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Abstract

Metabolite profiling is a powerful approach for the clinical diagnosis of complex diseases, ranging from cardiometabolic diseases, cancer,
and cognitive disorders to respiratory pathologies and conditions that involve dysregulated metabolism. Because of the importance of
systems-level interpretation, many methods have been developed to identify biologically significant pathways using metabolomics
data. In this review, we first describe a complete metabolomics workflow (sample preparation, data acquisition, pre-processing,
downstream analysis, etc.). We then comprehensively review 24 approaches capable of performing functional analysis, including
those that combine metabolomics data with other types of data to investigate the disease-relevant changes at multiple omics layers.
We discuss their availability, implementation, capability for pre-processing and quality control, supported omics types, embedded
databases, pathway analysis methodologies, and integration techniques. We also provide a rating and evaluation of each software,
focusing on their key technique, software accessibility, documentation, and user-friendliness. Following our guideline, life scientists
can easily choose a suitable method depending on method rating, available data, input format, and method category. More importantly,
we highlight outstanding challenges and potential solutions that need to be addressed by future research. To further assist users in
executing the reviewed methods, we provide wrappers of the software packages at https://github.com/tinnlab/metabolite-pathway-
review-docker.
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Introduction
Metabolomics is a powerful approach for identifying predictive
biomarkers of diseases, including obesity [1], diabetes [2, 3], car-
diovascular disease [4, 5]) to cancer [6, 7], cognitive disorders [8],
respiratory pathologies [9, 10], and other conditions that involve
dysregulated metabolism [11–13]. There are two approaches to
metabolite profiling: targeted and untargeted metabolomics (also
called shotgun, global, or nontargeted). The former focuses on the
quantitative measurement of a predefined set of known metabo-
lites, while the latter aims to comprehensively analyze as many
metabolites as possible, including unknown compounds, without
prior selection. Recent technologies include nuclear magnetic
resonance, and mass spectrometry (MS) with liquid chromatog-
raphy (LC) or gas chromatography [14–16]. Among them, LC-MS
has gained popularity due to additional detection of nonvolatile
compounds, the resolution of individual chemical components
into distinct peaks, and the ability to resolve isobaric compounds
while minimizing signal suppression [14].

Regardless of technologies, a comparative study (disease versus
healthy, treated versus control, etc.) often yields a set of metabo-
lites or spectral features that are differentially expressed (DE)
between the phenotypes. Although these lists of DE metabolites

are important in identifying potential biomarkers, they alone fail
to reveal the underlying mechanism. The challenge is to move
beyond differential expression analysis to determine the biolog-
ical and physiological roles of metabolites at the systems level
[11]. For that purpose, researchers have created various knowledge
bases that group metabolites, genes, and gene products into func-
tional modules and interaction networks, including KEGG [17],
HMDB [18], BioCyc [19], Reactome [20], PubChem [21], etc.

Concurrently, computational methods have been developed
to identify impacted pathways or perturbed functional modules.
These include basic and advanced levels [22, 23]. The former
involves mapping metabolites to pathways and visualization,
while the latter utilizes sophisticated enrichment and statistical
analysis. In this review, we focus on advanced methods that (1)
can perform functional analysis, and (2) have software that is
maintained since 2018. Among these, the earliest approaches use
Over-Representation Analysis (ORA) [24, 25] to identify functional
modules that have DE entities (genes/metabolites) that exhibit
greater variations between different conditions than expected
by chance. The drawbacks of this type of approach include that
(i) it only considers the number of DE entities and ignores the
magnitude of the actual changes; (ii) it assumes that genes and
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Figure 1. Chronological timeline of the 24 surveyed tools for functional analysis using either metabolomics data or integration with other multi-omics
data. The timeline spans 2006 to 2023, highlighting the development and improvement of functional analysis methods over the past 17 years.

molecules are independent, which they are not; and (iii) it ignores
the interactions between various modules. Functional Class
Scoring (FCS) approaches [26–28] have been developed to address
some of the issues raised by ORA. The main improvement of FCS is
the observation that small, yet coordinated changes in expression
of functionally related entities can have a significant impact on
pathways. Topology-based Pathway Analysis (TPA) approaches
leverage the topology of pathways and the interactions among
omics features to more accurately represent the underlying
biological phenomena [29, 30].

This review aims to provide a broad overview of the cur-
rent state of functional annotation approaches designed for
metabolomics data. Figure 1 shows the 24 methods included in
our review. Our objectives are to (1) describe the main categories
of functional analysis approaches, (2) discuss methodological
foundations, (3) highlight strengths and limitations, and (4)
identify the outstanding challenges and future directions in the
field. Existing articles review tools for metabolomics analysis
but do not provide an in-depth investigation into the functional
analysis [22, 31–35]. For example, Stanstrup et al. [34] outline
the available resources for preprocessing, statistical analysis,
and the visual representation of data that assists in identifying
metabolic changes in various biological settings. In contrast, we
provide a comprehensive review of prominent methods capable
of performing functional analysis.

The manuscript is organized as follows. Section Availability
and implementation describes the distinct characteristics of the
24 approaches: availability, platform, data processing, quality
control, input types, databases, and supported analyses. Section
Complete metabolomics workflow summarizes the complete
workflow of metabolomics studies, starting from sample extrac-
tion, data acquisition, quality control to statistical analysis
and pathway-level analysis. Section Annotation and omics-level
analysis details downstream analyses at the metabolite and omics
level. Section Pathway-level analysis categorizes the methods
into distinct categories based on their techniques and discusses
their methodologies. Section Summary and practical guideline
compares and contrasts the surveyed tools and provides readers
with specific guidelines for selecting appropriate methods in
certain situations. Section Outstanding challenges and solutions
highlights challenges that remain unsolved in the field. We also
provide a summary of every single method in Supplementary
Note.

Availability and implementation
Table 1 shows the availability of the reviewed methods: refer-
ence, software link, publication year, latest update, number of
citations, and platform. The prevalence of web-based and R-
based approaches becomes evident when considering the most
commonly selected platforms for metabolic pathway analysis.
Figure 2 shows the essential information related to the function-
ality and methodogologies of the approaches. The second column

shows the methods that support performing data preprocessing
and quality control for three-dimensional files. The third column
indicates whether they support global/untargeted metabolomics
data (versus targeted metabolomics). If a method supports global
metabolomics, it can be one of the two following cases or both: (i)
the method integrates Mummichog [36] that can perform func-
tional analysis without annotation of metabolites, and (ii) the
method performs metabolite annotation from spectral features
before performing statistical analysis (e.g. marker detection) and
functional analysis. The next five columns list the supported
input data: genomics (G), transcriptomics (T), epigenomics (E),
proteomics (P), and metabolomics (M). The next column shows the
pathway databases embedded in each software. The remaining
columns show the functionalities implemented in each software:
(1) metabolite annotation, (2) sample clustering, (3) differential
analysis or marker identification, (4) functional analysis from
spectral features (F2P: feature to pathway), (5) functional analysis
from annotated metabolites (M2P: metabolite to pathway), (6)
network construction, or (7)meta-analysis (multi-cohort analysis).

We divide the tools into three categories based on their
methodologies: (i) ORA, (ii) FCS, and (iii) TPA. There are eight
tools that support metabolite annotations and 14 tools that allow
users to perform differential analysis and marker detection.
Among the eight tools that support untargeted metabolomics,
only Mummichog, XCMS, and MetaboAnalyst perform functional
analysis without upfront putative identification of metabolites.
Mummichog was the first approach that employed such feature-
to-pathway strategy (F2P), which was then followed by XCMS
and MetaboAnalyst. XCMS also supports meta-analysis at the
marker level (metabolites) whereas MetaboAnalyst supports
meta-analysis at both marker and pathway levels. MetaboAnalyst
stands out as a comprehensive implementation for metabolomics
data analysis, encompassing various data input types, data
processing methods, and statistical approaches. Notably, it is the
only software that allows users to analyze genomics data.

Complete metabolomics workflow
Figure 3 provides a high-level workflow for metabolomics studies.
Researchers start a study by defining the biological problem of
interest and forming research hypothesis [60]. There are four
main steps for the detection and analysis of metabolites: (A)
sample preparation and extraction, (B) data acquisition using LC-
MS instruments, (C) data processing and quality control, and (D)
downstream analysis.

In sample preparation and extraction (step 1, Fig. 3(A),
researchers seek to collect relevant biological specimens from
research participants. In data acquisition (step 2, Fig. 3(B),
researchers generate metabolomics data using high-resolution
LC-MS instruments. In data processing and quality control
(step 3, Fig. 3(C), researchers process the raw data and perform
quality control using the 3D files in a vendor-neutral format.
In downstream analysis (step 4, Fig. 3(D), users can perform
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Table 1. Availability of 24 pathway analysis approaches

Method Software Link Pub. Latest Citation Platform
Year Update

Over-Representation Analysis (ORA)
XCMS [37] https://xcmsonline.scripps.edu/ 2006 2018 5,063 , :
PaintOmics [38, 39] https://www.paintomics.org/ 2011 2022 176
MBRole [40] http://csbg.cnb.csic.es/mbrole3/ 2011 2023 162
MetaboLyzer [41] https://sites.google.com/a/georgetown.edu/fornace-

lab-informatics/home/metabolyzer/
2013 2023 107 :

Mummichog [36] https://github.com/shuzhao-li/mummichog 2013 2021 852 :
MetDNA [42] http://metdna.zhulab.cn/ 2019 2022 252

Functional Class Scoring (FCS)
MetaboAnalyst [43] https://www.metaboanalyst.ca/ 2009 2023 2,870 , :
PAPi [28] https://rdrr.io/bioc/PAPi/ 2010 2019 137 :
IMPaLA [30] http://impala.molgen.mpg.de/ 2011 2021 417 , :
Pathview [44] https://pathview.uncc.edu/guest-home 2013 2023 1,794 , :
specmine [45] https://webspecmine.bio.di.uminho.pt/ 2016 2019 58 , :
metaX [46] https://github.com/wenbostar/metaX/ 2017 2018 554 :
Lilikoi [47] https://cran.r-project.org/web/packages/lilikoi/ 2018 2022 33
MB-PLS [48] https://github.com/jydong2018/metabolomics/ 2020 2020 13 :Matlab
PUMA [49] https://github.com/HassounLab/PUMA/ 2020 2020 10 :
IP4M [50] https://github.com/IP4M/ 2020 2020 39 : ,Perl
M2IA [51] https://m2ia.met-bioinformatics.cn/ 2020 2020 61
ogPLS [52] https://github.com/jydong2018/ogPLS/ 2021 2021 11 :Matlab
ssPA [53] https://pypi.org/project/sspa/ 2022 2022 15 :

Topology-based Pathway Analysis (TPA)
Metscape [54, 55] http://metscape.med.umich.edu/ 2010 2018 436 :
Omicsnet [56] https://www.omicsnet.ca/ 2018 2022 163
FELLA [57] https://github.com/b2slab/FELLA/ 2020 2020 84 :
iMSEA [58] https://github.com/BioNet-XMU/iMSEA/ 2023 2023 5 :Matlab
dci-MSEA [59] https://github.com/BioNet-XMU/dci-MSEA/ 2023 2023 1 :

Abbreviation: : web application, : standalone software, : R, : Python, : Java or Javascript, Matlab: Matlab, Perl: Perl. Software with are those
available as web-based platform while those with are available as standalone package. For standalone packages, we also specify the programming language
used to develop the software. Citations were retrieved from Google Scholar on 31 July 2024.

cluster analysis, biomarker detection, metabolite annotation, and
pathway analysis (functional analysis) on the processed data.

Figure 3(E–H) shows common downstream analyses that lead
to the final goal of functional analysis. Overall, functional analysis
comprises two primary modules: (i) metabolite or omics-level
analysis (Fig. 3E–F), and (ii) pathway-level analysis and visualiza-
tion (Fig. 3G–H). The details of each step in Fig. 3 are provided in
Supplementary Note. The next section further details the down-
stream analysis pipeline.

Annotation and omics-level analysis
Figure 3(E–F) shows the common steps in annotation and
omics-level analysis. The goal of this pre-analysis phase is
to make the input data become adaptable for the functional
analysis. The input can be either metabolite-by-sample matrix
(targeted metabolomics) or feature-by-sample matrix (untargeted
metabolomics). If the software does not have pathway informa-
tion embedded, users need to provide the pathways in the .GMT
format.

Metabolite annotation
Metabolite annotation is necessary for untargeted metabolomics
data. Eight of the surveyed tools (XCMS, MetaboLyzer, Mum-
michog, MetDNA, MetaboAnalyst, specmine, metaX, and IP4M)
support metabolite annotation using untargeted metabolomics
data. Other tools require users to conduct putative metabolite

identification for the input spectral features beforehand—a
challenging task in the field [36]. A straightforward annotation
approach involves searching the m/z values and the RTs of input
features against a spectral library to identify potential chemical
matches [61–63]. Notably, the effectiveness of this approach is
limited by the completeness of the reference databases. To make
the annotation more comprehensive, more sophisticated tech-
niques have been developed to integrate multiple databases [64].

XCMS, specmine, metaX, and IP4M utilize third-party tools
for metabolite annotation. XCMS uses METLIN [65]; metaX and
IP4M use CAMERA [66]); specmine uses MAIT [67]. MetaboLyzer,
MetaboAnalyst, Mummichog, and MetDNA implement their own
search algorithms that basically match each input feature with
known metabolites in spectral libraries (e.g. KEGG [17], HMDB
[18], Lipid Maps [68], BioCyc [69]). MetaboLyzer, MetaboAnalyst,
METLIN, CAMERA, and MAIT aim to find a metabolite that best
matches the each feature whereas Mummichog searches for all
tentative metabolites and then retains the metabolites that are
locally close in the metabolic pathways. MetDNA retains the best-
matched metabolite for each feature by utilizing tandem MS
(MS2) spectral databases, assuming that two metabolites within
a reaction pair will share similar MS2 spectra.

ID mapping
ID mapping involves converting omics IDs from input to the IDs
used in a pathway database, e.g. KEGG Entrez ID or Compound
IDs. Pathway databases typically describe a metabolic pathway
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Figure 2. Capabilities of the reviewed software using metabolomics data. The first column (Method) lists the method names, while the second
column (Preprocessing & QC) describes whether the methods can perform data processing and quality control using raw metabolomics data. The
third column (Global Metabolomics) describes whether the methods support the analysis of untargeted metabolomics data (also referred to as
shotgun/untargeted/nontargeted metabolomics). The next five columns under Input describe the supported input multi-omics types (G: Genomics,
T: Transcriptomics, E: Epigenomics, P: Proteomics, and M: Metabolomics). Note that all methods reviewed in this article support the analysis of
Metabolomics (i.e. the Metabolomics column is checked for all methods). The column Pathway Database lists the databases used by each method.
The column Metabolite Annotation indicates whether the methods support metabolite annotation. The column Cluster Analysis indicates whether
the methods support cluster analysis of the input samples. The column Differential Analysis indicates the methods support differential analysis and
marker detection. The next two columns under Functional Analysis describes whether the methods are capable of performing functional analysis using
the spectral features directly (F2P) or they need to transform the features into metabolites first (M2P). The column Network Construction indicates
whether the methods also output a network constructed from the input data. The column Meta-analysis indicates the capability to perform meta-
analysis (multi-cohort analysis).

using two main entities: compounds and their reactions. The
reactions are catalyzed by enzyme(s) and/or protein(s). There-
fore, metabolic pathways can be considered either as metabolite-
centric networks focusing solely on their constituent metabolites,
or as multi-omics networks consisting of metabolites intercon-
nected with other omics entities. The former requires mapping
input metabolites to the database’s compound IDs, while the
latter involves mapping genes, metabolites, and enzymes to their
respective IDs. Pathway analysis methods either rely on user-
provided mapping files or perform mapping using embedded
databases, or a combination of both. Details regarding supported
pathway databases and the ID mapping procedures for each
method are provided in Supplementary Note.

Pathway augmentation
Pathway augmentation is the process of adding interactions
among omics entities that are not fully represented in current

pathway databases. For instance, a single gene can code for
several distinct proteins due to the alternative RNA splicing [70].
Researchers also aim to incorporate the role of miRNAs and their
targets into the analysis, but the ID mapping process often results
in a one-to-many scenario, where an miRNA could target multiple
genes or vice versa. Therefore, it is better to augment pathways
to include all omics entities and their interactions instead of
merging them into a single node. Researchers can enhance the
comprehensiveness of current metabolic pathways by integrating
validated or predicted multi-omics interactions from existing
knowledge bases. PaintOmics [38, 39] and OmicsNet [56] employ
this process in their analysis pipeline.

Pathway-level analysis
Figure 3(G) illustrates the common steps in pathway-level anal-
ysis, while Fig. 3(H) shows the outputs users can expect from
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Figure 3. The complete workflow of metabolomics studies. The left panel describes four main steps in a metabolomics analysis pipeline using high-
resolution LC-MS data: (A) sample preparation and extraction, (B) data acquisition using LC-MS instruments, (C) data processing and quality control,
and (D) downstream analysis. The right panel further details the overall pipeline for downstream analysis: (E) metabolite annotation and mapping, (F)
omics-level analysis, (G) pathway-level analysis, and (H) output and visualization. Solid-line boxes depict common modules in analysis pipelines, while
dashed boxes represent optional modules.

the surveyed methods. The primary objective of pathway-level
analysis is to calculate pathway-level statistics, such as enrich-
ment scores, from omics-level data, and test for significant path-
way enrichment. The output typically includes a table of signifi-
cant pathways with their P-values, along with publication-ready

visualizations, such as volcano plots or bar plots. In the following
sections, we will discuss these steps for each method in detail.
Specifically, we classify the methods into three categories: (i) ORA,
(ii) FCS, and (iii) TPA. We then highlight notable characteristics of
each category and present key points of each method.
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Figure 4. Three strategies for functional analysis: ORA (shown in panel A), (ii) FCS (panel B), and (iii) TPA (panel C). The input data of each method includes
metabolomics data and pathway information (from KEGG, HMDB, BioCyc, etc.). Some methods allow users to integrate metabolites with other entities
(e.g. genes, proteins, enzymes). (A) ORA: approaches in this category first identify differentially expressed (DE) entities and then uses hypergeometric test
to identify pathways that have the number of DE entities more than expected. (B) FCS: approaches in this category first compute entity-level statistics
(e.g. enrichment scores, t-statistic) and then aggregated them into pathway-level statistics for hypothesis testing to identify the enriched pathways. (C)
TPA: approaches in this category combine ORA and FCS with network analysis techniques to identify impacted pathways.

Over-Representation Analysis
Figure 4(A) shows the overall workflow of ORA approaches.
The underlying concept is that if the ratio of DE metabolites
involved in a certain pathway surpasses the proportion expected
by chance, then the pathway is over-represented [71, 72]. In
multi-omics setting, ORA methods start with differential analysis
on each readout to obtain omics-level statistics (P-values,
log fold-changes, etc.) and then select the DE entities based
on user-provided thresholds. Subsequently, ORA methods use
hypergeometric test to compute the P-value of each pathway—
one P-value per pathway per readout. To integrate results from
multiple omics layers, ORA methods combine the omics-specific
P-values for each pathway using a meta-analysis method (e.g.
Stouffer’s [73] or the weighted Fisher’s method [74]). Finally, most
methods adjust the P-values using false discovery rate (FDR) [75].

There are six ORA methods: XCMS [37], PaintOmics [38, 39],
MBRole [40], MetaboLyzer [41], Mummichog [36], and MetDNA
[42]. Among these, only PaintOmics can integrate multiple types
of omics data: transcriptomics, metabolomics data, region-based
omics (e.g. ChIP-Seq, DNase-Seq, ATAC-Seq, Methyl-Seq), and
regulatory-based omics (e.g. miRNAs, transcription factors).
PaintOmics first performs differential analysis to identify DE
entities (metabolites, genes, peaks from ChIP-seq, etc.), followed
by a hypergeometic test exact for each omics type. Subsequently,
the PaintOmics adjusts the P-values before combining the P-
values from omics layers to obtain a final list of P-values for
the pathways.

Another method, MetDNA, requires as input a MS feature table
(in.CSV format) and tandem MS (MS2) data files (in.mgf format).
The tool also offers R functions to retrieve metabolic pathways
and reaction pairs from KEGG. From input data, MetDNA identifies
known metabolites and perform differential analysis (using t-test
or Mann–Whitney–Wilcoxon test) before performing hypergeo-
metric test to compute the P-values for the pathways.

Two methods, MBRole and MetaboLyzer, take as input a list
of significant metabolites. MBRole embeds pathway information

from 15 databases while MetaboLyzer embeds two databases
(Fig. 2). The two methods perform hypergeometric test to compute
the P-values for the pathways, and then adjust the P-values
for multiple comparisons. MBRole also outputs the enrichment
ratio for each pathway while MetaboLyzer also provides the list
pathways with the highest occurrence of putatively identified
metabolites and presents this information in a histogram for each
database.

The last two approaches, Mummichog and XCMS, use the
same algorithm for functional analysis (XCMS incorporates
Mummichog’s algorithm). Given the list of features, Mummichog
matches each feature with all possible metabolites (background
set) and then performs differential analysis to identify DE
features. The selected features are also mapped into their possible
matched metabolites. Next, Mummichog uses hypergeometric
test to compute the P-values for the pathways. To adjust the P-
values, Mummichog applies a permutation-based strategy [76]
in conjunction with EASE score [77]. The EASE score for each
pathway is obtained by subtracting one DE metabolite/feature
from each pathway and then recalculating the P-value. The
significance of the EASE score is estimated using the cumulative
density function from the permutation, resulting in the adjusted
P-value for each pathway.

The primary advantage of ORA approaches lies in the
rapid prediction of major biological functions among massive
datasets. However, these approaches bear the following three
restrictions: (i) loss of important information due to the user-
chosen cut-off method, (ii) disregard of interactions between
biological molecules and pathways, and (iii) the assumption of
independence among pathways. Exclusively, Mummichog with its
permutation strategy addresses the third restriction.

Overall, ORA approaches are simple in term of methodology,
which compare the list of DE features against the background
features using hypergeometric test (or Fisher’s exact test) to deter-
mine the pathways that are significantly enriched [78]. Therefore,
users can rapidly obtain the prediction of major biological
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functions among massive datasets [71]. However, these approaches
bear the following three restrictions: (i) loss of important
information due to the user-chosen cut-off method [79], (ii)
disregard of interactions between biological molecules and
pathways [80], and (iii) the assumption of independence among
pathways. Exclusively, Mummichog with its permutation strategy
addresses the third restriction [81].

Functional Class Scoring
Figure 4(B) shows the general workflow of FCS approaches. The
main difference between FCS and ORA is that FCS eliminates the
step of identifying DE metabolites or other omics entities. It means
that all input compounds can be incorporated in the functional
analysis. The general FCS workflow consists of the following
steps: (i) computing omics-level statistics, (ii) aggregating omics-
level statistics to pathway-level statistics, (iii) hypothesis testing
to identify enriched pathways, and (iv) combining P-values and
enrichment scores from multiple omics layers for each pathway.
Most methods adjust the P-values for multiple comparisons using
FDR [75].

There are 13 FCS methods: MetaboAnalyst [43], PAPi [28],
IMPaLA [30], Pathview [44], specmine [45], metaX [46], Lilikoi
[47], MB-PLS [48], PUMA [49], IP4M [50], M2IA [51], ogPLS [52], and
ssPA [53]. Following the data processing of XCMS, MetaboAnalyst
integrates various statistical analyses, covering metabolite-level
analyses, functional analysis, network construction, and meta-
analysis at both biomarker and functional levels. MetaboAnalyst
initially incorporated Mummichog’s ORA algorithm, but the
authors later on extended the Mummichog algorithm to an FCS
algorithm implemented in GSEA [82].

PAPi and M2IA use the same six-step pipeline to generate a
pathway score matrix. PAPi first ranks pathways based on the
total number of their constituent metabolites. For each patient,
the method calculates the sum of the measurements of the
constituent metabolites for each pathway. Next, it divides the total
measurement by the ratio of pathway rank to its size, resulting in
a pathway activity score matrix (pathway by patient). Finally, PAPi
performs t-test and ANOVA to compute the P-values of the path-
ways. M2IA embed PAPi’s algorithm for functional analysis, but it
also integrates other tools for microbiome analysis, including data
processing, statistical analysis, network analysis, and functional
analysis.

Lilikoi uses a third-party tool named Pathifier [83] to construct
a Pathway Deregulation Score matrix of pathways for each input
sample. Next, the method filters out pathways not relevant in
separating sample groups (disease versus control). Finally, Lilikoi
provides users with seven machine learning models capable of
classifying the samples their respective groups (disease versus
control). Lilikoi estimates the importance scores of the pathways
according to their contribution to the sample classification.

MB-PLS and ogPLS use a strategy similar to that of Lilikoi.
MB-PLS creates a block for each KEGG pathway which is a
matrix where rows represent samples and columns represent
metabolites belonging to the pathway. Next, MB-PLS concatenates
the columns of all matrices and then builds a partial least squares
model capable of classifying the samples to their respective
groups. Based on the classifier, MB-PLS estimates the importance
score of each metabolite and then calculates the importance
score of each pathway as the weighted sum of its constituent
metabolites. The other method, ogPLS, enhances MB-PLS by
combining it with a lasso technique that penalizes metabolite
participating in multiple pathways [84, 85]. The method also
performs resampling to assess how each pathway contributes

to the stability of the model [86]. The method outputs significant
pathways and their importance scores.

ssPA also uses block matrices but it utilizes two alternative
methods for computing pathway score matrix: k-means cluster-
ing (ssClustPA) and kernel PCA (kPCA). Given a block, ssClustPA
clusters the block using k-means with k = 2 and then calculates
the column vector that represents the difference of two centers.
The method then multiplies the block with the difference vector
to obtain a column vector that represents the score of the pathway
across the samples. The same is procedure is applied for all
blocks to compute the pathway score matrix. kPCA is similar to
ssClustPA, except it applies kernel PCA [87] with a radial basis
function kernel to compute the scores. Finally, ssPA performs a t-
test on the pathway score matrix to compute the P-value for each
pathway.

IMPaLA supports the integration and functional analysis using
transcriptomics, targeted proteomics, and targeted metabolomics.
IMPaLA allows users to choose between ORA and Wilcoxon
Enrichment Analysis (WEA) [88]. For WEA approach, IMPaLA first
calculates the summary statistics at the omics layers and then
uses Wilcoxon signed-rank test to calculate the P-values for each
pathway for each omics data type. Finally, the P-value of each
pathway is calculated as the product of the P-values obtained
from all omics types. The tool outputs the combined P-values and
the P-values obtained for each data type.

PUMA constructs a Bayesian network that takes as input path-
ways and metabolites with their m/z value as prior knowledge.
PUMA then defines a conditional probability of the status of
pathways given their prior probability of being active (following
either a Bernoulli or a Beta distribution). Finally, Gibbs sampling is
used to perform Bayesian inference, approximating the posterior
probability of each pathway being active, given the m/z values of
its constituent metabolites.

Pathview uses different techniques for the functional analysis
depending on the input data. When users provide a list of DE
genes or metabolites, Pathview uses ORA. When users provide
the full matrices, Pathview uses a third-party tool named GAGE
[89]. The methodology of GAGE involves conducting metabolite
set testing to assess the enrichment of metabolites in a particular
pathway. The significance of the enrichment is then evaluated
using a permutation-based approach. Pathview visualizes result-
ing pathways as the native KEGG pathway and Graphviz [90]
view. The Graphviz view offers enhanced control over node/edge
attributes and provides a more detailed representation of graph
topology.

IP4M, specmine, and metaX embed many third-party tools
in their software. IP4M includes 62 different functions for data
processing (using XCMS and CAMERA), basic statistical analysis,
classification and biomarker detection, correlation analysis, clus-
ter and sub-cluster analysis, regression analysis, ROC analysis,
functional analysis (using MetaboAnalyst), and power analysis.
metaX also embeds many tools for the analysis of untargeted
metabolomics data, including data processing (using XCMS and
CAMERA), missing value imputation (using kNN, missForest [91],
etc.), data normalization (using combat [92], quantiles, etc.), and
functional analysis (using IMPaLA). Similarly, specmine utilizes
third-party tools for metabolomics data analysis, including
data processing (using XCMS), metabolite annotation (using
MAIT), and regression (using models implemented in caret).
To perform the functional analysis, specmine calculates the
P-values and statistics for the input metabolites and then
performs a GSEA-like analysis to calculate the P-values of the
pathways.
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Overall, FCS has several advantages over ORA. It performs
functional analysis using the measurements of all input metabo-
lites and entities (instead of focusing on differential expressed
ones). This allows users to analyze their data without imposing an
arbitrary cutoff to select DE entities [80, 93]. In turns, it increases
the reliability and reproducibility. Another advantage is that FCS
is capable of taking into account the dependency between the
metabolites and the coordinated changes of all entities. However,
FCS still does not take into consideration pathway topology and
pathway crosstalk [94]. FCS methods often assign equal weight to
all pathways and neglect the relationship between pathway com-
ponents and other aspects of the network structure of pathways
[80, 95]. Moreover, FCS methods analyze pathways independently,
ignoring the overlaps between them and the potential influence
one pathway can exert on another [81].

Topology-based Pathway Analysis
Figure 4(C) shows the general TPA workflow. The main difference
between TPA from FCS and ORA is that TPA approaches take into
consideration both the expression change of the multi-omics data
and pathway topology. TPA methods basically performs network
analysis using the summary statistics obtained from ORA or FCS
approaches. Here we review five TPA approaches: Metscape [54,
55], Omicsnet [56], FELLA [57], iMSEA [58], and dci-MSEA [59].

MetScape uses LRpath [96] for functional analysis, which basi-
cally performs logistic regression to identify the pathways that
are significantly enriched. Through Cytoscape [97], MetScape can
visualize different types of networks from HUMDB [98], KEGG
[17], and EHMN [99]: Compound-Reaction-Enzyme-Gene (CREG)
network graph, Gene-Compound (GC) network graph, Compound-
Reaction (CR) network graph, and Compound (C) network graph. If
users perform GSEA [82] on their own, they can provide the GSEA
results to MetScape for visualization.

OmicsNet supports users to construct networks for three types
of interactions: protein–protein, microRNA–gene, transcription
factor–gene, or protein–metabolite, with each representing a
separate layer. For functional analysis, the tool uses hypergeo-
metric test on genes/metabolites within the generated interaction
network. This analysis is conducted against GO, PANTHER GO-
Slim, Reactome, or KEGG pathways, resulting in a list of pathways
or GO terms that are impacted significantly. OmicsNet also
facilitates three analyses of network topology analysis: node
centrality analysis, module detection, and identification of the
shortest paths.

FELLA takes as input a list of DE metabolites and performs
functional analysis using ORA or TPA. For network analysis, FELLA
scores the nodes within individual pathway networks using two
alternative algorithms: PageRank [100] and heat diffusion model
[101]. PageRank utilizes the random walks algorithm to score
nodes and pathways, while the heat diffusion model performs
sub-network analysis on the networks to extract a meaning-
ful subgraph. Finally, FELLA performs permutation (using Monte
Carlo trials or z-test) to compute the P-values of the pathways.
iMSEA focuses on identifying impacted pathways for patients
taking different drug treatments. iMSEA first applies an algorithm
named Partial Least-Squares Discriminant Analysis (PLS-DA) [102]
to select metabolites that contribute to treatment differences.
Next, iMSEA performs a random walk with restart to score the
nodes and calculates pathway activity scores. To determine the
significance of altered pathways, iMSEA performs a permutation
test using the activity scores. The method also calculates a com-
bination index for each pathway that indicates the interaction of
different drugs (e.g. synergy, additivity, or antagonism).

dci-MSEA is considered an enhanced version of iMSEA. dci-MSEA
first reconstructs a general metabolite network where each node
represents a metabolite and each edge is a reaction pair. Next, dci-
MSEA constructs a correlation network of DE metabolites in which
edge weights are correlation coefficients and node weights are
intensity levels. Next, it integrates the general metabolite network
with correlation network to construct a differential correlation-
informed metabolite network (dci-metabolite network). Next, it
performs a random walk-based propagation on the dci-metabolite
network to score metabolites iteratively, followed by a pathway-
level activity score calculation. Finally, P-value dci-MSEA cal-
culates pathway P-values one-sample z-test with permutation
testing.

TPA is the latest generation of pathway approaches in the field,
aiming to address all restrictions from the two previous genera-
tions. TPA analysis leverages topology information to account for
biologically relevant differences between components, assigning
more weight to changes in genes with greater influence over
the pathway [78, 103]. By incorporating topological information,
TPA analysis allows for a more precise examination of the same
set of pathway components, recognizing that interactions may
vary under different biological conditions [104, 105]. Addition-
ally, TPA analysis considers causal interactions within pathways,
acknowledging that modifications in upstream components can
alter the behavior of downstream components [71]. However, TPA
has its own limitations, such as insufficient consideration of
interactions among pathways or the difficulty in constructing an
unbiased network for network topology analysis [106]. A recent
holistic assessment by Lu et al. [35] suggests that TPA approaches
are not always be the best choice for functional analysis. The
study recommends a combination of NetID [107] (an LC-MS peak
annotation tool) and Mummichog instead.

Summary and practical guideline
Here we provide critical interpretation and analysis of all meth-
ods to help readers in their research purpose. We also imple-
ment wrappers of all standalone tools and make them avail-
able at https://github.com/tinnlab/metabolite-pathway-review-
docker. This will allow users to download and execute the soft-
ware with ease.

First, we summarize all relevant information discussed thus
far in Supplementary Table S1. The table summarizes impor-
tant information about the reviewed methods: Preprocessing &
QC, Global Metabolomics, Input, Pathway Database, Metabolite
Annotation, Cluster Analysis, Differential Analysis, Functional
Analysis, Network Construction, Meta-Analysis. The column Key
Technique indicates the core technique for functional analysis.
The two columns Strengths and Weaknesses detail the advan-
tages and disadvantages of each individual method, respectively.
The column Usage provides a detailed description on how users
can execute each method. For web-based tools, the column points
to the tutorial page of each tool. For standalone tools, the column
describes how users can run the methods using our newly created
wrappers.

Second, we provide an evaluation of each method in
Supplementary Table S2. We use the following metrics: software
accessibility, installation, documentation, and user-friendliness.
Each metric is scored on a scale from 1 to 10, with higher scores
indicating better evaluation. Regarding software accessibility,
most web-based tools are scored high due to their ease of access
and the seamless nature of updates, which do not necessitate
software reinstallation by users. The installation metric measures
how easy to install the software. MetaboLyzer, PAPi, metaX,
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and ssPA require manual installation of dependencies without
guidance while ogPLS and PUMA need source code fixes. The
documentation metric assesses the quality of documentation,
including working examples, parameter setting, and installation
instructions. User-friendliness rates software design from user
perspectives. Web-based and GUI tools that are easy to navigate
receive the highest scores.

Finally, we provide a general guideline (Fig. 5) for selecting the
most suitable functional analysis methods in specific situations.
To demonstrate how to use the guideline to select the best method
for a specific application, consider a scenario where users need
to preprocess 3D files. In this case users can choose any of the
five methods: XCMS, MetaboAnalyst, specimine, IP4M, and metaX.
Among these, MetaboAnalyst has the highest score (a total score
of 40) while metaX allows users to integrate metabolomics data
with other omics types. Note that besides experiment design,
input, and evaluation scores, users can also choose a method
based on methodological categories (ORA, FCS, TPA).

Outstanding challenges and solutions
This section discusses the important challenges in the field that
remain unsolved. Here we compose a comprehensive list of these
challenges in Fig. 6(A–D), emphasizing future functional anal-
ysis tools should take these factors into consideration. These
include challenges in LC-MS data processing, metabolite anno-
tation, incomplete pathway databases, and methodological lim-
itations. Although LC-MS data processing and metabolite annota-
tion are general challenges for metabolomics studies, they have
significant impacts on functional analysis. Proper data process-
ing helps to reduce noise, correct for instrumental variations,
and improve the overall signal-to-noise ratio. This is crucial for
detecting true biological signals that directly influence functional
analysis results [35, 108]. Similarly, metabolite annotation is cru-
cial for functional analysis because most approaches take the list
of metabolites and their intensity as input. Accurate annotation
allows researchers to map detected metabolites to known biolog-
ical pathways and functions, enabling a deeper understanding of
the underlying biological processes [109].

Parameter setting for LC-MS data processing
The quality of the processed data affects the accuracy of sub-
sequent analyses, including metabolite annotation, biomarker
detection, and functional analysis [35]. In each run, LC-MS gener-
ates a 3D file that contains critical information such as retention
time (RT) data in chromatograms, mass-to-charge ratio (m/z) in
MS spectra, and the relative abundance for each specific ion. To
extract meaning insights from these 3D files, a robust prepro-
cessing pipeline is essential to generate meaningful features (i.e.
peaks) characterized by their RTs, m/z values and intensities at a
low false-positive rate. Pivotal stages in this pipeline encompass
noise filtering, peak detection, RT alignment, peak matching, and
normalization.

Suboptimal parameter choices can easily lead to biased results,
thereby impacting subsequent analyses. Various software solu-
tions have emerged to facilitate users in executing this pipeline,
spanning both commercial and non-commercial domains. Among
the tools that can perform functional analysis, XCMS stands out
as the most popular choice, with a majority of the methods relying
on its capabilities for data processing. There are other tools that
were recently developed specially for optimizing the LC-MS Data
Processing, including IPO [110], AutoTuner [111], MetaboAnalystR
[112], DeepRTAlign [113], and PeakDecoder [114]. IPO, AutoTuner,

MetaboAnalystR were designed to optimize the parameters in the
process used for XCMS. DeepRTAlign is a deep learning-based tool
trained on multiple datasets to improve RT alignment in LC-MS
studies. PeakDecoder learns patterns from raw data to accurately
identify when different compounds are genuinely eluting or mov-
ing together through the chromatographic and MS processes.

Despite recent efforts, choosing optimal parameters remains
a challenge due to the vast number of parameter combinations
and the difficulty in measuring the quality of the results. One
direction to improve the quality of LC-MS processing is to intro-
duce more experimentally acquired chromatography retention
time datasets, including both monotonic and non-monotonic RT
shifts. This would allow us to leverage the power of deep learning
models to learn patterns in the data more effectively and to
have more resources to validate the capabilities of these methods.
Additionally, although DeepRTAlign primarily focuses on MS data
for RT alignment, it does not utilize tandem MS (MS2) information.
MS2 involves the breakdown of selected ions (precursor ions) into
ion fragments (product ions). Incorporating this MS2 information,
such as ion intensities and fragmentation patterns, could enhance
the model’s accuracy. A potential approach is to extend DeepRTAl-
ign into a multi-task learning framework. In this framework, one
task would handle MS data-based RT alignment, while the other
would focus on MS/MS (MS2) data.

Incomplete metabolite annotation
Identifying the set of putative metabolites (metabolite annota-
tion) plays a crucial role in functional analysis because they
are the direct input of most functional analysis methods. High-
resolution LC-MS instruments in untargeted mode can yield
more than 10, 000 peaks for human samples. Only a fraction of
these peaks can be confidently annotated, leaving a substantial
percentage of peak unidentified [115]. Many peaks may represent
in-source fragments, adducts, and isotopes of the same metabo-
lite, thereby complicating the identification of the complex
metabolite pool.

Another important matter is the accuracy of the annotation.
Mass tolerance of the LC-MS instruments plays an important
role in this matter [35, 116, 117]. Traditionally, many believe
that a mass tolerance of 5 ppm or less would suffice [118], but
this remains controversial. However, a recent benchmark article
suggests that the ideal mass tolerance should be between 1 and 3
ppm, especially for annotation approaches that are based on m/z
values or a combination of m/z values and RTs [35]. Other articles
indicate that a very high mass accuracy (e.g. less than 1 ppm or
even 0.1 ppm) is still insufficient for observing accurate outcomes
of metabolite annotation [116, 117].

Many methods have been developed to facilitate a compre-
hensive annotation of metabolites. These include deep learn-
ing approaches that train their models on millions of known
chemical structures to predict compound classes given spec-
tral data [119–121]. Other methods employ network analysis for
metabolite annotation, wherein known metabolites within a clus-
ter of connected peaks are used in annotating their neighboring
compounds [107, 122, 123]. Despite recent efforts, the predictive
abilities and accuracy remain significantly constrained by our
current knowledge bases [124–126].

Recognizing the limitations of current annotation approaches,
Mummichog attempts to reduce the need for a complete anno-
tation. Mummichog assigns all matched metabolites to DE fea-
tures, and keeps pathways that have those metabolites work-
ing locally in concert. One drawback is that the assumption on
locally connected subgraphs might not hold true in all cases,
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Figure 5. Guideline for selecting suitable methods for functional analysis. Depending on research design and input, users can follow the arrows on the
diagram to choose a suitable approach. For instance, users who wish to preprocess metabolomics data (e.g. 3D files), then they can choose among
five methods: XCMS, MetaboAnalyst, specmine, IP4M, and metaX. XCMS is ORA-based while the remaining four methods are FCS-based. If users
wish to preprocess and integrate metabolomics with other omics types then metaX is the only option. If users have global/untargeted metabolomics
data, they can use Mummichog to perform functional analysis. Otherwise, they can choose from the remaining 18 methods. Among these, four
methods (PaintOmics, Pathview, Metscape, and IMPaLA) can perform functional analysis using multi-omics integration, while the rest only work with
metabolomics data. The diagram also shows the summary statistics of the methods, including the quality of their ease of access, ease of installation,
documentation, and user-friendliness. Users can also choose a method based on the statistics provided, or based on method category (ORA, FCS, TPA).

i.e. pathways might be active even when constituent metabolites
are not strongly connected [127]. This algorithm is also used
by XCMS and MetaboAnalyst. MetaboAnalyst further improves
Mummichog by combining both known metabolites and unde-
tected peaks in their functional analysis. MetaboAnalyst first
performs annotation to tentatively identify a set of metabolites
with high confidence, leaving a subset of undetected peaks. It then
utilizes Mummichog’s algorithm to perform functional analysis
using both sets.

There are two strategies to potentially mitigate the impact
of incomplete metabolite annotation on functional analysis.
One strategy is to combine the knowledge available in different
annotation databases. Such approach would allow us to increase
the number of identified metabolites and the reliability. Another

strategy is to further improve the approach introduced by
MetaboAnalyst, i.e. combining both identified and undetected
peaks in the process of pathway analysis and functional
annotation. We can combine multiple databases and methods
to identify a reliable set of known metabolites and a set of peaks
that cannot be detected by any method or database. After that,
we can use different methods for functional analysis using both
detected metabolites and undetected peaks.

Incomplete pathway databases
Notably, there is a limited coverage of experimentally validated
metabolites in the current pathway databases, such that roughly
half of known compounds can be found in pathway databases
[128]. The metabolic functions of missing compounds remain
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Figure 6. Outstanding challenges in functional analysis using metabolomics data. The challenge arises at each stage of the analysis pipeline, spanning
from the initial processing of 3D files from LC-MS instruments to the identification of significantly impacted pathways. (A) LC-MS data preprocessing
requires optimal parameter selection to effectively extract meaningful spectral features. (B) Metabolite annotation poses a substantial computational
challenge due to the scarcity of comprehensive reference metabolite databases. (C) The discrepancies and gaps in current pathway databases affect the
performance of functional analysis methods. (D) Limitations in methodology include a bias towards well-established pathways, the need for an optimal
approach to integrate multi-omics data and the lack of benchmarking datasets for method assessment.

elusive due to the incomplete nature of pathway databases, which
lack comprehensive information on known biochemical reactions
[17]. Therefore, enhancing pathway curation in which unassigned
compounds are involved stands as important area of scientific
investigation [129].

Another critical considerable effect is the type of compound
identifiers utilized in the pathway databases. For example, KEGG
and BioCyc use their own identifiers, while Reactome uses ChEBI
identifiers. Converting data identifiers to database-specific equiv-
alents may result in information loss and ambiguous mapping,
as not all identifiers map directly to database IDs. Many compu-
tational solutions have been proposed to bridge the dataset ele-
ments and pathway databases nodes based on chemical ontolo-
gies [130, 131]. However, this may affect pathway analysis results,
as multiple data elements may map to a single node in the
pathway database. Moreover, a discrepancy often exists between
the chemical descriptions in pathway databases and the datasets.
A study by Mubeen et al. [132] demonstrates that an integrated
resource could yield more reliable outcomes compared to using
a single database in isolation. Hence, further investigation is
required to explore the interplay between chemical ontologies

across databases, enabling the development of a unified source
for compound identifier mapping.

In response, data-driven approaches could be leveraged to
identify novel pathways or to expand existing ones. Recent efforts
include ML techniques, such as graph or network embedding tech-
niques [133] and link prediction frameworks [134], that could be
applied to metabolomics data to identify metabolite-metabolite
associations and predict missing pathway interactions. Graph
embedding techniques enable the representation of complex bio-
logical networks in lower-dimensional spaces while preserving the
structural information, allowing for more efficient analysis and
the identification of hidden metabolite relationships that might
not be apparent in raw data. Link prediction frameworks, by lever-
aging paths of length three (L3), identify potential interactions
between metabolites that are not directly connected but share
common neighbors, making it particularly useful for filling gaps
in existing networks and expanding known metabolic pathways.

To address the challenge of incomplete pathway databases,
a key strategy could be to actively expand the collection
of metabolic pathways from natural sources. This would
involve concerted efforts to discover new pathways linked to
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well-established metabolites, as well as to identify new metabo-
lites, particularly those from under-explored ecosystems that
may contribute to new pathways. Integrating these new pathways
into existing databases would enhance make pathway databases
more comprehensive. In addition, one can consider adding the
interaction among multi-omics data to make the pathways more
complete. By integrating different omics layers, investigators
can identify novel pathway connections that are relevant to the
studied conditions.

It is also worth mentioning that experimental conditions, cell
types, and time points associated with pathway construction
are often unspecified in pathway databases. Biochemical reac-
tions can be influenced by environmental factors at various time
points, resulting in diverse outcomes when identifying affected
pathways. Therefore, one can consider adding these information
to pathway databases and pathway analysis approaches. Integrat-
ing information on cell and tissue types, diverse experimental
conditions, and environmental exposures into pathway interac-
tions will be essential areas of investigation for future method
development.

Methodological limitations
There are a number of measurable and unmeasurable factors that
lead to bias in functional analysis. Inherent disparities between
pathway databases inevitably influence the results of functional
analyses, regardless of the method employed [135]. Notably, the
size of pathway can introduce bias in statistical analysis (e.g.
ORA and FCS). As such, larger pathways are more likely to be
identified as significant by enrichment analysis methods [35].
Among the surveyed methods, ogPLS is the only approach that
resolves this issue by introducing a pathway debiasing coefficient
to penalize pathways sizes. Another issue is that the number
of pathways involved in an analysis directly can influence the
adjusted P-values, i.e. testing more pathways leads to a greater
loss of statistical power [78].

Among the examined methods, TPA-based approaches offer
partial correction for bias. However, accounting for the intricate
interactions among biochemical reactions can significantly com-
plicate pathway analysis methods. Metabolites interact dynam-
ically, in which output from one reaction serving as input for
another. Furthermore, pathway databases like KEGG, Reactome, or
BioCyc encompass both metabolic and signaling pathways, each
of which represents pathway components differently. Metabolic
pathways represent chemical reactions in which the metabolites
are substrates and products while enzymes are catalysts. These
chemical reactions can be represented as a graph in which nodes
are metabolites and edges are reactions that can be boosted by
enzymes (located in the middle of the edges). In contrast, signaling
pathways use nodes to represent genes/compounds and edges to
represent the interactions among compounds.

Because of the distinctively different structures between
metabolic and signaling pathways, TPA methods developed
for signaling pathways may not be able to analyze metabolic
pathways and vice versa. For instance, both CrossTalkZ [136]
and SPATIAL [137] require to exclude metabolic pathways before
constructing their gene interaction network. This limitation
possibly stems from relying only on single-omics data. To mitigate
this issue, software developers should focus on integrating
genomics and metabolomics information to provide a more
comprehensive view of pathway activity. In addition, it is
important to note that current methods (ORA, FCS, TPA) often
disregard metabolite–metabolite correlations within pathways,
which might introduce bias to the pathway results [35, 138].

Integrating a preprocessing step that filters out one metabolite
from each highly or lowly correlated pair might be effective. This
approach would focus the functional analysis on metabolites with
moderate and biologically relevant interactions.

Multi-omics data integration also poses significant challenges
in method development [139]. First, different omics data require
tailored and specific data processing procedures that require
different levels of expertise. Second, certain omics layer might
be important in a condition but is relevant in another. However,
current integrative methods over simplify the integration pro-
cess and often weight all omics layers the same in all condi-
tions. Third, it is essential to consider inter-dependency among
metabolites and other multi-omics layers. Incorporating such
inter-connectivity in functional analysis would greatly enhance
statistical power and interpretability of analysis results. For exam-
ple, one potential improvement is to should model the impact
of single-nucleotide polymorphisms (SNPs) on pathways, which
is completely missing in current knowledge bases. In addition,
one gene might code for multiple transcripts that lead to dif-
ferent proteins and enzymes, which should be considered in
functional analysis. Recently, MetaboAnalyst proposed a causal
analysis between genomics and metabolomics with phenotypes
to detect potential metabolite-phenotype associations [140, 141].
This paves the way for integration of SNPs and metabolomics data
in the future. However, the proposed method is oversimplified and
there are many other omics layers that need to be accounted for.

Further, when it comes to method assessment, there is a
notable absence of benchmark datasets where we know exactly
which pathways are impacted and which are not. Due the lack
of real benchmark datasets, functional analysis approaches are
often evaluated using simulated data. The common practice in
generating simulation includes the following: (1) add noise to
real metabolomics data (targeted and untargeted), (2) knockout
enzymes in specific pathways, or (3) alter the status of reactions
[78]. Although this approach has the ability to simulate a large
number of samples, it may not reflect real-world scenarios.
In addition, simulation is subjected to bias because simulated
data is generated based on some assumptions which are usually
identical with the assumptions made in designing the approach.
Consequently, opting for real biological data as benchmark
datasets is preferable for a more nuanced evaluation.

In summary, several challenges remain despite the progress
made in functional analytical methods. First, selection of
parameters for peak preprocessing, metabolite annotation, and
absence of context- and cell-specific information are out-of-
methodological hurdles. These issues indirectly present barriers
to the implementation of functional analysis methods at their
full potential. Second, many methodological assumptions that
are present during development of tools cause variations in
the outcome of a functional analysis approach. To harness the
potential benefits of high-throughput technologies and enhance
our understanding of large biological systems, the community
needs to collaboratively address these challenges to advance
functional analysis, enhancing its specificity, sensitivity, and
relevance. In conclusion, functional analysis approaches for
metabolomics data have progressed significantly in the past two
decades, providing deep insights into the mechanisms underlying
biological-relevant phenotypes.

Conclusion
Over the last two decades, functional analytical methods have
served as the primary means for uncovering mechanisms
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underlying different phenotypes. This review summarizes the
state of functional analysis approaches designed for metabolomics
data. The field aims to identify pathways that are perturbed by
a condition through computational approaches. We examined
the three main categories of methods: ORA, FCS, and TPA.
Each category has strengths and limitations, and the elected
method depends on the research question and the available
data. ORA methods are computationally efficient and provide
a simple way to identify overrepresented pathways. However,
these methods rely on metabolites differentially expressed and
do not integrate the magnitude of expression changes. FCS
methods address this limitation by using the quantitative data
and changes of metabolites within the pathways. TPA methods
incorporate topological information of metabolic networks,
leading to biologically meaningful results. Despite the long-
standing proposal of these categories, current approaches
assigned to them have not satisfactorily addressed the existing
weaknesses.

Key Points

• The article recapitulates the complete workflow of
metabolomics experiments.

• Functional or pathway analysis holds significance as
it offers understanding into the biological mechanisms
beyond biomarker detection and differential analysis.

• This article thoroughly investigates 24 pathway analysis
approaches in terms of their accessibility, supported
databases, data types, methodologies, and other down-
stream analyses.

• The article discusses outstanding challenges in
metabolomics studies that need to be addressed by
future research.

• The main objective is to provide experimenters and
potential users with a complete picture of available
resources so that they can choose the most appropriate
approach for their research goal.

Supplementary data
Supplementary data are available at Briefings in Bioinformatics
online.
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