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Abstract

Molecular subtyping is fundamental in cancer research and clinical management of cancer, guiding treatment planning, monitoring
therapeutic response, and informing prognosis. Early methods were designed specifically for gene expression data due to the lack
of other molecular data types. Thanks to breakthroughs in high-throughput technologies, recent subtyping tools have shifted their
focus to integrating multi-omics profiles to uncover novel subtypes that better reflect genetic variation, molecular pathogenesis, tumor
heterogeneity, and host response biological mechanisms. However, these integrative approaches have not been able to fully exploit the
complementary potentials of diverse molecular data types. They often rely on specific omics types with large common sample size and
fail to incorporate important biological knowledge in their models. Here, we introduce Disease subtyping using Spectral clustering and
Community detection from Consensus networks (DSCC), a method designed to identify meaningful disease subtypes from a wide range
of molecular data, including gene expression, miRNA expression, DNA methylation, copy number variation, somatic mutations, protein
abundance, and metabolite levels. We demonstrate the superiority of DSCC over state-of-the-art cancer subtyping methods using 43
cancer datasets with more than 11,000 patients. Furthermore, the incorporation of DSCC-derived subtype information as a covariate in
prognostic models improves survival prediction accuracy and robustness. The DSCC source code, data, and scripts for reproducing all

results in this study are available at https://github.com/tinnlab/DSCC.
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Introduction

Cancer is an umbrella term that includes a spectrum of dis-
ease severity, from those that are malignant, metastatic, and
aggressive to benign lesions with low potential for progression
or death. Various genome-wide profiling techniques have been
developed to capture the dynamics of cancer development at mul-
tiple levels, including genomics, transcriptomics, epigenomics,
proteomics and metabolomics. By analyzing multi-omics data,
researchers can obtain a comprehensive view of cancer evo-
lution, molecular subtypes, and potential risks. In turn, these
novel insights can lead to effective personalized treatment and
prognosis [1-5]. As such, Granja et al. [6] combined transcriptomic,
epigenomic, and proteomic data of leukemic blood cells to identify
cancer-specific processes involved in blood differentiation and
critical markers of leukemia subtypes. Other multi-omics studies
resulted in the discovery of novel subgroups and new therapeutic
targets of breast cancer [7, 8], liver cancer [9, 10], lung cancer [11,
12], brain cancer [13, 14] and other cancer types [15-18].

Many integrative methods have been developed for disease
subtyping. They can be grouped into three main categories:
consensus-based models, shared representation methods, and
similarity-based approaches. Early methods in the first category,
such as BCC [19] and MDI [20], identify clusters for each

data type and combine them into an optimal grouping while
recent approaches, including MOVICS [21], ClustOmics [22]
and Subtype-WESLR [23], integrate cluster assignments from
multiple clustering algorithms instead. Methods in the second
category, including intNMF [24], LRACluster [25], iClusterBayes
[26], iClusterPlus [27],iCluster [28, 29], MRGCN [30], DLSF [31], and
DSIR [32], generate a shared representation across data types and
apply clustering algorithms for this representation to discover
subtypes. Methods in the third category construct similarity
matrices for each data type, and combine them into an overall
similarity matrix for clustering. Methods in this category include
SNF [33], NEMO [34], PINS [35-37], CIMLR [38], ANF [39], hMKL [40],
and MDICC [41].

Current disease subtyping approaches exhibit important chal-
lenges. First, most methods rely on magnitude-based distance
metrics (e.g. Euclidean distance) while neglecting directional dif-
ferences between feature vectors. Recent deep learning stud-
ies have concluded that using direction-based metrics, such as
angular distance, for constructing loss functions can improve
the learning of more discriminative features, thereby enhanc-
ing classification performance [42-44]. Therefore, the addition of
direction-awareness to subtyping tools may enhance the ability
to differentiate molecular patterns between subtypes. Second,
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available subtyping methods usually do not investigate the com-
plementary strengths of different clustering algorithms. Since
each of these algorithms has its own strength and weakness,
combining them could yield more robust and biologically mean-
ingful subtypes. For example, spectral clustering [45] is effective in
identifying global structures while community detection methods
such as Louvain [46] are better at capturing local patterns. Third,
existing approaches often overlook the role of pathway informa-
tion, which is crucial for understanding how apparently distinct
carcinogenetic changes might be functionally similar in terms of
biological processes. This limitation stems partly from the fact
that current pathway databases such as KEGG [47] or Reactome
[48] focus on genes/proteins interactions, lacking knowledge for
other types of molecular data such as miRNAs and methylation.
Finally, current methods often require matched samples across
all omics types, which leads to substantial data loss when some
modalities are missing. Only a few methods, including NEMO [34]
and MRGCN [30], are capable of handling missing data across data
types. As a result, available approaches usually prioritize data
types with large common sample sizes (gene expression, miRNA
expression, and DNA methylation) over less commonly obtained
data modalities (e.g. protein quantification and metabolite levels).

In this article, we introduce a new subtyping approach, named
Disease subtyping using Spectral clustering and Community
detection from Consensus networks (DSCC), that addresses the
above-mentioned challenges. DSCC leverages different distance
metrics in constructing multi-omics consensus networks, and
combines multiple clustering approaches to partition consensus
networks into meaningful cancer subtypes. In addition, DSCC
aggregates multi-omics features into KEGG-compatible represen-
tations to facilitate the incorporation of pathway information.
The method also handles the problem of missing data across all
omics types, allowing inclusion of all the samples and flexibility
to add new molecular data to the analysis. To demonstrate the
advantage of the proposed method, we compare DSCC against
13 current state-of-the-art approaches: CC [49], CIMLR [38], SNF
[33], LRACluster [25], intNMF [24], ANF [39], NEMO [34], MOVICS
[21], MRGCN [30], hMKL [40], MDICC [41], DLSF [31], and DSIR [32].
Our benchmarking involves the extensive analysis of 43 cancer
datasets with over 11,000 patients obtained from Genomic Data
Common (GDC/TCGA) [50] and other public databases.

Materials and methods

Figure 1 shows the high-level workflow of DSCC. The method first
aggregates multi-omics data into gene-level features and then
constructs patient similarity networks using multiple distance
metrics, followed by an ensemble clustering that integrates anal-
ysis results from spectral and community detection methods.

Data processing

The datasets analyzed in this study contain up to seven omics
types: mRNA, miRNA expression, DNA methylation, copy num-
ber variations (CNVs), somatic mutations, protein, and metabo-
lite levels. Among the seven omics types, only CNVs contains
gene-level features, while other data types consist of features
at different levels. Each data type may include multiple data
formats. For example, mRNA encompasses TPM, FPKM, FPKMugq,
and raw counts, which are treated as separate data matrices
in our analysis because they capture complementary character-
istics of the expression data. Raw counts preserve the original
statistical properties of the data but suffer from gene length
and sequencing depth biases [51, 52]. FPKM corrects for these

biases but is suboptimal for cross-sample comparison [53, 54].
FPKMuq (upper quartile normalized FPKM) offers a more robust,
though imperfect, basis for inter-sample comparison at the cost of
potential information loss [S5, 56]. Finally, TPM provides a distinct
advantage for cross-sample comparison but remains susceptible
to highly expressed genes biases [57] and inaccuracies for very
short transcripts [58]. Together, these four quantification units
present a more comprehensive interpretation of gene expres-
sion, which provides more discriminatory power than each unit
alone. (see Supplementary Section 1 and Figure S1 for more
details).

The data pre-processing procedure performs gene-level aggre-
gation for mRNA, miRNA, DNA methylation, and protein quantifi-
cation. For mRNA, we average expression values of all transcripts
for each gene. For miRNA, we map miRNA IDs to target genes
using miRTarBase [59] and then calculate the average expression
for individual target genes. For protein data, we average the
measurements of all proteins encoded by the same gene. For DNA
methylation, we map CpG sites to genes using the manufacturer-
provided annotation and then calculate the median methylation
level for each gene. Next, we remove genes that are not asso-
ciated with KEGG pathways. For metabolomics data, we apply
log? transformation and replace missing values with zero. For
somatic mutations, we quantify the six single-base substitution
types (among C>A, C>G, C>T, T>A, T>C, T>G) for each sample
using allelic information.

Our choice to use gene-level aggregation is primarily a
measure to create a consistent gene-level framework across
diverse data types and platforms, thereby enhancing stability and
avoiding overfitting (see Supplementary Section 2 and Figure S2).
However, we acknowledge users’ need to customize their own
data processing. Therefore, DSCC allows users to input their
pre-processed data directly instead of mandating our gene-level
aggregation step.

Patient network construction

After data processing, we obtain a set of M molecular data matri-
ces, where each matrix Xy (k € [1, M]) consists of Ny patients (rows)
and P, features (columns). For each data matrix Xi, we compute
two types of affinity matrices using the following formulation:

4O (X, Xi)?
AYGj) = exp(—("w),te (E, A} (1)

2
20¢

Here, AP denotes the Euclidean affinity matrix and A"
denotes the Angular affinity matrix. X;; and Xy; are the feature
vectors of the patients i-th and j-th in the k-th omic, d® (Xy;, Xy;)
represents the distance between two feature vectors Xj; and Xy;,
and o is a scaling parameter that determines how quickly the
similarity decays with distance. The two corresponding distances
are defined as:

d® (X, Xig) = 11K — X2 (2)
Oy 1 Xii - Xij
A (X, Xp) = —~ = = arccos (7) ) 3
vy T 7w 1 Xeill - 1 Xl ®
where 6,; is the angle between X; and Xy, || - || indicates the L;-

norm of a vector and Xy; - X; represents the dot product of the two
vectors. We choose the scaling parameter or as the median of all
pairwise Euclidean distances and set o4 = 0.5.
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Figure 1. The overall analysis pipeline of DSCC. The method takes as input the multi-omics data matrices of multiple data types such as gene expression,
microRNA, protein level, copy number variations (CNVs), methylation, metabolites, and single nucleotide variant (SNV). In each matrix, rows represent
patients and columns represent molecular features. Each data type undergoes specific pre-processing steps: 1) gene-level aggregation, pathway-based
filtering, log2 normalization, and zero imputation for mRNA, miRNA, methylation, and protein levels; 2) pathway-based filtering, log2 normalization,
and zero imputation for CNVs; 3) log2 normalization and zero imputation for metabolomics data; and 4) mutational signature computation for SNV
data. We use three methods to capture patient similarity. The first method generates patient affinity matrices — one per data type — using a Euclidean
Gaussian Kernel, which are then combined to create the Consensus Euclidean Affinity Matrix. The second method employs an Angular Gaussian Kernel
to create the affinity matrices before fusing them into a Consensus Angular Affinity Matrix. The third method generates the affinity matrices using
the ASCC-Eigengap algorithm and applies Spectral Clustering with Connectivity Mapping to produce the Consensus Connectivity Matrix. The three
consensus matrices are subsequently partitioned using spectral and Louvain clustering. To choose the optimal partitioning, we calculate the Silhouette
score for each of the three clustering assignments and output the partitioning with the highest Silhouette score.

Using both Angular and Euclidean affinity matrices helps DSCC
to capture complementary views of each omics type, which in
turn improves the method’s performance (see Supplementary Sec-
tion 3 and Figure S3). After computing the Euclidean affinity A"
and the Angular affinity matrices A](QA) for all data types, DSCC
combines these matrices into three different consensus matrices:
1) consensus Euclidean affinity, 2) consensus Angular affinity, and
3) consensus connectivity.

Constructing consensus affinity matrices
It is known that affinity-based clustering is often sensitive to
the size of the data. This is because local structures can be
strong in large datasets while they might be weak and unstable in
small datasets [60, 61]. To overcome this, we adopt two different
approaches for constructing consensus affinity matrices.

For small datasets (contain less samples than the sample size
threshold of 200), we utilize the full affinity matrices and average

them to compute the Full Consensus Affinity (FCA) matrices as
follows:

FCA® (i, j) = > AYG), te(EA) )

_r
0T I keOT(i,j)

where OT(,)) is the set of omics types available for both i-th and
j-th samples, and |OT(i, ))| represents the cardinality.

For large datasets (at least 200 samples), we apply a K-nearest
neighbor (KNN) approach [34] to emphasize local structure and
mitigate noisy global connections. For each patient i, we retain
the scores of its top 10 nearest neighbors in the affinity matrix
A,(;), while setting all other scores to zero. We then normalize the
scores so that the scores are summed up to one for each patient.
To ensure symmetry and incorporate mutual neighborhood infor-
mation, we add the matrix to its transpose. The resulting local
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affinity matrices, LA{” and LA{", are defined as follows:

AP )) - 16 € ngg)
Sren, AT

ALY -1 € m)

, te{EA 5
Zrem« A](eo in < ) )

LAY G,) =

where n; denotes the set of 10 nearest neighbors of the i-th
sample, and I(j € n) 1s an indicator function equal to 1if j €
ni, and O otherwise. We then use Equation (4) and replace full
affinity matrices with local affinity matrices to derive the Local
Consensus Affinity (LCA) matrices.

Analytically, the LCA matrices alone prove highly effective
for downstream tasks. However, the sparsity introduced by the
LCA’s KNN step artificially inflates the resulting number of clus-
ters in small datasets. Therefore, we use the full, dense FCA
matrices for small datasets and reserve the LCA matrices for
large datasets where the cluster inflation issue is mitigated (see
Supplementary Section 4 and Figure S4.

Constructing consensus connectivity matrix

Given a Euclidean affinity matrix AP and an Angular affinity
matrix A](EA) for each data type k, we aggregate them using the
AASC-Eigengap algorithm, a modified version of the AASC algo-
rithm [62]. The objective of AASC-Eigengap is to find the best
weights v’ with t e {A,E} for the omics type k so that its
aggregated affinity matrix A, = D) U](:) X A,(:) gives the largest
eigengap. The pseudocode for the algorithm is illustrated in Algo-
rithm 1. For each data type, we perform spectral clustering on the
corresponding aggregated affinity matrix to obtain a temporary
partitioning of patients. This partitioning is then used to construct
a binary connectivity matrix, where 1 indicates that the two sam-
ples belong to the same cluster, and 0 indicates that they belong
to different clusters. We subsequently leverage Equation (4) and
replace the affinity matrices with the connectivity matrices of
all omics types to combine them into a consensus connectivity
matrix.

Ensemble clustering

After constructing consensus matrices, we obtain three matrices:
1) consensus Euclidean affinity, 2) consensus Angular affinity, and
3) consensus connectivity. We subsequently apply spectral clus-
tering to the first two matrices (Euclidean and Angular affinity
matrices). The optimal number of clusters is determined using the
eigengap method. We also use the Louvain community detection
algorithm to partition the consensus Connectivity matrix. Since
Louvain is stochastic, we perform multiple runs and choose the
result with the highest modularity score [63].

After clustering, we obtain three different partitionings for
the same set of patients. We evaluate each partitioning using
the Silhouette score [64] based on a distance matrix derived by
fusing the aggregated affinity matrices Ay, of all omics types using
Equation (4), and subtracting the resulting matrix from 1. At the
end, we output the partitioning with the highest Silhouette score.

Results

We perform an extensive analysis of 43 cancer datasets (33
TCGA datasets and 10 metabolomics datasets from published
articles) covering 28 tissues and over 11,000 samples (see
Supplementary Table S1 for more details). We first compare the
performance of DSCC against Consensus Clustering (CC) [49],
CIMLR [38], SNF [33], LRACluster [25], intNMF [24], ANF [39], NEMO
[34], MOVICS [21], MRGCN [30], hMKL [40], MDICC [41], DLSF [31]

Algorithm 1 AASC-Eigengap (for each omics type k)
Input: Affinity matrices A® e R fort=1,...,t

> All variables are defined for a fixed omics type k
Output: best_weights for combining affinity matrices

1: Initialize v® <« 1/7, best_eigengap < —oo
2: best_weights « u®

3: for iteration = 1 to 20 do

4 fort=1tordo

DO, 1) « Z)-A(U(i,j)
LO « DO (DO _ A)DOT?
end for

A3, u0A0

D@, i) < 3 AG,j), L <D Y*D—A)D?

10: Compute eigenvalues E; and eigenvectors G; of L
11 Compute eigengap; = 1 |Eiy1 — Eil

0 o N W

12: Find max_eigengap = max(eigengap;)
13:  if max_eigengap < best_eigengap then
14: best_eigengap < max_eigengap

15: best_weights « uv®

16: end if

17:  fort=1tordo

18: a® « mean (211202 Gl.TD“)GI-)

19: Y « mean (Z}jz GITL“)GI-)

20: y® < O /g®

21: end for
22: Solve for A, such that:

2
1 1
(Z (y®— M)am) = Z O = a)Za®

t t

23: Then compute:

1
1
ho < (Z (y(t)_w)

t

24:  fort=1tordo
25: v«
26:  end for
27:  Normalize: v® « v®/ > y®

28:  Recompute A, D, L and eigengaps with updated v®
29:  Select v® with largest eigengap

30: end for

31: return best_weights

Ay
GO—aDa®

and DSIR [32] using Cox P-values. We then analyze the usefulness
of using DSCC-derived subtypes as an additional covariate for risk
prediction. Finally, we provide an in-depth pathway analysis of
the discovered subtypes for the adrenocortical carcinoma (TCGA-
ACC) dataset.

For TCGA data, we download all 12 matrices measuring
mRNA expression, miRNA expression, DNA methylation, CNV,
and somatic mutations from Genomic Data Commons (https://
gdc.cancer.gov/), together with clinical variables and survival
information. We also download their protein data from Proteomic
Data Commons (https://pdc.cancer.gov/pdc/) and metabolite data
from Benedetti et al. [65]. We obtain seven of the additional
datasets from published articles: P23918603 [66], P24316975 [67],
P30244973 [68], P33577785 [69], P38007532 [70], P38395893 [71],
and P40016594 [72]. We download the remaining three datasets
(ST001235, ST001236, and ST001237) from the Metabolomics
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Workbench repository (https://www.metabolomicsworkbench.
org/). For P23918603, P24316975, P30244973, and P33577785, we
use pre-processed metabolite levels and gene expression data
from Benedetti et al. [65]. As P38007532 lacks overall survival
information, we focus on the subset of samples in this dataset
that developed cancer during the follow-up period. We define
survival time for such samples as the duration from the start of
follow-up until cancer diagnosis.

Subtyping on 43 cancer datasets

We compare DSCC against 13 approaches, including Consensus
Clustering (CC) [49], CIMLR [38], SNF [33], LRACluster [25], int-
NMF [24], ANF [39], NEMO [34], MOVICS [21], MRGCN [30], hMKL
[40], MDICC [41], DLSF [31] and DSIR [32]. For these methods,
we select the top 8,000 highly variable features from each data
matrix and apply the processing procedure suggested by each
method. The feature size of 8,000 is chosen to align with DSCC’s
post-processing data dimensionality, ensuring a fair assessment
across all evaluated methods. These methods can automatically
determine the number of subtypes (i.e. the number of clusters).
We execute each method using their default parameters.

We use three metrics to measure the performance of each
method for each dataset. First, we use the Cox proportional haz-
ards model [73] to assess the statistical significance in survival
differences of identified subtypes (the smaller the P-values, the
better). Second, we assess the statistical significance in survival
differences of identified subtypes using an empirical P-value that
was introduced by Rappoport and Shamir [74]. Third, we use the
Concordance Index (C-Index) [75] to evaluate whether incorpo-
rating clustering information improves discrimination power of
survival prediction (the higher C-Indices, the better).

Table 1 shows the Cox P-values computed using the survival
package [76]. NA entries indicate analysis failures. Only DSCC,
NEMO, and MRGCN are able to perform subtyping for all datasets.
All other methods crash when analyzing TCGA-BRCA, TCGA-
COAD, and TCGA-OV datasets. A potential cause might be insuf-
ficlent numbers of matched samples across all data matrices.
DSCC, NEMO, and MRGCN are capable of handling missing data
across data types, which allows us to use all samples for each
dataset when running the three methods. In contrast, the remain-
ing methods require completely matched samples among data
types, restricting them to sample intersection. DSCC outperforms
all competitors in identifying subtypes with significantly differ-
ent survival profiles in most datasets (27 out of 43). DSCC also
maintains this robust performance across different settings of
established hyperparameters including o, o4, and the sample size
threshold. (see Supplementary Section 5 and Figure S5). The next
best methods are NEMO, hMKL, intNMF and ANF, with significant
results in 19, 17, 15, and 15 datasets, respectively. All remaining
methods achieve significant results in less than 15 datasets.

Supplementary Table S2 shows the empirical P-values obtained
for each method. Instead of calculating the P-values directly from
a log-rank test [73], we calculate the x? statistic using the survdiff
function from the survival package [73, 76]. To construct the null
distribution for each dataset, we then permute the cluster labels
across all samples 10,000 times and compute the x? statistics
under the null. The empirical P-value is derived by calculating
the proportion of the null distribution that was more extreme
than the observed x? statistic. The performance assessment using
the empirical P-values is consistent with that from the Cox P-
values. DSCC outperforms all competitors in identifying subtypes
with significantly different survival profiles in most datasets (26
out of 43). The next best methods are NEMO, intNMF and ANF,

with significant results in 16, 15, and 14 datasets, respectively.
All remaining methods achieve significant results in less than 14
datasets.

Figure 2 shows the minus log10 P-values of both Cox and empir-
ical P-values of all methods across 43 cancer datasets. In this
figure, the distribution of the minus log10 Cox P-values of DSCC
has a median value of 1.5, which is substantially higher than those
of all other methods. This median, obtained using all available
omics types, is also the highest for DSCC across varying number
of omics types tested (see Supplementary Section 6 and Figure S6).
The second best method, NEMO, has a median of 0.94, which falls
well below the commonly used 5% significance threshold (minus
log10 of 0.05 is approximately 1.3). Similarly, the minus logl0
empirical P-value of DSCC has a median of 1.47, considerably
exceeding the second best method, intNMF, with a median of 0.88.
DSCC also has the highest number of significant datasets: 27 by
Cox P-value and 26 by empirical P-value.

Next, we evaluate the usefulness of DSCC-derived subtypes for
risk prediction. Specifically, we examine the performance of a risk
prediction method under two different scenarios: (1) using only
clinical variables (age, height, gender, etc.) as predictors, and (2)
incorporating the subtype assignment of each subtyping method
as an additional covariate. We adopt blockForest [77] for this
validation due to its simplicity and proven effectiveness [78, 79].
For each dataset, we perform 5-fold cross-validation and measure
the C-Index on the validation sets. As shown in Fig. 3, DSCC
exhibits the highest mean C-Index value of 0.71 (more details in
Supplementary Table S3). Notably, DSCC improves survival pre-
diction performance when their subtype assignments are added
as a covariate in survival prediction. Specifically, incorporating
DSCC-identified groupings increases the average C-Index from
0.69 (clinical variables only) to 0.71.

Pathway analysis of adrenocortical carcinoma

We investigate the mechanisms underlying the different survival
outcomes of the discovered subtypes for TCGA-ACC. Figure 4
shows the Kaplan-Meier survival analysis of the three ACC sub-
types, in which subtype 1 (red) exhibits a significantly lower sur-
vival probability than the other two. To characterize the molecular
differences between subtypes, we conduct a consensus pathway
analysis using the Intelligent Platform for Systems-level Analysis
(IPSA), an upgraded version of our previously published Consen-
sus Pathway Analysis (CPA) platforms [80-82]. Due to the small
sample size of subtype 2 (blue) in the TCGA-ACC dataset (only
two patients), we merge subtypes 2 and 3 to form a single high-
survival group for the differential analysis. Briefly, IPSA performs
differential analysis to identify the differentially expressed (DE)
genes and then performs consensus analysis of four pathway
analysis methods (Over-Representation Analysis (ORA) [83, 84],
Gene Set Analysis (GSA) [85], Fast Gene Set Enrichment Analysis
(FGSEA) [86], and Pathway Analysis with Down-weighting of Over-
lapping Genes (PADOG) [87], using KEGG pathways. IPSA outputs
the list of DE genes, and the list of pathways that are identified as
significantly impacted across all four pathway methods.

IPSA identifies 925 DE genes, with 896 genes (97%) upregulated
in the poor-survival group (Supplementary Table S4). We also
plot the significant pathways and their statistics (minus logl10
adjusted P-values vs. normalized enrichment scores) in Fig. 5,
which highlights the top twenty significantly enriched pathways,
including Cell Cycle, DNA Replication, and Base Excision Repair, with
adjusted P-values of 4.3 x 107%, 0.020, and 0.024, respectively
(Supplementary Table S5). This suggests elevated mitotic activity
and increased DNA maintenance processes in the poor-survival
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Figure 2. Distribution of Cox P-values and empirical P-values (in minus log10) for subtypes identified by each method across 43 cancer datasets. Higher
values indicate stronger associations between discovered subtypes and patient survival. The black horizontal line inside each box represents the median
value of the minus logl0 P-values. The number on top of each box represents the total number of datasets with significant P-values. The dashed
horizontal line denotes the statistical significance threshold corresponding to 5%. DSCC has median values of 1.5 and 1.47 (for Cox and empirical P-
values, respectively), which are substantially higher than those obtained from all other methods. This demonstrates the advantage of DSCC in identifying
cancer subtypes with significantly different survival profiles.
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Figure 3. Evaluation of survival prediction models by incorporating subtype labels identified by DSCC, CC, CIMLR, SNF, LRACluster, intNMF, ANF, NEMO,
MOVICS, MRGCN, hMKL, MDICC, DLSF and DSIR. For each dataset, we calculate the concordance index (C-Index) for a blockForest model that was
trained using either clinical variables alone (baseline) or clinical variables combined with subtype labels from each method. Higher C-Index values
indicate better alignment between predicted and real survival. The black horizontal line and the number inside each box both represent the mean value
of the C-Index. The subtype information returned by DSCC achieves the highest mean C-Index, demonstrating the usefulness of its subtype labels in

survival prediction.

group — a pattern consistent with previous studies reporting that
high expression of cell cycle and DNA repair genes correlates with
unfavorable prognosis in ACC [88, 89]. Moreover, the association
between elevated base excision repair activity and tumor aggres-
siveness has also been observed in other cancer types [90].
Additional enriched pathways (Proteasome, Spliceosome, and
Ribosome) reflect increased demand for transcription, translation,
and protein degradation-hallmarks of rapidly proliferating
tumors. It has been reported that upregulation of proteasome
components is widely implicated in cancer progression and poor
outcomes [91], while dysregulation of spliceosomal machinery
and ribosome biogenesis contributes to oncogenic proliferation
and survival [92, 93]. The pathway network (Fig. 6) also shows that
these translational and protein-turnover pathways share numer-
ous DE genes with the core cell-cycle pathway, underscoring their
concerted activation. Significant enrichment of ATP-dependent
Chromatin Remodeling and Polycomb Repressive Complex pathways
further suggests widespread epigenetic alterations, consistent
with dedifferentiation and aggressive tumor phenotypes. This

aligns with the over-expression of EZH2, a key Polycomb complex
member previously reported in adrenocortical carcinoma and
associated with disease progression [94]. Together, these findings
indicate that the poor-survival ACC subtype exhibits transcrip-
tional signatures of hyperproliferation, replication stress, and
epigenomic instability, aligning with its poor clinical prognosis.
In addition to proliferative signatures, several pathways
enriched in the poor-survival ACC subtype are associated with
cellular stress responses and tumor suppression. Specifically, the
Cellular Senescence and p53 Signaling pathways are significantly
enriched (Supplementary Table S5). These pathways are typically
activated in response to genomic instability, oncogenic signaling,
or DNA damage, and regulate checkpoint arrest, senescence, and
apoptosis. Their enrichment in the poor-survival subtype may
reflect cellular attempts to restrain unregulated proliferation
or compensatory pathway activation following dysfunction
in upstream regulators such as TP53, which is frequently
altered in adrenocortical carcinoma [88, 94]. Although these
stress-related programs are canonically tumor-suppressive,
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Figure 4. Kaplain-Meier survival analysis of the adrenocortical carcinoma
(TCGA-ACC) dataset. The horizontal axis represents the time (days)

passed after entry into the study while the vertical axis represents the
estimated survival probability. The subtypes are identified by DSCC.

their dysregulation in aggressive tumors may promote therapy
resistance, clonal selection, or intratumoral heterogeneity. Recent
studies suggest that cellular senescence may even facilitate
tumor progression through secretory phenotypes and immune
modulation [95]. These findings suggest that even in the context
of widespread proliferation, the poor-survival ACC subtype retains

-log10 pValue.FDR

molecular signatures of intrinsic stress regulation and checkpoint
signaling.

Several significantly enriched pathways in the poor-survival
ACC subtype are annotated as viral or immune-related, includ-
ing Human T-cell Leukemia Virus 1 Infection, Epstein-Barr Virus
Infection, and Kaposi Sarcoma-Associated Herpesvirus Infection
(Supplementary Table S5). These annotations do not imply actual
viral infection, but rather reflect convergence on shared signaling
mechanisms such as inflammatory responses, immune evasion,
and anti-apoptotic mechanisms, which are commonly hijacked by
tumors to sustain growth and to evade immune surveillance. This
viral mimicry phenomenon, driven by derepressed endogenous
retroviruses and innate immune signaling, has been reported in a
number of other cancers [96]. In the pathway network (Fig. 6),
the immune-annotated pathways share DE genes with core
stress-response pathways, highlighting transcriptional overlap
between immune modulation and checkpoint signaling programs.
These results suggest that the poor-survival ACC subtype
engages transcriptional programs associated with replication
stress, immune modulation, and surveillance evasion-features
commonly linked to tumor aggressiveness.

Conclusion

We present DSCC, a robust integrative framework for cancer
subtyping and multi-omics integration. DSCC is among the first
methods that integrate all types of available omics data (mRNA,
miRNA, DNA methylation, CNV, somatic mutation, protein, and
metabolite levels). While many methods can be extended to
include a variety of omics types, DSCC is the first to validate its
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performance using 43 cancer datasets. DSCC makes three distinct
technical contributions. First, DSCC achieves strong results with
an interpretable pipeline that avoids complex architectures like
deep learning, suggesting that a carefully designed pipeline can
be effective in this research area. Second, DSCC introduces a
dual-affinity matrix framework (Angular and Euclidean affinity
matrices) that captures complementary views of each omics
type. Finally, DSCC establishes a rigorous integration pipeline
(flexible integration of available quantification units and gene-
level aggregation), and allows for maximal sample retention.

We benchmark DSCC against 13 state-of-the-art methods (CC,
CIMLR, SNF, LRACluster, intNMF, ANF, NEMO, MOVICS, MRGCN,
hMKL, MDICC, DLSF, and DSIR) using 43 cancer datasets and
three evaluation metrics (Cox P-values, empirical P-values,
and C-Index). DSCC consistently outperforms other subtyping
approaches by having more significant Cox P-values, empirical
P-values, and higher C-Indices. Additionally, a detailed pathway
analysis of the TCGA-ACC dataset demonstrates DSCC’s ability
to recover known oncogenic processes and uncover potential
therapeutic targets in aggressive disease subtypes.

Several directions for future research could further enhance
capabilities of DSCC. The current method uses pathway knowl-
edge for data processing, but it has not fully modeled inter-
layer biological dependencies. One potential direction is to
integrate omics-specific regulatory relationships within pathway
structures to extract mechanistic insights [97, 98]. Another
direction is to integrate advanced techniques developed for
other fields into the pipeline of DSCC, including low-rank
symmetric affinity graphs [99], contrastive clustering [100],
and Large Language Models (LLMs) [101]. Specifically, LLMs
can process valuable, unstructured information available from
electronic health records, pathology reports, and clinical infor-
mation [102-104]. These data can serve as vital input for
DSCC, supplementing molecular data for a more complete
analysis.

Key Points
e Molecular subtyping is pivotal in cancer research, prog-
nosis and treatment.
¢ Integrative analysis of diverse molecular data has the
potentials to discover meaningful cancer subtypes.

e This article introduces DSCC, a novel method in cancer
subtyping, which can work on a wide range of multi-
omics data.

e The proposed method outperforms state-of-the-art
approaches in identifying cancer subtypes with distinct
survival profiles.

e The paper presents performance results comparing
DSCC with other methods on 43 cancer datasets and a
case study of Adrenocortical Carcinoma.
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