else {
Unix settings
register(MulticoreParam(workers = numCores-1),
default = TRUE)

}

Now that multiple cores are registered, it is possible to utilize parallel processing in any
of the normalization and difference detection steps by setting parallel = TRUE in
the function options.

Difference detection

Now that we have jointly normalized our data, we are ready to compare the conditions
to find differentially interacting chromatin regions. For this example, we have only two
conditions and no other covariates. Thus, we can use the Fisher’s exact test for our
comparison:

Perform exact test (�10 min)
May use “parallel = TRUE” option to speed up
computations
rao2017 <- hic_exactTest(rao2017,parallel = TRUE)

Plot a composite MD plot with the results of a
comparison
MD_composite(rao2017,plot.chr = 1)

Print results as a data frame
pander::pandoc.table(head(results(rao2017)))

Stansfield et al.

11 of 41

Current Protocols in Bioinformatics

Figure 3 Composite MD plot with significant differentially interacting regions highlighted. High-
lighted points display where the differential interactions are occurring in relation to unit genomic
distance on the x axis and log2 fold change on the y axis. Points highlighted in yellow are moderately
significant, while points highlighted in red are highly significant.

––
chr region1 region2 D logFC logCPM p.value p.adj
––– –––––– –––––– –––––– –––––– –––––– –––––– –––––
1 0 0 0 0.4226 0.7776 0.6929 0.8819
1 500000 500000 0 -0.5822 0.6359 0.5607 0.8138
1 500000 800000 3 -0.6444 2.419 0.6813 0.7784
1 700000 700000 0 -1.72 6.216 0.00002573 0.003778
1 700000 800000 1 -0.4498 6.471 0.02507 0.05412
1 700000 900000 2 -1.19 4.879 0.0002512 0.001082
––

Save the Hicexp object
save(rao2017,file = ‘rao2017.RDA’)

To start the downstream analysis
without re-running multiHiCcompare load the saved

file
load(‘rao2017.RDA’)

Here we can see the results. The composite MD plot highlights where the significantly
different interactions are occurring in relation to distance and the fold change of the
difference between groups (Fig. 3). The results table shares the same first four columns
with the hic_table, but the following columns indicate the results of the Fisher’s exact
test. logFC is the log fold change difference between the experimental groups, logCPM
is the log counts per million between the samples, p.value is the un-adjusted P value
for the exact test, and p.adj is the false discovery rate (FDR)-corrected P value from the
exact test.

Alternate GLM example

For more complex experiments, the exact test is no longer sufficient, and the GLM
framework must be used. If, for example, we have some other covariate of interest that
we wish to control for, or if there are more than two experimental groups, the GLM
functionality of multiHiCcompare should be used. Here we show an example GLMStansfield et al.

12 of 41

Current Protocols in Bioinformatics

analysis using two additional replicates from Rao et al. (2017) that came from different
biological samples. First, we need to download the additional files:

Download additional two samples
wget
ftp://ftp.ncbi.nlm.nih.gov/geo/samples/GSM2795nnn/
GSM2795538/suppl/GSM2795538_Rao-2017-HIC004_30.hic.
gz

wget
ftp://ftp.ncbi.nlm.nih.gov/geo/samples/GSM2809nnn/
GSM2809543/suppl/GSM2809543_Rao-2017-HIC012_30.hic.
gz

Unzip .hic files
gunzip *.gz

Make directories for the contact map files
mkdir HIC004
mkdir HIC012

Extract contact maps using straw by running the
following commands in the terminal

Or, putting the commands into a script file, e.g.,
‘straw.sh‘, and running it

for i in {1..22}
do

./straw NONE GSM2795538_Rao-2017-HIC004_30.hic $i $i
BP 100000 > HIC004/HIC004.NONE.chr$i.100000.txt
done

./straw NONE GSM2795538_Rao-2017-HIC004_30.hic X BP
100000 > HIC004/HIC004.NONE.chrX.100000.txt

for i in {1..22}
do

./straw NONE GSM2809543_Rao-2017-HIC012_30.hic $i $i
BP 100000 > HIC012/HIC012.NONE.chr$i.100000.txt
done

./straw NONE GSM2809543_Rao-2017-HIC012_30.hic X X BP
100000 > HIC012/HIC012.NONE.chrX.100000.txt

Then we will read the data into R and create a Hicexp object as before:

Set up parameters for reading in data
chr <- paste0(‘chr’,c(1:22,‘X’))# Chromosome names
samples <- paste0(‘HIC0’,c(‘01’,‘02’,‘04’,‘08’,‘09’,
‘12’))# Sample names

res <- 100000 # Data resolution

Read data
sample_list <- list()
chr_list <- list()
for(j in 1:length(samples)) {
for (i in 1:length(chr)) {
chr_list[[i]] <- read_tsv(paste0(samples[j],“/”,
samples[j],
“.NONE.”, chr[i],“.”, res,“.txt”), Stansfield et al.

13 of 41

Current Protocols in Bioinformatics

col_names = FALSE)%>% as.data.table()
Add column indicating the chromosome
chr_list[[i]] <- cbind(i, chr_list[[i]])
colnames(chr_list[[i]]) <- c(‘chr’,‘region1’,
‘region2’,‘IF’)
}
sample_list[[j]] <- chr_list
chr_list <- list()
}

Collapse separate chromosome lists into one table
per sample

sample_list <- lapply(sample_list, rbindlist)

Create a Hicexp object for use by multiHiCcompare
Add the covariate data.frame for biological sample
source

rao_glm <- make_hicexp(data_list = sample_list,
groups = c(1,1,1,2,2,2), covariates = data.frame
(biosample = c(1,1,2,1,1,2)))

Now we can normalize as was done before:

rao_glm <- fastlo(rao_glm,parallel = TRUE)

Now we are ready to use the GLM functionality of multiHiCcompare:

View covariates
meta(rao_glm)
Perform GLM
Make design matrix
d <- model.matrix(�factor(meta(rao_glm)$group)+
factor(meta(rao_glm)$biosample))
Plug into GLM function
rao_glm <- hic_glm(rao_glm,design = d,coef = 2)

Plot a composite MD plot with the results of a
comparison
MD_composite(rao_glm,plot.chr = 1,D.range = 0.2)

Print results as a data frame
results(rao_glm)

The results of the above GLM analysis are now controlled for biological sample source.
The resulting Hicexp object can again be visualized in the same way as above in the
Fisher’s exact test case example.

Downstream analysis and interpretation of differentially interacting regions

The identification of differentially interacting chromatin regions (DIRs) opens up a prob-
lem of interpretation: What is so special about these regions from a genome regulation
perspective? Answers to the following questions may help clarify the regulatory role of
differentially interacting regions.

� Visualization of DIRs. A Manhattan-like plot of DIRs may inform us about abnormal-
ities or reveal chromosome-specific enrichment of differentially interacting regions.

Stansfield et al.

14 of 41

Current Protocols in Bioinformatics

Figure 4 Manhattan plots of region-summarized differential interaction statistics. The y axes
show (A) addCLT-combined (Nguyen et al., 2016) P values and (B) counts of the number of
times each region was found significant. These plots were created using all interactions. In (A),
alternating black and gray coloring differentiates the points between chromosomes. Panels are
meant to display the different options for representing the results in Manhattan plot format.

� Overlap between differentially expressed genes and DIRs. If gene expression mea-
surements are available, a list of differentially expressed genes may be tested for
overlap with DIRs. The goal of this analysis is to establish a formal link between DIRs
and changed gene expression.

� Functional enrichment of genes overlapping DIRs. DIRs may disrupt the regulation
of genes overlapping them. The goal of this analysis is to test whether genes overlapping
DIRs are enriched in a canonical pathway or share a common function.

� Overlap enrichment between TAD boundaries and DIRs. DIRs may correspond
to TAD boundaries that are deleted or created. Thus, it is important to test DIRs for
significant overlap with TAD boundaries detected in either condition or only in bound-
aries changed between the conditions. Similar overlap enrichment can be calculated
between DIRs and any genomic annotation.

� Overlap between DIRs and binding sites. DIRs may correspond to locations where
proteins bind with the DNA, such as CTCF sites. Thus, it may be of interest to check
for overlap between binding-site locations and DIRs.

Visualizing DIRs

Regions that are frequently detected as differentially interacting may be visualized by
using the Manhattan-plot-like plotting function provided by multiHiCcompare. The func-
tion manhattan_hicexp allows the user to make a Manhattan plot showing the regions
that are either detected as significantly interacting with any other regions (summarized
P value) or frequently detected as significantly interacting (number of times a region
is significantly differentially interacting with other regions). The P-value summariza-
tion options include the addCLT (default) (Nguyen, Tagett, Donato, Mitrea, & Draghici,
2016), fisher (Fisher, 1950), and stouffer (Stouffer et al., 1949) methods to combine the
P values for each region to produce a plot of the most significant regions. The count
method creates a plot in which the height corresponds to the number of times a region
was detected as significant. The goal of these plots is to visualize the most significantly
differentially interacting regions in the context of the linear genome.

The manhattan_hicexp plots summarize on the y axis the P values (method = ‘addCLT’,
fisher, or stouffer), as −log10(P value) (Fig. 4A), or the number of times a region
was detected as significant (method = ‘count’; Fig. 4B). Statistics for all regions are
plotted. The higher each dot is, the more significant the corresponding region or the more Stansfield et al.

15 of 41

Current Protocols in Bioinformatics

frequently the region was detected as significantly differentially interacting, respectively.
Use plot.chr to focus on any given chromosome:

manhattan_hicexp(rao2017,method = ‘addCLT’)
manhattan_hicexp(rao2017,method = ‘count’,plot.chr =
18)

It may be of interest to take a more in-depth look at the most significant regions that
were detected as differentially interacting many times. We can get started with this by
using the topDirs function, which gives us a data.frame of the regions and the count
for the number of times each region was detected as differentially interacting, along
with the Fisher combined P value of the detected interactions. The topDirs function is
an analog of the limma::topTable and edger::topTags functions in that it allows us to
filter the results by the average log fold change (logfc_cutoff), the average interaction
frequency (the higher the average frequency, the more confident we are in the detected
difference, logcpm_cutoff), the adjusted P-value cutoff (p.adj_cutoff), and the distance
cutoff (D_cutoff). The topDirs function allows us to focus on the most significant regions
while filtering out less interesting regions.

The return_df = ‘bed’ option gives us a summary of the regions that are found to be
interacting at least once:

counts <- topDirs(rao2017,logfc_cutoff = 1,
logcpm_cutoff = 2,
p.adj_cutoff = 0.01,return_df = ‘bed’)

pander::pandoc.table(head(counts))

––
––––––––––––
chr start end count avgD avgLogFC avgLogCPM avgP.adj
––– –––––– –––––– –––––– –––––– –––––– –––––– –––––--
––––––
chr1 121400000 121499999 61 63.28 1.097 9.15

2.7462E-41
chr16 8600000 8699999 56 24.5 -1.589 7.667

3.8393E-37
chr23 114900000 114999999 55 26.78 -2.107 7.234

5.0491E-37
chr16 58800000 58899999 51 30.2 -1.473 8.22

3.8325E-34
chr16 89800000 89899999 48 51.62 1.601 8.451

4.0538E-32
chr17 26800000 26899999 47 65.34 -2.057 7.425

1.6855E-31
––
––––––––––––

We can now use the counts data.frame as an input for plotting the P values of the top
DIRs, summarized by Fisher’s method (Fig. 5A):

plot_pvals(counts)

We can also plot the counts (Fig. 5B):

plot_counts(counts)Stansfield et al.

16 of 41

Current Protocols in Bioinformatics

Figure 5 Manhattan plots for most frequently interacting chromatin regions. (A) Manhattan plot
of P values from the counts object, combined using the addCLT method. (B) Manhattan plot of the
counts from the counts object. These plots use only the filtered results of the topDirs function and
thus are more significant than the interactions shown in Figure 4.

To zoom in on a particular chromosome, the plot.chr option can be used:

plot_counts(counts,plot.chr = 2)

The return_df = ‘pairedbed’ will give the results in the form of interacting pairs:

pairs <- topDirs(rao2017,logfc_cutoff = 2,logcpm_cutoff
= 4,
p.adj_cutoff = 0.01,return_df = ‘pairedbed’)

pander::pandoc.table(head(pairs))

––
––––––––––––
chr1 start1 end1 chr2 start2 end2 D logFC logCPM
p.value p.adj

––– –––––– –––––– –––––– –––––– –––––– –––––– –––––--
––––––––––––
chr1 2400000 2499999 chr1 2600000 2699999 2 -2.032 4.95
1.9161E-10 3.8235E-09

chr1 2600000 2699999 chr1 6400000 6499999 38 -3.673
5.063 1.2405E-06 1.9435E-03

chr1 2600000 2699999 chr1 6500000 6599999 39 -3.535
5.016 1.1798E-06 1.9435E-03

chr1 3800000 3899999 chr1 4500000 4599999 7 -2.548
6.334 9.8812E-19 3.4347E-16

chr1 3800000 3899999 chr1 4600000 4699999 8 -2.095
6.404 3.7784E-14 6.8404E-12

chr1 3800000 3899999 chr1 4700000 4799999 9 -2.005
6.295 1.3393E-12 1.9727E-10

––
––––––––––––––––––––––––

The coordinates of differentially interacting regions may be saved as .bed files for
downstream analysis in tools such as GenomeRunner (Dozmorov, Cara, Giles, & Wren,
2016) or LOLA (Sheffield & Bock, 2016) or for visualization in, e.g., the UCSC Genome
Browser (Current Protocols article: Karolchik, Hinrichs, & Kent, 2009): Stansfield et al.

17 of 41

Current Protocols in Bioinformatics

Regular BED format
write_tsv(counts[,c(‘chr’,‘start’,‘end’,‘count’)],
path = ‘detected_regions.bed’,col_names = FALSE)

Paired BED format
write_tsv(pairs,path = ‘detected_regions.pairedbed’,
col_names = FALSE)

Sometimes, a BED file of all regions in the genome needs to be saved, to be used as a
“background” for random sampling:

Get list of all 100 KB regions in genome
regions <- topDirs(rao2017,logfc_cutoff = 0,
logcpm_cutoff = -1,
D_cutoff = 0,p.adj_cutoff = 1,alpha = 2,
return_df = ‘bed’)

Order regions
regions <- regions[order(chr, start, end),]
Remove unnecessary columns
regions <- regions[,c(‘chr’,‘start’,‘end’)]
Write into BED format
write_tsv(regions,path = ‘all_regions.bed’,col_names =
FALSE)

Overlap between differentially expressed genes and DIRs

If gene expression data is available, DIRs may be checked for statistically significant
overlap with differentially expressed (DE) genes. The hypothesis here is that regions
detected as differentially interacting harbor genes whose expression changes as a result of
changes in chromatin interactions. In our example, we obtain a list of genes differentially
expressed between the normal cells and the auxin-treated cells (Rao et al., 2017) and
test whether they are co-localized with DIRs. First, we get the genomic coordinates
(hg19/GRCh37) of all differentially interacting regions:

library(GenomicRanges)# BiocManager::install
(“GenomicRanges”)

Make GRanges from significant regions
sig.regions <- topDirs(rao2017,logfc_cutoff = 1,p.
adj_cutoff = 10ˆ-15,
return_df = ‘bed’)

sig.regions.gr <- makeGRangesFromDataFrame(sig.regions,
seqnames.field = ‘chr’,
start.field = ‘start’,
end.field = ‘end’,
keep.extra.columns = TRUE)

Next, we get the genomic coordinates of all protein-coding genes in the genome. They
will be used for a permutation test, to assess the average probability of overlap between
DIRs and genes:

Install annotables package for gene locations
devtools::install_github(“stephenturner/annotables”)
library(annotables)
library(dplyr)

Stansfield et al.

18 of 41

Current Protocols in Bioinformatics

Use annotables for hg19 symbols
hg19_symbols <- grch37 %>% # Get genomic coordinates for
hg19/GRCh37 genome assembly
subset(.,biotype == “protein_coding”)%>% # For

protein-coding genes only
subset(., chr %in% c(1:22,‘X’))# On autosomes and X

chromosome
Make X chromosome numeric for compatibility with Hi-C

data conventions
hg19_symbols$chr[hg19_symbols$chr == ‘X’] <- 23
hg19_symbols$chr <- paste0(‘chr’, hg19_symbols$chr)
hg19_symbols$strand <- ifelse(hg19_symbols$strand ==
-1,‘-’,‘+’)

head(hg19_symbols)
A tibble: 6 × 9

ensgene entrez symbol chr start end strand biotype
description

<chr> <int> <chr> <chr> <int> <int> <chr> <chr>
<chr>

1 ENSG000� 7105 TSPAN6 chr23 9.99e7 9.99e7 − protei�
tetraspanin �

2 ENSG000� 64102 TNMD chr23 9.98e7 9.99e7 + protei�
tenomodulin �

3 ENSG000� 8813 DPM1 chr20 4.96e7 4.96e7 − protei�
dolichyl-pho�

4 ENSG000� 57147 SCYL3 chr1 1.70e8 1.70e8 − protei�
SCY1-like 3 �

5 ENSG000� 55732 C1orf1� chr1 1.70e8 1.70e8 + protei�
chromosome 1�

6 ENSG000� 2268 FGR chr1 2.79e7 2.80e7 − protei�
feline Gardn�

Then, we need to download the list of differentially expressed genes from GEO:

wget
ftp://ftp.ncbi.nlm.nih.gov/geo/series/GSE106nnn/
GSE106886/suppl/GSE106886_Rao-2017-RAD21notreat_
vs_RAD21treat.Genes.DESeq2.txt.gz

gunzip GSE106886_Rao-2017-RAD21notreat_vs_RAD21treat.
Genes.DESeq2.txt.gz

Now, we read the list of differentially expressed genes into R, get their genomic coordi-
nates (hg19 genome assembly), and create the GRanges object:

de.genes <- read.table(‘GSE106886_Rao-2017-RAD21notreat_
vs_RAD21treat.Genes.DESeq2.txt’)

Add “symbol” column
de.genes <- de.genes %>% mutate(symbol = rownames
(de.genes))

Remove genes without differential expression
statistics

de.genes <- de.genes[!is.na(de.genes[,“padj”]),]
Select the most significant differentially expressed
genes

Stansfield et al.

19 of 41

Current Protocols in Bioinformatics

de.genes <- de.genes[de.genes[,“padj”]< 0.05,]# FDR
cutoff 0.05

Merge differentially expressed genes with genomic
coordinates

de.genes <- left_join(de.genes, hg19_symbols,by =
c(‘symbol’ = ‘symbol’))

Remove rows with NAs
de.genes <- de.genes[complete.cases(de.genes),]
Make GRanges object for DE genes
de.genes.gr <- GRanges(de.genes$chr,IRanges(start =
de.genes$start,

end = de.genes$end))

Find overlaps
olaps <- findOverlaps(sig.regions.gr, de.genes.gr)
olaps

Hits object with 977 hits and 0 metadata columns:
queryHits subjectHits
<integer> <integer>

[1] 5 419
[2] 5 597
[3] 12 5685
[4] 12 5686
[5] 13 1043
...
[973] 2015 4823
[974] 2017 5525
[975] 2018 2
[976] 2018 5108
[977] 2022 127
––––––
queryLength: 2027/subjectLength: 6127

We can see that there are 977 overlaps between the DE genes and our significant regions.
To test whether this amount of overlap is significantly different from what can be expected
by chance, we can perform a permutation test by testing the overlap of the DE genes
with randomly selected regions from the genome. We can use multiHiCcompare’s built
in permutation test for checking the enrichment of genomic features:

use multiHiCcompare’s permutation test function
p.value <- perm_test(rao2017, de.genes.gr,p.adj_cutoff

= 10ˆ-15,
logfc_cutoff = 1,num.perm = 1000)

p.value
[1] 0.000999001

We can see that the DE genes are significantly enriched in our DIRs that were detected
by multiHiCcompare (P value = 9.990E-04).

Functional enrichment of genes overlapping DIRs

Given the significant overlap between DE genes and DIRs, it may be of interest to test
whether all genes overlapping DIRs are enriched in any canonical pathway or gene on-
tology annotation category. This can be done using the ROntoTools R package (Voichita,
Donato, & Draghici, 2012).Stansfield et al.

20 of 41

Current Protocols in Bioinformatics

First, we need to get the genomic locations of the genes, including strand information:

library(clusterProfiler)# BiocManager::install
(“clusterProfiler”)

library(DOSE)# BiocManager::install(“DOSE”)
library(ROntoTools)# BiocManager::install(“ROntoTools”)
library(graph)# BiocManager::install(“graph”)

Make GRanges out of all genes
hg19_symbols.gr <- makeGRangesFromDataFrame(hg19_
symbols,
seqnames.field = ‘chr’,
start.field = ‘start’,
end.field = ‘end’,
strand.field = ‘strand’,
keep.extra.columns = TRUE)

Overlap genes with DIRs defined previously
olap <- findOverlaps(sig.regions.gr, hg19_symbols.gr)

Next, we need to create a named vector for the number of times each region was detected
as significantly interacting. The names for this vector will be the Entrez gene IDs. This
vector will be used for the pathway enrichment to walk down the list of genes overlapping
the most to least frequently detected DIRs:

Create “gene_counts” data.frame with the column for
count and gene symbol

genes_olap <- olap %>% as.data.frame %>% group_by
(queryHits)%>%
mutate(genes = hg19_symbols.gr@elementMetadata$symbol
[subjectHits])%>%
dplyr::select(queryHits, genes)%>% distinct()

tmp <- sig.regions %>% dplyr::select(count, avgLogFC,
avgP.adj)%>% mutate(id = 1:nrow(sig.regions))

gene_counts <- left_join(genes_olap, tmp,by = c(‘query
Hits’ = ‘id’))

Convert gene symbols into entrez ID
entrez <- bitr(gene_counts$genes,fromType = ‘SYMBOL’,
toType = ‘ENTREZID’,OrgDb = ‘org.Hs.eg.db’)

Join the Entrez ID to the counts
gene_counts <- left_join(gene_counts, entrez,by =
c(‘genes’ = ‘SYMBOL’))

Remove unmapped entries
gene_counts <- gene_counts[complete.cases(gene_
counts),]

Make the named vector of fold changes and pvalues for
genes

fc <- gene_counts$avgLogFC
names(fc) <- paste0(‘hsa:’, gene_counts$ENTREZID)
pv <- as.numeric(gene_counts$avgP.adj)
names(pv) <- paste0(‘hsa:’, gene_counts$ENTREZID)

load KEGG pathways
kpg <- keggPathwayGraphs(“hsa”,updateCache =
TRUE,verbose = FALSE) Stansfield et al.

21 of 41

Current Protocols in Bioinformatics

Table 1 Results of the ROntoTools Pathways Analysis

KEGG ID pathNames pPert pPert.fdr

path:hsa04060 Cytokine–cytokine receptor interaction 0.005 0.099

path:hsa04080 Neuroactive ligand–receptor interaction 0.005 0.099

path:hsa04144 Endocytosis 0.005 0.099

path:hsa04145 Phagosome 0.005 0.099

path:hsa04146 Peroxisome 0.005 0.099

path:hsa04216 Ferroptosis 0.005 0.099

path:hsa04721 Synaptic vesicle cycle 0.005 0.099

path:hsa05166 Human T-cell leukemia virus 1 infection 0.005 0.099

path:hsa05220 Chronic myeloid leukemia 0.005 0.099

path:hsa05322 Systemic lupus erythematosus 0.005 0.099

path:hsa03460 Fanconi anemia pathway 0.010 0.099

path:hsa04010 MAPK signaling pathway 0.010 0.099

path:hsa04072 Phospholipase D signaling pathway 0.010 0.099

path:hsa04630 JAK-STAT signaling pathway 0.010 0.099

path:hsa04742 Taste transduction 0.010 0.099

Columns indicate the ID of the KEGG canonical pathway, its description, the perturbation P value, and the FDR-adjusted
perturbation P value.

set edge weights
kpg <- setEdgeWeights(kpg,edgeTypeAttr = “subtype”,
edgeWeightByType = list(activation = 1,inhibition =
-1,
expression = 1,repression = -1),
defaultWeight = 0)

Now we can plug the fc (fold change) and pv (P value) vectors into ROntoTools pathway
analysis:

Set node weights
kpg <- setNodeWeights(kpg,weights = alpha1MR(pv),
defaultWeight = 1)

Perform pathway analysis
peRes <- pe(x = fc,graphs = kpg,ref = paste0(‘hsa:’,
as.character(hg19_symbols$entrez)),nboot = 200,verbose

= FALSE)
Prepare results table
kpn <- keggPathwayNames(“hsa”)
table1 <- head(Summary(peRes,pathNames = kpn,totalAcc =
FALSE,totalPert = FALSE,
pAcc = FALSE,pORA = FALSE,comb.pv = NULL,order.by =

“pPert”),n = 15)
table1$pPert <- round(table1$pPert,digits = 3)
table1$pPert.fdr <- round(table1$pPert.fdr,digits = 3)

Now we can see the results of the pathway analysis (Table 1). These pathways do not
make much sense in the context of the auxin vs. normal experiment. This could be
because auxin degrades looping throughout the genome and does not target any specific
function of the cell. This would explain the unrelated pathways found to be enriched.

Stansfield et al.

22 of 41

Current Protocols in Bioinformatics

We can also plot the pathways using ROntoTools to visualize the propagation across a
specific pathway. Select a pathway name of interest, for example, “Cytokine-cytokine
receptor interaction” pathway (path:hsa04060). We then create the plot as follows (plot
not pictured due to large size).

Select pathway
p <- peRes@pathways[[“path:hsa04972”]]
Create graph
g <- layoutGraph(p@map,layoutType = “dot”)
graphRenderInfo(g) <- list(fixedsize = FALSE)
edgeRenderInfo(g) <- peEdgeRenderInfo(p)
nodeRenderInfo(g) <- peNodeRenderInfo(p)
Plot the graph
renderGraph(g)

Overlap enrichment between TAD boundaries and DIRs

Another plausible hypothesis to test is overlap between DIRs and boundaries of topolog-
ically associated domains (TADs).

We will first need to identify the TADs for the datasets being used. For this we can use the
TopDom R script, which can be downloaded from here: http://zhoulab.usc.edu/TopDom/.
To use TopDom, the user will need to download the R script to the working directory and
source it in the R session. Note: TADs are typically called using Hi-C data at resolutions
of 50 kb or higher; however, for simplicity here we continue to use the 100-kb data. If the
user plans to perform an analysis using TADs, he should call them at 50-kb resolution or
higher.

Download TopDom
wget http://zhoulab.usc.edu/TopDom/code/TopDom_v0.0.2.
zip

unzip TopDom_v0.0.2.zip

Source TopDom script
source(‘TopDom_v0.0.2.R’)

Next, we will create the matrix file necessary for TopDom. TopDom requires an N ×
(N + 3) matrix in a text file. We can create this file for chromosome 1 as follows:

Convert sparse matrix read in at beginning of tutorial
to a full matrix

mat <- sparse2full(sample_list[[1]][chr == 1,c
(‘region1’,‘region2’,‘IF’)])

Create 3 extra columns necessary for TopDom
bed <- data.frame(chr = ‘chr1’,start = colnames(mat),
end = as.numeric(colnames(mat))+ resolution(rao2017))

Merge 3 columns with full matrix
mat <- cbind(bed, mat)
Write as a text file for input into TopDom
write_tsv(mat,path = ‘chr1.matrix’,col_names = FALSE)

The user should now have a text file containing the N × (N + 3) contact matrix for
chromosome 1 in the file chr1.matrix. Now we can input the matrix into TopDom and
get the TAD boundaries:

TADs <- TopDom(matrix.file=“chr1.matrix”,window.size=5)
Stansfield et al.

23 of 41

Current Protocols in Bioinformatics

http://zhoulab.usc.edu/TopDom/

The results contain a BED file indicating the positions of the gaps, domains, and bound-
aries. We will pull out the locations of the boundaries to check whether the DIRs are
enriched within them:

Pull out the bed file from the TopDom results with
boundary locations

boundaries <- TADs$bed
Subset to only boundaries
boundaries <- boundaries[boundaries$name ==“boundary”,]
Convert to GRanges
boundaries <- makeGRangesFromDataFrame(boundaries,
seqnames.field = ‘chrom’,
start.field = ‘chromStart’,
end.field = ‘chromEnd’,
keep.extra.columns = TRUE)

Similarly, we prepare a list of DIRs on chromosome 1:

Make GRanges object for DIRs from ‘counts‘ object
created with the topDIRs function

chr1.dir <- counts[counts$chr == ‘chr1’,]
chr1.dir <- makeGRangesFromDataFrame(chr1.dir,
seqnames.field = ‘chr’,
start.field = ‘start’,
end.field = ‘end’,
keep.extra.columns = TRUE)

Find overlaps between boundaries and DIRs
olaps <- findOverlaps(chr1.dir, boundaries)
olaps

Hits object with 7 hits and 0 metadata columns:
queryHits subjectHits
<integer> <integer>

[1] 9 11
[2] 58 10
[3] 82 27
[4] 113 15
[5] 119 27
[6] 120 27
[7] 137 9
––-––-
queryLength: 168/subjectLength: 28

Next, we perform a permutation test similar to the one performed in the previous section.
This will test for enrichment of DIRs within the TAD boundaries:

subset rao2017 Hicexp object to only chr1
chr1.rao2017 <- rao2017
slot(rao2017,“comparison”) <- results(rao2017)[chr ==
1,]

perform permutation test
p.value <- perm_test(rao2017, boundaries,p.adj_cutoff =
0.01,Stansfield et al.

24 of 41

Current Protocols in Bioinformatics

logfc_cutoff = 1,num.perm = 1000)
p.value

[1] 0.6183816

The DIRs do not seem to be enriched within TAD boundaries. This could be due to the
simplifications we used for this tutorial. TADs should be called at resolutions of 50 kb
or higher, so it is possible that our TAD boundaries are not as accurate as they should
be. Additionally, it is possible that the changes induced by auxin do not target TAD
boundaries but instead target smaller loop boundaries within the TADs.

Overlap between DIRs and binding sites

The auxin treatment used in Rao et al. (2017) was observed to destroy the RAD21
complex. Thus, our DIRs may correspond to changes at RAD21 binding sites.

We will need to download the location information for RAD21 binding sites
for HCT-116 cells using the following link: http://dc2.cistrome.org/api/downloads/
eyJpZCI6IjQ2MjA3In0:1g7Oxj:qCQcO9uSS36i7LdGEQGz7KAeZ_gb

After saving the file 46207_peaks.bed into the working directory, we can read the
file into R as follows:

rad21 <- read.table(‘46207_peaks.bed’)

head(rad21)
V1 V2 V3 V4 V5
1 chr1 10149 10295 peak1 6.70350
2 chr1 16184 16359 peak2 13.33365
3 chr1 91401 91609 peak3 42.12526
4 chr1 104859 105106 peak4 57.36115
5 chr1 181917 182071 peak5 11.32777
6 chr1 186798 187100 peak6 10.35612

This is a standard BED file. We will need to convert it into a GRanges object so that we
can input these locations into the permutation test function:

convert X and Y chr names into 23 and 24 to correspond
with multiHiCcompare results

rad21$V1 <- sub(“X”,“23”, rad21$V1)
rad21$V1 <- sub(“Y”,“24”, rad21$V1)
convert to GRanges
rad21 <- GRanges(rad21$V1, IRanges(start = rad21$V2,end = rad21$V3))

input into permutation test
perm_test(rao2017, rad21,p.adj_cutoff = 10ˆ-15,logfc_
cutoff = 1,num.perm = 1000)

[1] 0.01898102

RAD21 sites are significantly enriched in the DIRs, confirming the published observations
(Rao et al., 2017). This indicates that auxin-induced destruction of RAD21 does lead to
a change in chromatin interactions. Depending on the experimental conditions used in
obtaining the data being analyzed, the user may want to try a similar test on other binding
sites. Additionally, CTCF sites are typically correlated with TAD boundaries, so these
are a genomic feature that the user may want to check for enrichment in DIRs.

Stansfield et al.

25 of 41

Current Protocols in Bioinformatics

http://dc2.cistrome.org/api/downloads/eyJpZCI6IjQ2MjA3In0:1g7Oxj:qCQcO9uSS36i7LdGEQGz7KAeZ_gb
http://dc2.cistrome.org/api/downloads/eyJpZCI6IjQ2MjA3In0:1g7Oxj:qCQcO9uSS36i7LdGEQGz7KAeZ_gb

Summary

This protocol describes the R-based workflow for the high-level analysis and interpre-
tation of a comparative analysis of multiple Hi-C datasets. The main functionality is
provided by the multiHiCcompare R package. The workflow describes the joint nor-
malization of multiple Hi-C datasets, the detection of differentially interacting regions,
and the downstream interpretation of the results. The steps mainly involve the use of
the command line and Bioconductor R packages and should be generalizable to any
operating system capable of running R.

BASIC
PROTOCOL 2

COMPARATIVE ANALYSIS OF Hi-C DATA USING diffHic

In this protocol, we provide a brief tutorial for diffHic, which is an alternative software
for identifying differentially interacting chromatin regions (DIRs) (Lun & Smyth, 2015).
Here we use the same example data that was used in Basic Protocol 1. The diffHic
package offers several advantages. The tool is able to recognize patterns of restriction
enzyme cutting for a more efficient division of the genome. It also provides functions
to reduce artifacts and trend biases in the data, as well as offering a variety of statistical
methods for DIR identification. The diffHic R package provides a complete pipeline
from raw sequencing data processing to alignment to identification of DIRs. However,
due to its incompatibility with other popular Hi-C raw data processing packages, users
are required to process the raw data and align the reads themselves instead of utilizing
the pre-processed data deposited in public repositories. More details on the statistical
methods and advanced analyses can be found in the edgeR (Robinson & Smyth, 2008)
and diffHic (Lun & Smyth, 2015) manuals on Bioconductor.

Necessary Resources

Hardware

A computer with internet access and �2 TB of free hard drive space (if the user
wishes to run the full pipeline starting with raw data); a computing cluster is
highly recommended for performing the alignment process

Software

The R (version �3.5.0) programming environment, a Unix-based command-line
interface (e.g., bash on Linux), bowtie2 (version 2.3), cutadapt (version 1.18),
Biopython (version 1.72), Pysam (version 0.15), and a web browser

Files

The fastq files for the data to be used (for our example, we will cover downloading
the necessary files in the following section; alternatively, if the user wishes to
skip the alignment steps, only the .h5 files provided here are required (see
Supporting Information)

Downloading and processing data

Here we use the same datasets that were used in Basic Protocol 1: two datasets from
normal HCT-116 cells and two from HCT-116 cells treated with auxin for 6 hr. The fastq
files can be downloaded using the SRAdb package. Note that downloading the raw Hi-C
data will require a large amount of storage (�2 TB), and alignment will take a significant
amount of time. To skip the raw data processing steps, proceed to the section “Starting
with .h5 files.”

install.packages(“BiocManager”)
library(SRAdb)

BiocManager::install(‘SRAdb’)
library(diffHic)# BiocManager::install(‘diffHic’)Stansfield et al.

26 of 41

Current Protocols in Bioinformatics

library(BSgenome.Hsapiens.UCSC.hg19)#
BiocManager::install(‘BSgenome.Hsapiens.UCSC.hg19’)

Get required file for SRAdb for the first time.
After that, we need to set the path to the downloaded
sqlfile if we want to use SRAdb to download data
again.

sqlfile <- getSRAdbFile()
sqlfile <- file.path(“SRAmetadb.sqlite”)

sra_con <- dbConnect(SQLite(),sqlfile)

Now we download the fastq files from the short read archive (SRA; Leinonen et al.,
2011).

Get data, input could be the whole experiment or a
specific run.

Save results to individual folders (make folder if it
does not exist).

getSRAfile(c(“SRX3222724”), sra_con,fileType = ‘fastq’,
makeDirectory = TRUE,destDir = ‘HIC001’)

getSRAfile(c(“SRX3222725”), sra_con,fileType = ‘fastq’,
makeDirectory = TRUE,destDir = ‘HIC002’)

getSRAfile(c(“SRX3276107”), sra_con,fileType = ‘fastq’,
makeDirectory = TRUE,destDir = ‘HIC008’)

getSRAfile(c(“SRX3276108”), sra_con,fileType = ‘fastq’,
makeDirectory = TRUE,destDir = ‘HIC009’)

Next, we can get the SRA information, including the names of the data files.

Get the names of runs and replicates for later data
processing

hc1 <- getSRAinfo(“SRX3222724”, sra_con)$run

hc2 <- getSRAinfo(“SRX3222725”, sra_con)$run

hc3 <- getSRAinfo(“SRX3276107”, sra_con)$run

hc4 <- getSRAinfo(“SRX3276108”, sra_con)$run

exp <- paste0(“HIC00”,c(1,2,8,9))
exp.run <- list(hc1,hc2,hc3,hc4)

After downloading the fastq files, we can align the reads to the reference genome.
Bowtie2, cutadapt, and python with the Biopython and Pysam packages are required to
be installed prior to running this step. Additionally, the presplit_map.py script should be
copied to the working directory. The presplit_map.py script can be found by running the
following command in R.

system.file(“python”,“presplit_map.py”,package=
“diffHic”,mustWork=TRUE)

We will need to extract any gzipped files and download the chromosome 1 bowtie index
for hg19.

Stansfield et al.

27 of 41

Current Protocols in Bioinformatics

Extract all the gzip files
gunzip */*.gz
Bowtie index for chromosome 1 of human genome
wget ftp://hgdownload.cse.ucsc.edu/goldenPath/hg19/
chromosomes/chr1.fa.gz

Make “hg19” folder to store genome index
mkdir hg19
Build index
gunzip chr1.fa.gz -d hg19
cd hg19
bowtie-build --threads 4 chr1.fa hg19chr1 # 4 is the
number of processors

cd ..

We are now ready to start the alignment process. Note that this should be performed on
a computing cluster if one is available, as it is very time-consuming.

Fill in the path to the hg19 index files at
working/dir/hg19

export BOWTIE2_INDEXES=/path/to/my/bowtie2/databases/
hg19

Use diffHiC presplit_map.py to generate bam files;
cores = is the maximum number of python scripts run
at the same time.

Note that users can use the -p option for bowtie and
-j option for cutadapt

to increase the number of parallel processes in the
following code.

The python script multiplies the number of threads
assigned to bowtie and cutadapt

and should not exceed the number of cores.

cores=12
for filename in HIC001/*_1.fastq; do
python presplit_map.py -G hg19chr1 -1 ${filename%_1.
fastq}_1.fastq -2

${filename%_1.fastq}_2.fastq --cmd “bowtie2 -p 4” --cut
“cutadapt -j 2” --

sig GATC -o ${filename%_1.fastq}.bam &
background=($(jobs -p))
if ((${#background[@]} == cores)); then
wait -n
fi

done

for filename in HIC002/*_1.fastq; do
python presplit_map.py -G hg19chr1 -1 ${filename%_
1.fastq}_1.fastq -2

${filename%_1.fastq}_2.fastq --cmd “bowtie2 -p 4” --cut
“cutadapt -j 2” --

sig GATC -o ${filename%_1.fastq}.bam &
background=($(jobs -p))
if ((${#background[@]} == cores)); then
wait -nStansfield et al.

28 of 41

Current Protocols in Bioinformatics

fi
done

for filename in HIC008/*_1.fastq; do
python presplit_map.py -G hg19chr1 -1 ${filename%_
1.fastq}_1.fastq -2

${filename%_1.fastq}_2.fastq --cmd “bowtie2 -p 4” --cut
“cutadapt -j 2” --

sig GATC -o ${filename%_1.fastq}.bam &
background=($(jobs -p))
if ((${#background[@]} == cores)); then
wait -n
fi

done

for filename in HIC009/*_1.fastq; do
python presplit_map.py -G hg19chr1 -1 ${filename%_
1.fastq}_1.fastq -2

${filename%_1.fastq}_2.fastq --cmd“bowtie2 -p 4” --cut
“cutadapt -j 2” --

sig GATC -o ${filename%_1.fastq}.bam &
background=($(jobs -p))
if ((${#background[@]} == cores));then
wait -n
fi

done

After executing the above script, the user should have four folders containing the .bam
input files for diffHic.

Building the interaction matrix

diffHic was designed to use the recognition pattern for the restriction enzyme used in
generating the Hi-C data to effectively divide the genome into fragments. The restriction
enzyme MboI, which cuts at the pattern GATC, was used to generate the data for this
example. To use diffHic on an alternate data source, the user will need to determine
the restriction enzyme used and its cutting site. The DNA fragments are obtained using
cutGenome() on the human reference genome.

Digest genome using MboI resction enzyme
hs.frag <- cutGenome(BSgenome.Hsapiens.UCSC.hg19,
“GATC”,4)

hs.frag

GRanges object with 7227606 ranges and 0 metadata
columns:
seqnames ranges strand
<Rle> <IRanges> <Rle>

[1] chr1 1-11163 *
[2] chr1 11160-12414 *
[3] chr1 12411-12464 *
[4] chr1 12461-12689 *
[5] chr1 12686-12832 *
...
[7227602] chrUn_gl000249 38117-38206 * Stansfield et al.

29 of 41

Current Protocols in Bioinformatics

[7227603] chrUn_gl000249 38203-38288 *
[7227604] chrUn_gl000249 38285-38436 *
[7227605] chrUn_gl000249 38433-38502 *
[7227606] chrUn_gl000249 38499-38502 *
––-––-
seqinfo: 93 sequences from hg19 genome

Next, we can use the function pairParam() to generate the reference for diffHic. In this
tutorial, we will investigate only the DIRs within chromosome 1 by setting the restrict
parameter of pairParam(). Users can easily expand their analysis to other chromosomes
by modifying our example code.

hs.param <- pairParam(hs.frag,restrict = ‘chr1’)
hs.param

Genome contains 7227606 restriction fragments across 93
chromosomes

No discard regions are specified
Read extraction is limited to 1 chromosome
No cap on the read pairs per pair of restriction
fragments

To proceed, we need to create .h5 files to serve as input for diffHic. We can execute
the command preparePairs() on the .bam files to create the corresponding .h5 files.
Typically, we can execute the command preparePairs to create an .h5 file for each .bam
file (of a run) and then use the command prunePairs to remove artifacts that occurred in
the experiments. If a sample has multiple runs (multiple fastq and corresponding .bam
files), we will get multiple .h5 files one for each run. These .h5 files can be combined
using mergePairs() to create a single interaction matrix for a sample.

Data processing for each dataset
diagnostics <- list()
counted <- list()
for (i in 1:4) {
cur.exp <- exp[i]
for (run in exp.run[[i]]) {
run.name <- paste0(cur.exp,“/”,run)
diagnostics[[run.
name]] <- preparePairs(paste0(run.name,“.bam”),

hs.param,file = paste0(run.name,“.h5”),
dedup = TRUE,minq = 10)
counted[[run.
name]] <- prunePairs(paste0(run.name,“.h5”),

hs.param,file.out = paste0(run.name,“_trimmed.h5”),
max.frag = 600, min.inward = 1000,
min.outward = 25000)

}
mergePairs(files = paste0(cur.exp,“/”,
paste0(exp.run[[i]],“_trimmed.h5”)),
paste0(cur.exp,“.h5”))

}

The interaction files (one per sample) can be combined into a single object using square-
Counts(). The boundaries of each bin are rounded to the nearest restriction fragment size.

Stansfield et al.

30 of 41

Current Protocols in Bioinformatics

The bin size of 1 Mb is often used to get a reasonable number of interactions between
bin pairs.

Load the .h5 files
input <- c(‘HIC001.h5’,‘HIC002.h5’,‘HIC008.h5’,
‘HIC009.h5’)

bin.size <- 1e6 # set the bin size
data <- squareCounts(input, hs.param,width=bin.size,
filter=1)

data

class: InteractionSet
dim: 26796 4
metadata(2): param width
assays(1): counts
rownames: NULL
rowData names(0):
colnames: NULL
colData names(1): totals
type: ReverseStrictGInteractions
regions: 3041

Starting with .h5 files

Users wishing to skip the alignment steps may start here with the .h5 files. Download
the .h5 files to the working directory (see Supporting Information). Then load the data
as follows. (User who have already aligned and processed the data from fastq files should
skip this section.)

Load necessary packages if not done so already
library(diffHic)
library(BSgenome.Hsapiens.UCSC.hg19)

Digest genome using MboI resction enzyme
hs.frag <- cutGenome(BSgenome.Hsapiens.UCSC.hg19,
“GATC”,4)

Restrict to chr1
hs.param <- pairParam(hs.frag,restrict = ‘chr1’)

Load the .h5 files
input <- c(‘HIC001.h5’,‘HIC002.h5’,‘HIC008.h5’,
‘HIC009.h5’)

Set the bin size
bin.size <- 1e6
data <- squareCounts(input, hs.param,width=bin.size,
filter=1)

Data filtering and normalization

The user can filter out bin pairs with low counts using the average log count per million
(logCPM). Here we set the threshold to the average of a theoretical bin pair with counts
of 5 in all datasets. The bin pairs with an average lower than the threshold are considered
uninteresting and are thus removed.

library(edgeR)# BiocManager::install(“edgeR”)
Get the average logCPM
ave.ab <- aveLogCPM(asDGEList(data)) Stansfield et al.

31 of 41

Current Protocols in Bioinformatics

Figure 6 MA plot generated by the diffHiC pipeline. Shown are plots generated (A) before and
(B) after normalization. The x axes represent the log2 average IF value between the two datasets,
and the y axes represent the log2 difference between the two datasets. The red lines represent
the loess fit to the data. Normalization should ideally center the data around y = 0 and remove
any trends between the datasets.

Plot histogram of avg logCPM
hist(ave.ab,xlab=“Average abundance”,col=“grey80”,
main="")

Set which entries to keep
keep <- ave.ab>= aveLogCPM(5,lib.size=mean(data$
totals))

Backup original data
original.data <- data
Remove filtered entries
data <- data[keep,]

After filtering out bin pairs with low counts, we should normalize the data from different
datasets to avoid trend biases. We will demonstrate trend biases by using minus average
(MA) plots of the data before and after normalization (Fig. 6).

library(csaw)# BiocManager::install(“csaw”)

Calculate A
ab <- aveLogCPM(asDGEList(data))
Order avg logCPM
o <- order(ab)
Calculate counts per million
adj.counts <- cpm(asDGEList(data),log=TRUE)
Calculate M
mval <- adj.counts[,3]-adj.counts[,2]

Plot MA plot
smoothScatter(ab, mval,xlab=“A”,ylab=“M”,main=
“Treated (1) vs. Normal (2)”)

Fit loess curve to MA plot
fit <- loessFit(x=ab,y=mval)

Add loess fit to MA plot
lines(ab[o], fit$fitted[o],col=“red”)Stansfield et al.

32 of 41

Current Protocols in Bioinformatics

normOffsets() can be used on the data to calculate the offsets for our datasets. After
normOffsets() is applied to the data, the trend biases disappear in the new MA plot
(Fig. 6B).

Calculate offsets
data <- normOffsets(data,type=“loess”,se.out=TRUE)

However, bin pairs near the diagonal of the interaction matrix (short-range interactions)
usually have much larger counts than long-range interactions. Therefore, for more accu-
rate normalization, offsets for near-diagonal bin pairs should be calculated separately to
avoid a loss of information for the other bin pairs.

Filter bins near the diagonal
neardiag <- filterDiag(data,by.dist=1.5e6)
Create offsets matrix with the same dimension as data
nb.off <- matrix(0,nrow=nrow(data),ncol=ncol(data))
Calculate offsets
nb.off[neardiag] <- normOffsets(data[neardiag,],type=
“loess”,se.out=FALSE)

nb.off[!neardiag] <- normOffsets(data[!neardiag,],type=
“loess”,se.out=FALSE)

Update the offset matrix
assay(data,“offset”) <- nb.off

Offsets are applied to log2 of count data.
0.5 is added to the counts to prevent an error if
count = 0

Offsets are calculated using log10 so they are
divided by log(2) to convert to base 2.

adj.counts <- log2(assay(data) + 0.5)- assay(data,
“offset”)/log(2)

Calculate M values
mval <- adj.counts[,3]-adj.counts[,2]

Plot the MA plot
smoothScatter(ab, mval,xlab=“A”,ylab=“M”,main=
“Treated (1) vs. Normal (2)”)

Fit the loess curve
fit <- loessFit(x=ab,y=mval)

Plot the loess fit
lines(ab[o], fit$fitted[o],col=“red”)

Detecting differential interactions and visualization

The differential analysis functions of diffHiC are built on the edgeR statistical frame-
work. In diffHiC, variability is modeled by estimating the dispersion parameters of the
negative-binomial (NB) distribution and quasi-likelihood (QL) dispersion. This is used
for hypothesis testing to detect DIRs.

First, we need to specify the design matrix that describes the experimental setup. In the
code below, we first specify two groups (normal versus treated) and then convert the
data into a DGEList object for analysis with edgeR. The NB dispersion can be estimated
using the command estimateDisp(). The plot of the biological coefficient of variation is
displayed in Figure 7A.

Stansfield et al.

33 of 41

Current Protocols in Bioinformatics

Figure 7 Diagnostic plots generated by diffHiC pipeline. (A) Biological coefficient of variation
for each bin pair against bin-pair abundance. (B) Quasi-likelihood dispersion against bin-pair
abundance. The x axes of both panels represent the average log counts per million (CPM), a
measure of average IF value.

Set up design matrix
design <- model.matrix(�factor(c(“Normal”,“Normal”,
“Treated”,“Treated”)))

colnames(design) <- c(“Intercept”,“Treated”)

Create DGEList
y <- asDGEList(data)

Estimate the dispersion
y <- estimateDisp(y, design)

Plot the biological coefficient of variation
plotBCV(y)

We can now fit a GLM to the data and plot the QL dispersion (Fig. 7B) for our data using
the following code.

Fit GLM
fit <- glmQLFit(y, design,robust=TRUE)

Plot QL dispersion
plotQLDisp(fit)

After dispersion estimation, glmQLFTest() can be used to perform a quasi-likelihood
F test to identify bin pairs with significant differences. The output of glmQLFTest()
includes logFC, P values, and FDR-corrected P values.

Perform F test
result <- glmQLFTest(fit,coef=2)
Display results
topTags(result)

Coefficient: Treated
logFC logCPM F PValue FDR

1709 -1.312196 7.916977 500.6551 3.082966e-16
8.261115e-12Stansfield et al.

34 of 41

Current Protocols in Bioinformatics

Figure 8 Interaction matrices of the most significantly different region. (A) Normal (untreated)
group. (B) Auxin-treated group. The rectangle represents the region that was detected as differ-
ential between the conditions.

8122 -1.158629 7.873687 393.7927 3.519769e-15
4.127811e-11

526 -1.184617 8.465543 381.1573 4.889552e-15
4.127811e-11

7996 -1.201872 7.416843 372.4990 6.161832e-15
4.127811e-11

6212 1.277441 5.893027 328.6729 2.161274e-14
9.269023e-11

1251 1.875915 3.648410 327.1167 2.266207e-14
9.269023e-11

2014 -1.021491 8.143626 324.9544 2.421375e-14
9.269023e-11

4849 -1.026293 8.177141 311.2873 3.716517e-14
1.184421e-10

134 -1.185305 6.945935 309.1678 3.978128e-14
1.184421e-10

6213 1.150091 6.390913 292.1984 6.970974e-14
1.867942e-10

The interaction matrices of the differentially interacting regions can be plotted using the
plotPlaid() function, which requires boundaries from processed data and the raw data
from the .h5 files as input (Fig. 8).

Get order of p-values
o.r <- order(result$table$PValue)
Pick difference to plot
chosen <- o.r[1]
Get genomic region for plotting
chosen.a1 <- anchors(data[chosen],type=“first”)
chosen.a2 <- anchors(data[chosen],type=“second”)
expanded1 <- resize(chosen.a1,fix=“center”,width=bin.
size*5)

expanded2 <- resize(chosen.a2,fix=“center”,width=bin.
size*5)

Stansfield et al.

35 of 41

Current Protocols in Bioinformatics

The color of each pixel in this plot is correlated to the count. To prevent large counts from
dominating the plot, all counts bigger than the cap set below are set to this maximum
value. The cap for the treated sample is calculated from the normal cap by multiplying it
with the ratio of total counts from the datasets.

cap.wt <- 200 # Set cap for normal
cap.t <- cap.wt*data$totals[3]/data$totals[1]# Set cap
for treated

Set up side by side plot of matrix
par(mfrow=c(1,2))
Plot matrix for normal samples
plotPlaid(input[1],first=expanded1,second=expanded2,
max.count=cap.wt,

width=5e4,param=hs.param,main=“Normal”)
rect(start(chosen.a1),start(chosen.a2),end(chosen.a1),
end(chosen.a2))

Plot matrix for treated samples
plotPlaid(input[3],first=expanded1,second=expanded2,
max.count=cap.t,

width=5e4,param=hs.param,main=“Treated”)
rect(start(chosen.a1),start(chosen.a2),end(chosen.a1),
end(chosen.a2))

BASIC
PROTOCOL 3

COMPARATIVE ANALYSIS OF Hi-C DATA USING FIND

difFerential chromatin INteractions Detection using a spatial Poisson process (FIND) is
another R package for comparing Hi-C data (Djekidel et al., 2018). FIND was developed
with the analysis of high-resolution Hi-C data in mind. It uses a spatial Poisson process
that considers local spatial dependencies between interacting regions of the chromatin.
FIND was designed to detect differential chromatin interactions that are significantly
different in their interaction frequency. In this protocol, we will perform an example
analysis using FIND on the Rao et al. (2017) data that were used in Basic Protocol 1.

Necessary Resources

Hardware

A computer with internet access, �35 GB of free hard drive space, and 8 GB of
RAM

Software

The R (version �3.5.0) programming environment, the FIND R package (Version
0.99), a Unix-based command-line interface, and a web browser

Files

The .hic files used in Basic Protocol 1 will be used again in this protocol

Installing FIND

FIND’s development page can be obtained from bitbucket here: https://bitbucket.org/
nadhir/find. We can download the source R package from the downloads section of the
page:

wget https://bitbucket.org/nadhir/find/downloads/FIND_
0.99.tar.gz

Stansfield et al.

36 of 41

Current Protocols in Bioinformatics

https://bitbucket.org/nadhir/find
https://bitbucket.org/nadhir/find

We now need to install FIND in R. First make sure that all dependencies are installed,
and then install FIND from the source package:

Install dependencies
install.packages(c(“Rcpp”,“RcppEigen”,“Matrix”,
“bigmemory”,

“data.table”,
“doParallel”,“quantreg”,“png”,“dplyr”))

BiocManager::install(c(“HiTC”,“zlibbioc”))

Install FIND from source
install.packages(“FIND_0.99.tar.gz”,repos = NULL,type=
“source”)

library(FIND)

Extracting the data

Next we will need to obtain the data we will use for this example. Assuming the user has
already downloaded the .hic files used in Basic Protocol 1, we will just need to extract
the matrices at 5-kb resolution. We will focus this analysis on only chromosome 18 for
demonstration purposes. We will also extract the Knight-Ruiz-normalized matrices from
the files, as recommended in the original paper on FIND (Djekidel et al., 2018):

./straw KR GSM2795535_Rao-2017-HIC001_30.hic 18 18 BP
5000 > HIC001/HIC001.KR.chr18.5000.txt

./straw KR GSM2795536_Rao-2017-HIC002_30.hic 18 18 BP
5000 > HIC002/HIC002.KR.chr18.5000.txt

./straw KR GSM2809539_Rao-2017-HIC008_30.hic 18 18 BP
5000 > HIC008/HIC008.KR.chr18.5000.txt

./straw KR GSM2809540_Rao-2017-HIC009_30.hic 18 18 BP
5000 > HIC009/HIC009.KR.chr18.5000.txt

We can now read the data into R:

library(readr)# BiocManager::install(“readr”)

hic001 <- read_tsv(“HIC001/HIC001.KR.chr18.5000.txt”,
col_names = FALSE)

hic002 <- read_tsv(“HIC002/HIC002.KR.chr18.5000.txt”,
col_names = FALSE)

hic008 <- read_tsv(“HIC008/HIC008.KR.chr18.5000.txt”,
col_names = FALSE)

hic009 <- read_tsv(“HIC009/HIC009.KR.chr18.5000.txt”,
col_names = FALSE)

Using FIND to compare datasets

FIND operates on dgCMatrix objects, so we will need to convert our sparse matrices into
this format.

library(Matrix)# BiocManager::install(“Matrix”)
library(mvtnorm)# BiocManager::install(“mvtnorm”)
library(rasterVis)# BiocManager::install(“rasterVis”)
library(gridExtra)# BiocManager::install(“gridExtra”)
library(HiTC)# BiocManager::install(“HiTC”)
library(edgeR)# BiocManager::install(“edgeR”)
library(ggsci)# BiocManager::install(“ggsci”)
library(HiCcompare)# BiocManager::install(“HiCcompare”) Stansfield et al.

37 of 41

Current Protocols in Bioinformatics

Convert sparse matrices to full
hic001 <- sparse2full(hic001)
hic002 <- sparse2full(hic002)
hic008 <- sparse2full(hic008)
hic009 <- sparse2full(hic009)

Convert to dgCMatrix format
hic001 <- as(hic001,“dgCMatrix”)
hic002 <- as(hic002,“dgCMatrix”)
hic008 <- as(hic008,“dgCMatrix”)
hic009 <- as(hic009,“dgCMatrix”)

Make a list of the matrices for the two groups
control <- list(hic001, hic002)
auxin <- list(hic008, hic009)

We are now ready to enter the data into FIND. However, due to the long running time
even on the short chromosome 18 (>500 hr), the output is not provided in this tutorial.

DCis <- getDCIs_fromMat(control, auxin,windowSize = 3,
alpha = 0.7,method = “hardCutof”,
qvalue = 1e-06,isrOP_qval = FALSE)

COMMENTARY

Background Information
Hi-C techniques evolved out of the original

chromatin conformation capture (3C) methods
(Dekker, Rippe, Dekker, & Kleckner, 2002).
3C methods were limited to capturing only the
3D structure of a small subset of the genome at
one time. These methods were developed fur-
ther into circularized chromosome conforma-
tion capture (4C), chromosome conformation
capture carbon copy (5C), and finally Hi-C,
which allows an all-vs.-all capture of the chro-
matin interactions across the entire genome
(Lieberman-Aiden et al., 2009). Briefly, ge-
nomic DNA is cross-linked, stabilizing spa-
tially adjacent chromatin regions. The ends
of the combined chromatin fragments are cut
with an enzyme and then joined, cross-links
are removed, and the joined chromatin frag-
ments are sequenced. These joined chromatin
fragments represent genomic regions interact-
ing in close proximity to each other. Map-
ping them to the appropriate reference genome
identifies the genomic coordinates of inter-
acting chromatin regions, with the number of
mapped fragments connecting a pair of regions
corresponding to the strength of interactions
between them.

Initial studies focused on analyzing indi-
vidual Hi-C datasets. Consequently, methods
for normalizing (removing biases in) individ-
ual matrices were developed. They can be
broadly divided into two general approaches:
explicit and implicit bias correction meth-

ods. The explicit bias models consider fac-
tors such as mappability, GC content, and
fragment length (Yaffe & Tanay, 2011). The
implicit approaches, also known as matrix-
balancing iterative correction algorithms, are
based on the assumption of “equal visibil-
ity.” The equal visibility approach assumes
that since researchers are interrogating the en-
tire interaction space in an unbiased manner,
each fragment/bin should be observed approx-
imately the same number of times in the exper-
iment (interpreted as the sum of the genome-
wide row/column in the interaction matrix).
Some of the well-known adaptations of ma-
trix balancing algorithms include Knight-Ruiz
(KR) normalization (Knight & Ruiz, 2012)
and iterative correction and eigenvector de-
composition (ICE) (Imakaev et al., 2012b).
Although these methods improve the repro-
ducibility of replicate Hi-C data (Imakaev
et al., 2012a; Yaffe & Tanay, 2011), they do
not explicitly account for the biases in multi-
ple Hi-C data (Lun & Smyth, 2015; Stansfield
et al., 2018).

Critical Parameters
One of the main parameters when deal-

ing with Hi-C data is the resolution of the
data. At low resolutions, only large genomic
changes can be detected, but the data is usually
much more complete than for high-resolution
data. Low-resolution data also help to miti-
gate issues due to processing time and memory

Stansfield et al.

38 of 41

Current Protocols in Bioinformatics

constraints due to the much smaller matrix
sizes. High-resolution Hi-C data can allow in-
sights into genomic looping such as what oc-
curs in promoter-enhancer interactions. How-
ever, high-resolution data suffer from issues
due to sparsity, and its analysis can be con-
strained by the computer hardware’s ability to
handle large matrices. The protocols presented
here provide three alternate methods for per-
forming comparative analyses of Hi-C data. If
the user has data already processed and stored
in a contact matrix format, the steps shown in
Basic Protocol 1 will likely be the easiest to
perform. If the user is starting from raw data,
Basic Protocol 2 is another viable option for
analysis. If a high-resolution analysis is re-
quired, the steps presented in Basic Protocol
3 may be most appropriate. However, the long
run times for FIND will need to be weighed
against the benefits of using a spatially depen-
dent model.

Understanding Results

Basic Protocol 1
This protocol was designed in a way so that

even a novice user can work through the entire
Hi-C experiment analysis process. The pro-
tocol focuses on using the multiHiCcompare
R package. The downstream analysis section
focuses on ways to test the differentially inter-
acting regions for the enrichment of genomic
features and visualize the results. The plotting
functions provided by multiHiCcompare can
be used to assess the results of the procedure.
If the MD plots do not show the data centered
on and symmetric around 0, this implies that
there may have been issues in the normaliza-
tion steps, likely due to the sparsity of the data.
Additionally, the distribution of differential re-
gions on the Manhattan plots might indicate
faulty results. For example, DIRs clustering
near centromeres or telomeres might be due to
artifacts resulting from difficulties sequencing
these regions of the genome. Depending on the
specifics of the comparison being performed,
the user should expect to see enrichment of
related genomic features in the differentially
interacting regions or enrichment of genes and
pathways thought to play a role in differenti-
ating the experimental groups.

Basic Protocol 2
The goal of this protocol is to guide the

user through the process of aligning raw Hi-
C data into count matrices and detecting dif-
ferentially interacting regions using diffHiC.
The final result from diffHiC is a list of DIRs.

These DIRs can be visualized using diffHic’s
functions or be converted for use in multiHiC-
compare’s visualization functions. The list of
DIRs from diffHic should closely resemble the
results of multiHiCcompare, and thus many of
the downstream analyses shown in Basuc Pro-
tocol 1 can also be applied to diffHic results.
The package also provides additional options
for checking the quality of the data, removing
artifacts, and correcting for biases.

Basic Protocol 3
The results of FIND are similar to those

of multiHiCcompare. FIND will return a
list of regions that were detected as differ-
entially interacting. These regions can then
be used in downstream analyses similar to
those described in Basic Protocol 1. Notably,
FIND was designed to be used on very-high-
resolution Hi-C data; since it makes use of the
spatial dependence between nearby regions,
it may not be applicable to low-resolution
datasets. Another consideration when working
with FIND is its long run times. Parallel pro-
cessing should be used if possible. If more im-
mediate results are needed, or lower-resolution
data is being analyzed, it is recommended that
researchers follow Basic Protocol 1 or Basic
Protocol 2 instead.

Troubleshooting
Analyses of Hi-C experiments can be com-

plex and involve several different software
packages. If the user obtains errors when at-
tempting to apply the methods detailed in this
unit, a likely source is the data itself. Make
sure that data is in the proper format for the
software package being used. Additional prob-
lems could be due to data sparsity. If the Hi-C
data was not sequenced at a deep enough level,
the user might need to try a lower resolution
to obtain meaningful results. Another possible
problem that may occur when analyzing Hi-C
data in the R environment is that memory re-
quirements may exceed the hardware capabil-
ities, as R performs all operations in memory.
Hi-C data matrices are large, and their analy-
sis requires significant computing power. The
user may obtain better results by attempting to
perform an analysis on a computing cluster, if
one is available. Other issues related specifi-
cally to certain software packages can be di-
rected to the authors of the package either on
GitHub or on the Bioconductor support site.

Acknowledgments
This work was partially supported by the

National Institute of Environmental Health
Stansfield et al.

39 of 41

Current Protocols in Bioinformatics

Sciences of the US National Institutes of
Health (grant T32ES007334). The content is
solely the responsibility of the authors and
does not necessarily represent the official
views of the National Institutes of Health.

Literature Cited
Ay, F., & Noble, W. S. (2015). Analysis methods

for studying the 3D architecture of the genome.
Genome Biology, 16, 183. doi: 10.1186/s13059-
015-0745-7.

Ballman, K. V., Grill, D. E., Oberg, A. L., &
Therneau, T. M. (2004). Faster cyclic loess:
Normalizing rna arrays via linear models.
Bioinformatics, 20, 2778–2786. doi: 10.1093/
bioinformatics/bth327.

Barutcu, A. R., Lajoie, B. R., McCord, R. P.,
Tye, C. E., Hong, D., Messier, T. L., . . . Im-
balzano, A. N. (2015). Chromatin interaction
analysis reveals changes in small chromosome
and telomere clustering between epithelial and
breast cancer cells. Genome Biology, 16, 214.
doi: 10.1186/s13059-015-0768-0.

Bonev, B., Mendelson Cohen, N., Szabo, Q.,
Fritsch, L., Papadopoulos, G. L., Lubling, Y.,
. . . Cavalli, G. (2017). Multiscale 3D genome
rewiring during mouse neural development.
Cell, 171, 557–572.e24. doi: 10.1016/j.cell.
2017.09.043.

Dekker, J., Marti-Renom, M. A., & Mirny, L. A.
(2013). Exploring the three-dimensional organi-
zation of genomes: Interpreting chromatin inter-
action data. Nature Reviews Genetics, 14, 390–
403. doi: 10.1038/nrg3454.

Dekker, J., Rippe, K., Dekker, M., & Kleckner,
N. (2002). Capturing chromosome conforma-
tion. Science, 295, 1306–1311. doi: 10.1126/
science.1067799.

Dixon, J. R., Jung, I., Selvaraj, S., Shen, Y.,
Antosiewicz-Bourget, J. E., Lee, A. Y., . . . Ren,
B. (2015). Chromatin architecture reorganiza-
tion during stem cell differentiation. Nature,
518, 331–336. doi: 10.1038/nature14222.

Dixon, J. R., Selvaraj, S., Yue, F., Kim, A., Li,
Y., Shen, Y., . . . Ren, B. (2012). Topological
domains in mammalian genomes identified by
analysis of chromatin interactions. Nature, 485,
376–380. doi: 10.1038/nature11082.

Djekidel, M. N., Chen, Y., & Zhang, M. Q.
(2018). FIND: DifFerential chromatin interac-
tions detection using a spatial Poisson process.
Genome Research, 28, 412–422. doi: 10.1101/
gr.212241.116.

Dozmorov, M. G., Cara, L. R., Giles, C. B., &
Wren, J. D. (2016). GenomeRunner web server:
Regulatory similarity and differences define the
functional impact of snp sets. Bioinformatics,
32, 2256–2263. doi: 10.1093/bioinformatics/
btw169.

Dudoit, S., Yang, Y. H., Callow, M. J., & Speed, T.
P. (2002). Statistical methods for identifying dif-
ferentially expressed genes in replicated cDNA
microarray experiments. Statistica Sinica, 12,
111–139.

Durand, N., Shamim, M. S., & Aiden, E. L. (2016).
Juicer provides a one-click system for analyz-
ing loop-resolution Hi-C experiments. Cell Sys-
tems, 3(1), 95–98. doi: 10.1016/j.cels.2016.07.
002.

Fisher, R. (1950). Statistical methods for research
workers. Edinburgh: Oliver and Boyd.

Fletez-Brant, K., Qiu, Y., Gorkin, D. U., Hu, M.,
& Hansen, K. D. (2017, 7 November). Remov-
ing unwanted variation between samples in Hi-
C experiments. BioRxiv, 214361 [Preprint]. doi:
10.1101/214361.

Fudenberg, G., Getz, G., Meyerson, M., & Mirny,
L. A. (2011). High order chromatin architec-
ture shapes the landscape of chromosomal al-
terations in cancer. Nature Biotechnology, 29,
1109–1113. doi: 10.1038/nbt.2049.

Imakaev, M., Fudenberg, G., McCord, R. P., Nau-
mova, N., Goloborodko, A., Lajoie, B. R., . . .
Mirny, L. A. (2012a). Iterative correction of
Hi-C data reveals hallmarks of chromosome or-
ganization. Nature Methods, 9, 999–1003. doi:
10.1038/nmeth.2148.

Imakaev, M., Fudenberg, G., McCord, R. P., Nau-
mova, N., Goloborodko, A., Lajoie, B. R., . . .
Mirny, L. A. (2012b). Iterative correction of
Hi-C data reveals hallmarks of chromosome or-
ganization. Nature Methods, 9, 999–1003. doi:
10.1038/nmeth.2148.

Karolchik, D., Hinrichs, A. S., & Kent, W. J. (2009).
The UCSC genome browser. Current Proto-
cols in Bioinformatics, 28, 1.4.1–1.4.26. doi:
10.1002/0471250953.bi0104s28

Knight, P. A., & Ruiz, D. (2012). A fast algorithm
for matrix balancing. IMA Journal of Numerical
Analysis, 33, 1029–1047. doi:10.1093/imanum/
drs019.

Lajoie, B. R., Dekker, J., & Kaplan, N. (2015). The
hitchhiker’s guide to Hi-C analysis: Practical
guidelines. Methods, 72, 65–75. doi: 10.1016/
j.ymeth.2014.10.031.

Langmead, B., & Salzberg, S. L. (2012). Fast
gapped-read alignment with bowtie 2. Na-
ture Methods, 9, 357–359. doi: 10.1038/nmeth.
1923.

Leinonen, R., Sugawara, H., Shumway, M., on be-
half of the International Nucleotide Sequence
Database Collaboration. (2011). The sequence
read archive. Nucleic Acids Research, 39(S1),
D19–D21. doi: 10.1093/nar/gkq1019.

Li, H., & Durbin, R. (2009). Fast and accurate short
read alignment with Burrows–Wheeler trans-
form. Bioinformatics, 25(14), 1754–1760.

Lieberman-Aiden, E., van Berkum, N. L., Williams,
L., Imakaev, M., Ragoczy, T., Telling, A., . . .
Dekker, J. (2009). Comprehensive mapping of
long-range interactions reveals folding princi-
ples of the human genome. Science, 326, 289–
293. doi: 10.1126/science.1181369.

Lun, A. T. L., & Smyth, G. K. (2015). DiffHic:
A Bioconductor package to detect differen-
tial genomic interactions in Hi-C data. BMC
Bioinformatics, 16, 258. doi: 10.1186/s12859-
015-0683-0.Stansfield et al.

40 of 41

Current Protocols in Bioinformatics

http://doi.org/10.1186/s13059-015-0745-7
http://doi.org/10.1186/s13059-015-0745-7
http://doi.org/10.1093/bioinformatics/bth327
http://doi.org/10.1093/bioinformatics/bth327
http://doi.org/10.1186/s13059-015-0768-0
http://doi.org/10.1016/j.cell.2017.09.043
http://doi.org/10.1016/j.cell.2017.09.043
http://doi.org/10.1038/nrg3454
http://doi.org/10.1126/science.1067799
http://doi.org/10.1126/science.1067799
http://doi.org/10.1038/nature14222
http://doi.org/10.1038/nature11082
http://doi.org/10.1101/gr.212241.116
http://doi.org/10.1101/gr.212241.116
http://doi.org/10.1093/bioinformatics/btw169
http://doi.org/10.1093/bioinformatics/btw169
http://doi.org/10.1016/j.cels.2016.07.002
http://doi.org/10.1016/j.cels.2016.07.002
http://doi.org/10.1101/214361
http://doi.org/10.1038/nbt.2049
http://doi.org/10.1038/nmeth.2148
http://doi.org/10.1038/nmeth.2148
http://doi.org/10.1002/0471250953.bi0104s28
http://doi.org/10.1093/imanum/drs019
http://doi.org/10.1093/imanum/drs019
http://doi.org/10.1016/j.ymeth.2014.10.031
http://doi.org/10.1016/j.ymeth.2014.10.031
http://doi.org/10.1038/nmeth.1923
http://doi.org/10.1038/nmeth.1923
https://doi.org/10.1093/nar/gkq1019
http://doi.org/10.1126/science.1181369
http://doi.org/10.1186/s12859-015-0683-0
http://doi.org/10.1186/s12859-015-0683-0

Nguyen, T., Tagett, R., Donato, M., Mitrea, C.,
& Draghici, S. (2016). A novel bi-level meta-
analysis approach: Applied to biological path-
way analysis. Bioinformatics, 32(3), 409–416.
doi: 10.1093/bioinformatics/btv588.

O’Sullivan, J. M., Hendy, M. D., Pichugina, T.,
Wake, G. C., & Langowski, J. (2013). The
statistical-mechanics of chromosome conforma-
tion capture. Nucleus, 4, 390–398. doi: 10.4161/
nucl.26513.

Rao, S. S. P., Huang, S.-C., Glenn St Hilaire, B., En-
greitz, J. M., Perez, E. M., Kieffer-Kwon, K.-R.,
. . . Aiden, E. L. (2017). Cohesin loss eliminates
all loop domains. Cell, 171, 305–320.e24. doi:
10.1016/j.cell.2017.09.026.

Rao, S. S. P., Huntley, M. H., Durand, N. C., Sta-
menova, E. K., Bochkov, I. D., Robinson, J. T.,
. . . Aiden, E. L. (2014). A 3D map of the hu-
man genome at kilobase resolution reveals prin-
ciples of chromatin looping. Cell, 159, 1665–
1680. doi: 10.1016/j.cell.2014.11.021.

Rickman, D. S., Soong, T. D., Moss, B., Mos-
quera, J. M., Dlabal, J., Terry, S., . . . Ru-
bin, M. A. (2012). Oncogene-mediated alter-
ations in chromatin conformation. Proceedings
of the National Academy of Sciences of the
United States of America, 109, 9083–9088. doi:
10.1073/pnas.1112570109.

Robinson, M., & Smyth, G. (2008). Small sample
estimation of negative binomial dispersion with
application to SAGE data. Biostatistics, 9(2),
321–332. doi: 10.1093/biostatistics/kxm030.

Servant, N., Varoquaux, N., Lajoie, B. R., Viara,
E., Chen, C.-J., . . . Barillot, E. (2015). HiC-
Pro: An optimized and flexible pipeline for Hi-C
data processing. Genome Biology, 16, 259. doi:
10.1186/s13059-015-0831-x.

Sheffield, N. C., & Bock, C. (2016). LOLA:
Enrichment analysis for genomic region sets
and regulatory elements in R and Bioconduc-
tor. Bioinformatics, 32, 587–589. doi: 10.1093/
bioinformatics/btv612.

Stansfield, J. C., Cresswell, K. G., & Dozmorov,
M. G. (2019). multiHiCcompare: Joint normal-
ization and comparative analysis of complex
Hi-C experiments. Bioinformatics btz048. doi:
10.1093/bioinformatics/btz048.

Stansfield, J. C., Cresswell, K. G., Vladimirov, V. I.,
& Dozmorov, M. G. (2018). HiCcompare: An R-

package for joint normalization and comparison
of Hi-C datasets. BMC Bioinformatics, 19, 279.
doi: 10.1186/s12859-018-2288-x.

Stouffer, S. A., Suchman, E. A., Devinney, L. C.,
Star, S. A., & Williams, R. M. Jr. (1949).
The American soldier, vol. 1: Adjustment dur-
ing army life. Princeton: Princeton University
Press. doi: 10.1177/000271624926500124.

Taberlay, P. C., Achinger-Kawecka, J., Lun, A. T.
L., Buske, F. A., Sabir, K., Gould, C. M., . . .
Clark, S. J. (2016). Three-dimensional disorga-
nization of the cancer genome occurs coinci-
dent with long-range genetic and epigenetic al-
terations. Genome Research, 26, 719–731. doi:
10.1101/gr.201517.115.

Voichita, C., Donato, M., & Draghici, S. (2012). In-
corporating gene significance in the impact anal-
ysis of signaling pathways. Proceedings of the
International Conference on Machine Learn-
ing Applications (ICMLA), 1, 126–131. doi:
10.1109/ICMLA.2012.230.

Yaffe, E., & Tanay, A. (2011). Probabilistic mod-
eling of Hi-C contact maps eliminates system-
atic biases to characterize global chromosomal
architecture. Nature Genetics, 43, 1059–1065.
doi: 10.1038/ng.947.

Internet Resources
https://www.aidenlab.org/
The website for the Aiden Lab–juicer software and

Hi-C data sources.

https://github.com/mirnylab/cooler
GitHub page for cooler–Hi-C data storage and

database.

https://github.com/nservant/HiC-Pro
GitHub page for HiC-Pro–Hi-C alignment pipeline.

https://github.com/dozmorovlab/HiCcompare
GitHub page for HiCcompare.

https://github.com/dozmorovlab/multHiCcompare
GitHub page for multiHiCcompare.

https://bioconductor.org/packages/devel/bioc/html/
diffHic.html

Bioconductor page for diffHic.

https://bitbucket.org/nadhir/find
Bitbucket page for FIND.

Stansfield et al.

41 of 41

Current Protocols in Bioinformatics

http://doi.org/10.1093/bioinformatics/btv588
http://doi.org/10.4161/nucl.26513
http://doi.org/10.4161/nucl.26513
http://doi.org/10.1016/j.cell.2017.09.026
http://doi.org/10.1016/j.cell.2014.11.021
http://doi.org/10.1073/pnas.1112570109
http://doi.org/10.1093/biostatistics/kxm030
http://doi.org/10.1186/s13059-015-0831-x
http://doi.org/10.1093/bioinformatics/btv612
http://doi.org/10.1093/bioinformatics/btv612
http://doi.org/10.1093/bioinformatics/btz048
http://doi.org/10.1186/s12859-018-2288-x
http://doi.org/10.1177/000271624926500124
http://doi.org/10.1101/gr.201517.115
http://doi.org/10.1109/ICMLA.2012.230
http://doi.org/10.1038/ng.947
https://www.aidenlab.org/
https://github.com/mirnylab/cooler
https://github.com/nservant/HiC-Pro
https://github.com/dozmorovlab/HiCcompare
https://github.com/dozmorovlab/multHiCcompare
https://bioconductor.org/packages/devel/bioc/html/diffHic.html
https://bioconductor.org/packages/devel/bioc/html/diffHic.html
https://bitbucket.org/nadhir/find

