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Methods and devices for integrating a plurality of data types 
are provided . The methods include obtaining , via a proces 
sor , a plurality of datasets of a given type including mea 
surements of one or more quantitative variables related to a 
phenotype comparison , and a plurality of datasets of a 
different type including measurements of one or more quan 
titative variables related to the same phenotype comparison ; 
calculating , via the processor , effect sizes of the variables of 
the first type , effect sizes of the variables of the second type , 
and global p - values for the first and second data types ; and 
combining , via the processor , the effect sizes and / or the 
global p - values to identify the variables of either type that 
are relevant in the given phenotype comparison . 
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ORTHOGONAL APPROACH TO INTEGRATE 
INDEPENDENT OMIC DATA 

CROSS - REFERENCE TO RELATED 
APPLICATIONS 

[ 0001 ] This application claims the benefit of U . S . Provi 
sional Application No . 62 / 333 , 407 , filed on May 9 , 2016 . 
The entire disclosure of the above application is incorpo 
rated herein by reference . 

GOVERNMENT RIGHTS 
10002 ] This invention was made with U . S . Government 
support under NIH RO1 DK089167 , R42 GM087013 and 
NSF DB1 - 0965741 . The Government has certain rights in 
the invention . 

FIELD 

[ 0003 ] The present disclosure relates to two - dimensional 
data integration that combines data obtained from many 
independent experiments . 

BACKGROUND 
[ 0004 ] This section provides background information 
related to the present disclosure which is not necessarily 
prior art . 
[ 0005 ] High - throughput technologies for gene expression 
profiling , such as DNA microarray or RNA - Seq , have trans 
formed biomedical research by allowing for comprehensive 
monitoring of biological processes . A typical comparative 
analysis of expression data , e . g . , patients ( “ unhealthy con 
dition , ” i . e . , disease ) versus control samples ( " healthy con 
dition ” ) , generally yields a set of genes that are differentially 
expressed ( DE ) between the conditions . These sets of DE 
genes contain the genes that are likely to be involved in the 
biological processes responsible for the disease . However , 
such sets of genes are often insufficient to reveal the under 
lying biological mechanisms . In addition , due to inherent 
bias and batch effects present in individual studies , inde 
pendent experiments studying the same disease often yield 
completely different lists of DE genes , making interpretation 
extremely difficult . 
[ 0006 ] In order to translate these lists of DE genes into a 
better understanding of biological phenomena , a variety of 
knowledge bases have been developed that map genes to 
functional modules . Depending on the amount of informa 
tion that one wishes to include , these modules can be 
described as simple gene sets based on a function , process 
or component ( e . g . , the Molecular Signatures Database 
MSigDB ) , organized in a hierarchical structure that contains 
information about the relationship between the various mod 
ules or organized into pathways that describe in detail all 
known interactions between various genes that are involved 
in a certain phenomenon . Exemplary pathway databases 
include : the Kyoto Encyclopedia of Genes and Genomes 
( KEGG ) , Reactome , and Biocarta . 
[ 0007 ] Analysis techniques have been developed to help 
interpret such sets of DE genes . The earliest approaches use 
Over - Representation Analysis ( ORA ) to identify gene sets 
that have more DE genes than expected by chance . The 
drawbacks of this type of approach include that : ( i ) it only 
considers the number of DE genes and completely ignores 
expression changes ; ( ii ) it assumes that genes are indepen 
dent , which they are not ; and ( iii ) it ignores the interactions 

between various modules . Functional Class Scoring ( FCS ) 
approaches , such as Gene Set Enrichment Analysis ( GSEA ) 
and Gene Set Analysis ( GSA ) , have been developed to 
address some of the issues raised by ORA approaches . The 
main improvement of FCS is the observation that small but 
coordinated changes in expression of functionally related 
genes can have significant impacts on pathways . Both FCS 
and ORA approaches can be used with gene sets , ontologies , 
or pathways . However , these approaches do not account for 
the hierarchical structure of pathways or interactions 
between genes . Topology - based approaches , which fully 
exploit all the knowledge about how genes interact as 
described by pathways , have been developed more recently . 
The first such techniques were ScorePAGE for metabolic 
pathways and the Impact Analysis for signaling pathways . 
[ 0008 ] Non - coding RNAs , especially microRNAs ( miR 
NAs ) have come into the spotlight more recently . Data 
describing observed and predicted interactions between 
miRNA and mRNA is accumulating rapidly in several 
databases , such as , for example , miRTarBase , miRWalk , 
starBase , and TargetScan . In addition , miRNA expression 
platforms , datasets and analysis tools have become more and 
more prevalent . 
[ 0009 ] Two of the most widely used approaches to include 
miRNA expression data for the purpose of pathway analysis 
are Micrographite and PARADIGM . Micrographite is a 
topology - aware pathway analysis approach that is able to 
integrate sample - matched miRNA and mRNA expression . 
PARADIGM uses a probabilistic graphical model ( PGM ) to 
integrate information of different data types , which may 
include mRNA and miRNA . 
[ 0010 ] One drawback of these tools for integrating 
miRNA and mRNA is that they need sample - matched data . 
In other words , these tools require both data types to be 
available for each individual patient . This requirement 
reduces their practical availability because sample - matched 
data is relatively rare and difficult or expensive to obtain . 
Therefore , the vast amount of available expression data , 
both mRNA and mi RNA , is not fully utilized . 
[ 0011 ] Another drawback is that these methods are unable 
to exploit heterogeneous information available across inde 
pendent studies . Therefore , they are not able to address the 
inevitable bias inherent in individual studies . It would be 
tremendously beneficial if all datasets associated with a 
given condition could be analyzed together because of the 
increased power expected to be associated with the much 
larger number of measurements in the combined dataset . 
Large public repositories such as Gene Expression Omni 
bus , The Cancer Genome Atlas ( cancergenome . nih . gov ) , 
Array Express , and Therapeutically Applicable Research to 
Generate Effective Treatments ( ocg . cancer . gov / programs / 
target ) store thousands of datasets , within which there are 
independent experimental series with similar patient cohorts 
and experiment design . Expression data , mRNA as well as 
miRNA , are particularly prevalent in public databases , such 
that some disease conditions are represented by half a dozen 
studies or more . 
[ 0012 ] The process of combining sample - matched data of 
different types is referred to as " vertical ” integrative analy 
sis , while that of combining multiple unmatched studies 
using the same data type is referred as “ horizontal ” meta 
analysis . Thus , the vertical and horizontal analyses are 
considered “ orthogonal " classes of data integration . For 
microarray data , one of the earliest horizontal approaches for 



US 2019 / 0131019 A1 May 2 , 2019 

combining multiple microarray datasets included the use of 
Fisher ' s method . Since then , other sophisticated approaches 
have been proposed for the integration of multiple gene 
expression datasets , on both gene and pathway levels . The 
majority of these meta - analysis approaches work by com 
bining p - values obtained from individual gene expression 
datasets . However , the approaches typically do not try to 
account for data heterogeneity , attributed to batch effects , 
patient heterogeneity , and disease complexity , responsible 
for expression changes across different sources . Accord 
ingly , there remains a need for a framework that is able to 
integrate unmatched miRNA and mRNA data obtained from 
many independent laboratories . 

SUMMARY 
[ 0013 ] This section provides a general summary of the 
disclosure , and is not a comprehensive disclosure of its full 
scope or all of its features . 
0014 ] The current technology provides a method of inte 

grating a plurality of data types . The method includes 
obtaining , via a processor , a plurality of datasets of a given 
type including measurements of one or more quantitative 
variables related to a phenotype comparison , and a plurality 
of datasets of a different type including measurements of one 
or more quantitative variables related to the same phenotype 
comparison ; calculating , via the processor , a first standard 
ized mean difference ( SMD ) , a first standard error , and a first 
p - value for each of the variables and for each dataset present 
in the plurality of datasets of the first type ; calculating , via 
the processor , a second SMD , a second standard error , and 
a second p - value for each of the variables and for each data 
set present in the plurality of datasets of the second type ; 
combining , via the processor , all the effect sizes in each 
individual dataset to calculate an effect size for each of the 
variables of the first data type , from the first SMD and the 
first standard error ; combining , via the processor , all p - val 
ues in each individual dataset to calculate a global p - value 
for this first data type ; combining , via the processor , all the 
effect sizes in each individual dataset to calculate an effect 
size for each of the variables of the second data type , from 
the second SMD and the second standard error ; combining , 
via the processor , all p - values in each individual dataset to 
calculate a global p - value for the second data type ; and 
combining , via the processor , the effect sizes of the variables 
of the first type with the effect sizes of the variables of the 
second type and / or combining the p - values of the variables 
of the first type with the p - values of the variables of the 
second type to identify the variables of either type that are 
relevant in the given phenotype comparison . 
[ 0015 ] In various embodiments , there are more than two 
data types . 
[ 0016 ] The current technology also provides a method of 
identifying a pathway associated with a disease . The method 
includes obtaining , via a processor , a plurality of first 
datasets describing a first quantitative variable related to the 
disease and a plurality of second datasets describing a 
second quantitative variable related to the disease , the plu 
rality of first datasets and the plurality of second datasets 
being provided from independent studies , wherein each of 
the plurality of first datasets and each of the plurality of 
second datasets includes data regarding disease samples and 
healthy control samples ; modifying , via the processor , 
known pathways related to the disease with information 
provided in both the plurality of first datasets and the 

plurality of second datasets to generate augmented pathways 
including a plurality of first nodes associated with the first 
quantitative variable and a plurality of second nodes asso 
ciated with the second quantitative variable , wherein the first 
nodes and second nodes are individually interconnected ; 
calculating , via the processor , a first standardized mean 
difference ( SMD ) , a first standard error , and a first p - value 
for each of the plurality of first datasets ; calculating , via the 
processor , a second SMD , a second standard error , and a 
second p - value for each of the plurality of second datasets ; 
estimating , via the processor , a first effect size from the first 
SMD and the first standard error ; combining , via the pro 
cessor , the first p - values ; estimating , via the processor , a 
second effect size from the second SMD and the second 
standard error ; combining , via the processor , the second 
p - values ; calculating , via the processor , a probability of 
obtaining at least an observed relationship between the first 
and second quantitative variables associated with the disease 
( PNDE ) and a p - value that depends on identities of first or 
second quantitative variables that are differentially related 
and described by the pathway ( P PERT ) from the augmented 
pathways , the estimated first effect size , the combined first 
p - values , the estimated second effect size , and the combined 
second p - values ; and combining , via the processor , PNDE 
and PPERT to generate a single p - value that represents how 
likely a pathway is impacted under the effect of the disease . 
[ 0017 ] In various embodiments , the estimating a first 
effect size and the estimating a second effect size are 
performed by using a Restricted Maximum Likelihood 
( REML ) algorithm . 
[ 0018 ] In various embodiments , the combining the first 
p - values and the combining the second p - values is per 
formed by add - CLT . 
[ 0019 ] In various embodiments , the first quantitative vari 
able and the second quantitative variable individually 
include one of molecular data and clinical data . 
0020 ] In various embodiments , the molecular data 
describes assay results related to at least one of mRNA , 
miRNA , protein abundance , metabolite abundance , and 
methylation , and the clinical data describes patient informa 
tion related to at least one of weight , blood pressure , blood 
metabolite level , blood sugar , heart rate , vision score , and 
hearing score . 
10021 ] In various embodiments , the method further 
includes generating a plurality of single p - values corre 
sponding to a plurality of pathways and generating a graphi 
cal representation of the pathways ranked according to their 
corresponding single p - values . 
[ 0022 ] The current technology also provides an apparatus 
for identifying a pathway associated with a disease . The 
apparatus includes a memory configured to store one or 
more applications ; a processor communicatively coupled to 
memory , the processor , upon executing the one or more 
applications , is configured to : obtain a plurality of first 
datasets describing a first quantitative variable related to the 
disease and a plurality of second datasets describing a 
second quantitative variable related to the disease , the plu 
rality of first datasets and the plurality of second datasets 
being provided from independent studies , wherein each of 
the plurality of first datasets and each of the plurality of 
second datasets includes data regarding disease samples and 
healthy control samples ; modify known pathways related to 
the disease with information provided in both the plurality of 
first datasets and the plurality of second datasets to generate 
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plurality of second datasets being provided from indepen 
dent studies , wherein each of the plurality of first datasets 
and each of the plurality of second datasets includes data 
regarding disease samples and healthy control samples ; 
modify known pathways related to the disease with infor 
mation provided in both the plurality of first datasets and the 
plurality of second datasets to generate augmented pathways 
including a plurality of first nodes associated with the first 
quantitative variable and a plurality of second nodes asso 
ciated with the second quantitative variable , wherein the first 
nodes and second nodes are individually interconnected ; 
calculate a first standardized mean difference ( SMD ) , a first 
standard error , and a first p - value for each of the plurality of 
first datasets ; calculate a second SMD , a second standard 
error , and a second p - value for each of the plurality of 
second datasets ; estimate a first effect size from the first 
SMD and the first standard error ; combine the first p - values ; 
estimate a second effect size from the second SMD and the 
second standard error ; combine the second p - values ; calcu 
late a probability of obtaining at least an observed relation 
ship between the first and second quantitative variables 
associated with the disease ( PNDE ) and a p - value that 
depends on identities of first or second quantitative variables 
that are differentially related and described by the pathway 
( PPERT ) from the augmented pathways , the estimated first 
effect size , the combined first p - values , the estimated second 
effect size , and the combined second p - values , and combine 
PNDE and PPERT to generate a single p - value that represents 
how likely a pathway is impacted under the effect of the 

27 

disease . 

augmented pathways including a plurality of first nodes 
associated with the first quantitative variable and a plurality 
of second nodes associated with the second quantitative 
variable , wherein the first nodes and second nodes are 
individually interconnected ; calculate a first standardized 
mean difference ( SMD ) , a first standard error , and a first 
p - value for each of the plurality of first datasets ; calculate a 
second SMD , a second standard error , and a second p - value 
for each of the plurality of second datasets ; estimate a first 
effect size from the first SMD and the first standard error ; 
combine the first p - values ; estimate a second effect size from 
the second SMD and the second standard error combine the 
second p - values ; calculate a probability of obtaining at least 
an observed relationship between the first and second quan 
titative variables associated with the disease ( PNDE ) and a 
p - value that depends on identities of first or second quanti 
tative variables that are differentially related and described 
by the pathway ( P PERT ) from the augmented pathways , the 
estimated first effect size , the combined first p - values , the 
estimated second effect size , and the combined second 
p - values ; and combine Pyde and P PERT to generate a single 
p - value that represents how likely a pathway is impacted 
under the effect of the disease . 
[ 0023 ] In various embodiments the processor is config 
ured to estimate a first effect size and estimate a second 
effect size using a Restricted Maximum Likelihood ( REML ) 
algorithm . 
[ 0024 ] In various embodiments the processor is config 
ured to combine the first p - values and to combine the second 
p - values by add - CLT . 
[ 0025 ] In various embodiments the first quantitative vari 
able and the second quantitative variable individually 
include one of molecular data and clinical data . 
[ 0026 ] In various embodiments the molecular data 
describes assay results related to at least one of mRNA , 
miRNA , protein abundance , metabolite abundance , and 
methylation , and the clinical data describes patient informa 
tion related to at least one of weight , blood pressure , blood 
metabolite level , blood sugar , heart rate , vision score , and 
hearing score . 
[ 0027 ] In various embodiments the processor is config 
ured to generate a plurality of single p - values corresponding 
to a plurality of pathways and generate a graphical repre 
sentation of the pathways ranked according to their corre 
sponding single p - values . 
[ 0028 ] In various embodiments , the processor is further 
configured to cause the graphical representation to be dis 
played at a display . 
[ 0029 ] Additionally , the current technology provides a 
distributed computing system for identifying a pathway 
associated with a disease . The distributed computing system 
includes a first server configured to store a plurality of first 
datasets ; a second server configured to store a plurality of 
second datasets , the second server different from the first 
server ; a third server communicatively coupled to the first 
server and the second server via a distributed communica 
tion network , the third server including : a memory config 
ured to store one or more applications ; processor commu 
nicatively coupled to the memory , the processor , upon 
executing the one or more applications , is configured to : 
obtain the plurality of first datasets describing a first quan 
titative variable related to the disease and the plurality of 
second datasets describing a second quantitative variable 
related to the disease , the plurality of first datasets and the 

[ 0030 ] In various embodiments , the processor is config 
ured to estimate a first effect size and estimate a second 
effect size using a Restricted Maximum Likelihood ( REML ) 
algorithm . 
[ 0031 ] In various embodiments , the processor is config 
ured to combine the first p - values and to combine the second 
p - values by add - CLT . 
[ 0032 ] In various embodiments , the first quantitative vari 
able and the second quantitative variable individually 
include one of molecular data and clinical data . 
[ 0033 ] In various embodiments , the molecular data 
describes assay results related to at least one of mRNA , 
miRNA , protein abundance , metabolite abundance , and 
methylation , and the clinical data describes patient informa 
tion related to at least one of weight , blood pressure , blood 
metabolite level , blood sugar , heart rate , vision score , and 
hearing score . 

[ 0034 ] In various embodiments , the processor is config 
ured to generate a plurality of single p - values corresponding 
to a plurality of pathways and generate a graphical repre 
sentation of the pathways ranked according to their corre 
sponding single p - values . 
[ 0035 ] In various embodiments , the distributed computing 
system further includes a display , wherein the processor is 
further configured to cause display of the graphical repre 
sentation at the display . 
[ 0036 ] Further areas of applicability will become apparent 
from the description provided herein . The description and 
specific examples in this summary are intended for purposes 
of illustration only and are not intended to limit the scope of 
the present disclosure . 
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DRAWINGS 
[ 0037 ] The drawings described herein are for illustrative 
purposes only of selected embodiments and not all possible 
implementations , and are not intended to limit the scope of 
the present disclosure . 
[ 0038 ] FIG . 1 is a simplified block diagram of an example 
distributed computing system . 
[ 0039 ] FIG . 2 is a functional block diagram of an example 
implementation of a client device . 
[ 0040 ] FIG . 3 is a functional block diagram of an example 
implementation of a server . 
[ 0041 ] FIG . 4 is a functional block diagram of an example 
database in accordance with an example implementation of 
the present disclosure . 
[ 0042 ] FIG . 5 shows a graphical representation of a frame 
work according to various aspects of the current technology . 
The input includes : ( i ) a pathway database and a miRNA 
database including known targets ( panel a ) , ( ii ) multiple 
mRNA expression datasets ( panel b ) , and ( iii ) multiple 
miRNA expression datasets ( panel c ) . Each expression data 
set includes two groups of samples , e . g . , disease versus 
control . The framework first augments the signaling path 
ways with miRNA molecules and their interactions with 
coding mRNA genes ( panel d ) . It then calculates the stan 
dardized mean difference and its standard error in each 
expression dataset . The summary size effect across multiple 
datasets for each data type are then estimated using the 
REstricted Maximum Likelihood ( REML ) algorithm ( panels 
e , f ) . Similarly , the p - value for differential expression is 
calculated for each dataset and then combined using the 
additive method ( add - CLT ) . The augmented pathways , the 
combined p - values , and the estimated size effects then serve 
as input for ImpactAnalysis , which is a topology - aware 
pathway analysis method ( panel g ) . 
10043 ] FIG . 6 shows a graphical representation of an 
augmented pathway regarding colorectal cancer . The green 
rectangle nodes ( light shaded rectangles ) and black arrows 
show the KEGG genes and their interactions while the blue 
nodes ( dark shaded rectangles ) and bar - headed lines show 
the miRNAs and their interactions with the genes , respec 
tively . In each miRNA node added , the total number of 
miRNAs ( circles ) that are known to target the gene , and the 
names of the miRNA ( blue ( dark shaded ) rectangles ) that 
were actually measured in the 8 colorectal miRNA datasets , 
are shown . This is a subset of the total set of miRNAs known 
to target genes on this pathway . 
[ 0044 ] FIG . 7 shows a graphical representation of an 
augmented pathway regarding pancreatic cancer . The green 
rectangle nodes ( dark shaded rectangles ) and black arrows 
show the KEGG genes and their interactions while the blue 
nodes ( dark shaded rectangles ) and bar - headed lines show 
the miRNAs and their interactions with the genes . In each 
miRNA node added , the total number of miRNAs ( circles ) 
that are known to target the gene , and the names of the 
miRNA ( blue ( dark shaded ) rectangles ) that were actually 
measured in the 6 pancreatic miRNA datasets , are shown . 
This is a subset of the total set of miRNAs known to target 
genes on this pathway . 
10045 ) FIG . 8 is a flow chart illustrating an example 
method for identifying a pathway associated with a disease 
in accordance with an example embodiment of the present 
disclosure . 
10046 Corresponding reference numerals indicate corre 
sponding parts throughout the several views of the drawings . 

DETAILED DESCRIPTION 
[ 0047 ] Example embodiments will now be described more 
fully with reference to the accompanying drawings . 
[ 0048 ] The current technology provides a framework that 
is able to integrate unmatched miRNA and mRNA data 
obtained from many independent laboratories . While vali 
dated in the context of pathway analysis , the framework can 
be modified to adapt to other domains or applications . This 
framework is not meant to compete with any existing 
approach , but to serve as a bridge between “ horizontal ” and 
" vertical ” data integration . Each building block or technique 
of the framework can be easily substituted for by any other 
similar technique to suit the purpose of future analysis . 
[ 0049 ] The framework is illustrated using 15 mRNA and 
14 miRNA datasets related to two human diseases ( also 
referred to as " conditions ” ) , colorectal cancer and pancreatic 
cancer . The datasets were generated by independent labs , for 
different sets of patients . For both conditions , the framework 
is able to identify pathways relevant to the phenotypes . 
Accuracy is obtained only by integrating the data in both 
directions ( horizontal and vertical ) . However , it is under 
stood that the framework can be applied to other diseases , 
conditions , or characteristics as well . 
[ 0050 ] The framework provides an orthogonal meta 
analysis . Orthogonal classes of integrative techniques can be 
further combined to unravel underlying mechanisms of 
complex diseases . With vast databases of various data types 
being made available , this framework is widely applicable 
because of its relaxed restrictions on the data being inte 
grated . 
[ 0051 ] Below are simplistic examples of a distributed 
computing environment in which the systems and methods 
of the present disclosure can be implemented . Throughout 
the description , references to terms such as servers , client 
devices , applications and so on are for illustrative purposes 
only . The terms server and client device are to be understood 
broadly as representing computing devices with one or more 
processors and memory configured to execute machine 
readable instructions . The terms application and computer 
program are to be understood broadly as representing 
machine readable instructions executable by the computing 
devices . 
[ 0052 ] FIG . 1 shows a simplified example of an example 
computing system 100 . The computing system 100 includes 
a distributed communications system 110 , one or more client 
devices 120 - 1 , 120 - 2 , . . . , and 120 - M ( collectively , client 
devices 120 ) , and one or more servers 130 - 1 , 130 - 2 , . . . , and 
130 - M ( collectively , servers 130 ) . N and M are integers 
greater than or equal to one . The distributed communications 
system 110 may include a local area network ( LAN ) , a wide 
area network ( WAN ) such as the Internet , or other type of 
network . For example , the servers 130 may be located at 
different geographical locations . The client devices 120 and 
the servers 130 communicate with each other via the dis 
tributed communications system 110 . The client devices 120 
and the servers 130 connect to the distributed communica 
tions system 110 using wireless and / or wired connections . 
[ 0053 ] The client devices 120 may include smartphones , 
personal digital assistants ( PDAs ) , laptop computers , per 
sonal computers ( PCs ) , etc . The servers 130 may provide 
multiple services to the client devices 120 . For example , the 
servers 130 may execute software applications developed by 
one or more vendors . The server 130 may host multiple 
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The clinical data can include patient information related to 
at least one of weight , blood pressure , blood metabolite 
level , blood sugar , heart rate , vision score , and hearing 
scores . It is understood that the databases 202 , 204 includes 
a plurality of datasets of a given type that include measure 
ments of one or more quantitative variables related to a 
phenotype comparison . Additionally , the databases 202 , 204 
include a plurality of datasets of a different type that 
measurements of one or more quantitative variables related 
to the same phenotype comparison . The datasets can repre 
sent data pertaining to financial , health , business , social , 
geography , geology , and the like . 
[ 0061 ] The server 130 - 1 receives and stores data to the 
corresponding data structures . The data can be received from 
the client devices 120 - 1 through 120 - M and / or servers 130 - 2 
through 130 - N . The data can be provided by or obtained 
from disparate entities . In an example embodiment , the 
computing system 100 employs an edge computing archi 
tecture , a fog computing architecture , a centralized comput 
ing architecture , and the like . Thus , due to the quantity of 
data within the respective datasets 202 , 204 , data can be 
stored in databases 188 proximate to the server 130 - 1 
allowing for resource pooling , latency reduction , and 
increased processing power . 
[ 0062 ] As described herein , the processor 170 executes the 
one or more server applications 186 to perform the func 
tionality described herein . For example , in one or more 
embodiments , the processor 170 accesses data within the 
various data structures to perform the functionality 
described herein . 

databases that are relied on by the software applications in 
providing services to users of the client devices 120 . 
[ 0054 ] FIG . 2 shows a simplified example of the client 
device 120 - 1 . The client device 120 - 1 may typically include 
a central processing unit ( CPU ) or processor 150 , one or 
more input devices 152 ( e . g . , a keypad , touchpad , mouse , 
touchscreen , etc . ) , a display subsystem 154 including a 
display 156 , a network interface 158 , memory 160 , and bulk 
storage 162 . 
( 0055 ] The network interface 158 connects the client 
device 120 - 1 to the distributed computing system 100 via 
the distributed communications system 110 . For example , 
the network interface 158 may include a wired interface ( for 
example , an Ethernet interface ) and / or a wireless interface 
( for example , a Wi - Fi , Bluetooth , near field communication 
( NFC ) , or other wireless interface ) . The memory 160 may 
include volatile or nonvolatile memory , cache , or other type 
of memory . The bulk storage 162 may include flash memory , 
a magnetic hard disk drive ( HDD ) , and other bulk storage 
devices . 
[ 0056 ] The processor 150 of the client device 120 - 1 
executes an operating system ( OS ) 164 and one or more 
client applications 166 . The client applications 166 include 
an application that accesses the servers 130 via the distrib 
uted communications system 110 . 
[ 0057 ] FIG . 3 shows a simplified example of the server 
130 - 1 . The server 130 - 1 typically includes one or more 
CPUs or processors 170 , a network interface 178 , memory 
180 , and bulk storage 182 . In some implementations , the 
server 130 - 1 may be a general - purpose server and include 
one or more input devices 172 ( e . g . , a keypad , touchpad , 
mouse , and so on ) and a display subsystem 174 including a 
display 176 . 
[ 0058 ] The network interface 178 connects the server 
130 - 1 to the distributed communications system 110 . For 
example , the network interface 178 may include a wired 
interface ( e . g . , an Ethernet interface ) and / or a wireless 
interface ( e . g . , a Wi - Fi , Bluetooth , near field communication 
( NFC ) , or other wireless interface ) . The memory 180 may 
include volatile or nonvolatile memory , cache , or other type 
of memory . The bulk storage 182 may include flash memory , 
one or more magnetic hard disk drives ( HDDs ) , or other 
bulk storage devices . 
[ 0059 ] The processor 170 of the server 130 - 1 executes an 
operating system ( OS ) 184 and one or more server applica 
tions 186 , which may be housed in a virtual machine 
hypervisor or containerized architecture . The bulk storage 
182 may store one or more databases 188 that store data 
structures used by the server applications 186 to perform 
respective functions . 
[ 0060 ] As shown in FIG . 4 , the databases 188 store 
various data structures for storing multiple datasets . For 
example , a first database 202 may store a first dataset that 
describes a first quantitative variable related to the disease . 
A second database 204 may store a second dataset that 
describes a second quantitative variable related to the dis 
ease . While FIG . 4 illustrates a first database 202 and a 
second database 204 , the distributed computing system 100 
can include any number of databases without departing from 
the spirit of the disclosure . The databases 202 , 204 store 
quantitative variables that can include molecular data and / or 
clinical data . For example , the molecular data can include 
assay results related to at least one of mRNA , miRNA , 
protein abundance , metabolite abundance , and methylation . 

Summary 
[ 0063 ] MicroRNAs ( miRNAs ) are small non - coding RNA 
molecules whose primary function is to regulate the expres 
sion of gene products via hybridization to mRNA tran 
scripts , resulting in suppression of translation or mRNA 
degradation . Although miRNAs have been implicated in 
complex diseases , including cancer , their impact on distinct 
biological pathways and phenotypes is largely unknown . 
Current integration approaches require sample - matched 
miRNA / mRNA datasets , resulting in limited applicability in 
practice . Because these approaches cannot integrate hetero 
geneous information available across independent experi 
ments , they neither account for bias inherent in individual 
studies , nor do they benefit from increased sample size . The 
current technology provides a novel framework able to 
integrate miRNA and mRNA data ( vertical data integration ) 
available in independent studies ( horizontal meta - analysis ) 
allowing for a comprehensive analysis of the given pheno 
types . To demonstrate the utility of the framework , a meta 
analysis of pancreatic and colorectal cancer , using 1 , 471 
samples from 15 mRNA and 14 miRNA expression datasets , 
is conducted . The current two - dimensional data integration 
approach greatly increases the power of statistical analysis 
relative to conventional approaches and correctly identifies 
pathways known to be implicated in the phenotypes . The 
framework is general and can be used to integrate other 
types of data obtained from high - throughput assays . 

Methods 
[ 0064 ] The classical pathway analysis begins by consid 
ering a comparison between two conditions , e . g . , disease 
versus healthy . Evidence for differential gene expression can 
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[ 0069 ] As shown in FIG . 5 , the SMD and p - value of a gene 
vary from study to study . REstricted Maximum Likelihood 
( REML ) algorithm is used to estimate the central tendency 
of SMD . The add - CLT method is used to combine the 
independent p - values . Likewise , estimated SMDs and p - val 
ues for miRNA datasets ( panel f ) are computed . 
[ 0070 ] The augmented pathways , the combined p - value , 
together with the estimated size effect then serve as input for 
classical pathway analysis . Here , Impact Analysis , which is 
a topology - aware pathway analysis method , is used to 
calculate a p - value for each augmented pathway ( panel g ) . 
10071 ] Standardized Mean Difference for Each Gene 
[ 0072 ] As an example , a study composed of two indepen 
dent groups is considered , and it is desired to compare their 
means for a given gene . Here , X1 and X2 represent the sample 
means for that gene in the two groups , n , and n , the number 
of samples in each group , and Spooled the pooled standard 
deviation of the two groups . The pooled standard deviation 
and the standardized mean difference ( SMD ) can be esti 
mated as follows . 

Spooled = v V 
( ni - 1 ) S ? + ( n2 – 1 ) S 

ni + n2 - 2 

X - X2 
d = Snooled 

[ 0073 ] The estimation of the standardized mean difference 
described in Equation ( 2 ) may be called Cohen ' s d . The 
variance of Cohen ' s d is given as follows . 

be provided by any technique such as fold change , t - statistic , 
Kolmogorov - Smirnov statistic , or perturbation factor . These 
statistics are then compared against a null distribution to 
determine how unlikely it is for the observed differences 
between the two conditions to occur by chance , thereby 
producing a ranked list of DE genes . After this hypothesis 
testing is done at the gene level , the next step is hypothesis 
testing at the pathway level producing a ranked list of 
impacted pathways . In summary , the input of a classical 
pathway analysis method includes : ( i ) a pathway database , 
and ( ii ) a gene expression dataset . The output is a list of 
pathways ranked according to their p - values . 
[ 0065 ] Similarly , the input of the new approach includes : 
( i ) a pathway database , ( ii ) a database of miRNA - mRNA 
interactions , ( iii ) multiple gene expression datasets , and ( iv ) 
multiple miRNA expression datasets . Each dataset is 
obtained from an independent study of the same disease . A 
framework that transforms the new problem into the clas 
sical pathway analysis problem is now provided . 
[ 0066 ] FIG . 5 illustrates a pipeline of the framework for 
the case of colorectal cancer . Panel ( a ) represents biological 
knowledge obtained from databases : pathway information 
( i . e . , database 204 ) and miRNA targets ( i . e . , database 202 ) . 
Panel ( b ) shows a set of gene expression datasets obtained 
from independent studies coming from different laborato 
ries . Seven datasets ( GSE4107 , GSE9348 , GSE15781 , 
GSE21510 , GSE23878 , GSE41657 , and GSE62322 ) , 
related to the same disease , colorectal cancer , are used for 
this example . Each dataset has two groups of samples : 
disease ( group D ) and control / healthy ( group C ) . Panel ( c ) 
represents a set of miRNA expression datasets ( GSE33125 , 
GSE35834 , GSE39814 , GSE39833 , GSE41655 , GSE49246 , 
GSE54632 , and GSE73487 ) , also from colorectal cancer . 
Similar to gene expression datasets , each miRNA dataset 
consists of disease and control samples . The data provided 
in panels ( a , b , c ) serve as input for the framework . 
[ 0067 ] Pathways in databases are typically described as 
graphs , where nodes are genes and edges are interactions 
between genes . In a first step , existing pathways are 
extended with additional interactions between miRNAs and 
mRNAs . Panel ( d ) shows a part of the pathway Colorectal 
cancer , where blue ( circular ) nodes are genes and red nodes 
( beginning with “ mi ” ) are miRNAs . Arrow - headed lines 
represent activation while bar - headed lines represent inhi 
bition . For example , hsa - miR - 483 - 5p is known to suppress 
the expression of MAPK3 and therefore an inhibition rela 
tionship is added between the two nodes in the pathway . All 
pathways are extended to include the known miRNA 
mRNA interactions . Estimating expression changes of each 
node ( gene , miRNA ) under the effects of the disease is then 
performed . 
[ 0068 ] Panel ( e ) shows expression changes and p - values 
for one gene in the mRNA data , across several datasets . 
Here , the MAPK3 gene is used as an example . In the forest 
plot shown in this panel , each horizontal line represents the 
expression change in each study . The small black box in 
each line shows a standardized mean difference ( SMD ) and 
the segment shows the confidence interval of SMD . Stan 
dardized mean difference is used instead of raw difference 
because the independent studies measure the expression in a 
variety of ways ( different platforms , sample preparation , 
etc . ) . The number on the right side of each line is the p - value 
of the test for differential expression , using the modified 
t - test provided in the limma package . 

( 3 ) ni + n2 
Vd = 

nin2 2 ( ni + 12 ) 

[ 0074 ] In the above equation , the first term reflects uncer 
tainty in the estimate of the mean difference , and the second 
term reflects uncertainty in the estimate of Speest . The 
standard error of d is the square root of V . Cohen ' s d , which 
is based on sample averages , tends to overestimate the 
population effect size for small samples . n represents the 
degrees of freedom used to estimate Spooled , i . e . , n = n , + n2 - 2 . 
The corrected effect size , or Hedges ' g , is computed as 
follows : 

g = 1 . d 

where I ' is a gamma function . Here , Hedge ' g is used as the 
standardized mean difference ( SMD ) between disease and 
control groups for each gene / miRNA . 
[ 0075 ] Random - Effects Model and REML 
[ 0076 ] A collection of m studies is considered , where the 
effect size estimates , 71 , . . . , Ym have been derived from a 
set of studies , each of them modeled as in Equation ( 5 ) . A 
fixed - effects model would assume that there is one true 
effect size which underlies all of the studies in the analysis , 
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are calculated as z = 0 - ( 1 - p : ) . By definition , these Z - scores 
follow the standard normal distribution . The summary sta 
tistic of Stouffer ' s method 

Vm 

such that all differences in observed effects are due to 
sampling error . However , this assumption is implausible 
because it cannot account for heterogeneity between studies . 
[ 0077 ] In contrast , the random - effects model allows for 
variability of the true effect . For example , the effect size 
might be higher ( or lower ) in studies where the participants 
are older , or have a healthier lifestyle compared to others . 
The random - effects model assumes that each effect size 
estimate can be decomposed into two variance components 
by a two - stage hierarchical process . The first variance rep 
resents variability of the effect size across studies , and the 
second variance represents sampling error within each study . 
The random - effects model may be : 

y ; = u + N ( 0 , 0 % ) + N ( 0 , 02 : 2 ) ( 6 ) , 

where u is the central tendency of the effect size , N ( 0 , 0 % ) 
represents the error term by which the effect size in the ith 
study differs from the central tendency u , and N ( 0 , 0ci " ) 
represents the sampling error . 
10078 ] The derivation and formulation of the REstricted 
Maximum Likelihood ( REML ) algorithm is known in the 
art . The log - likelihood function for Equation ( 6 ) is given by 
Equation ( 7 ) . 

also follows the standard normal distribution under the null 
hypothesis . Similar to Fisher ' s method , the combined p - val 
ues approach zero when one of the individual p - values 
approaches zero . 
[ 0084 ] The additive method uses the sum of the p - values 
as the test statistic , instead of the log product . Consider the 
p - values resulting from m independent significance tests , P , 
P2 , . . . , Pm . Let the sum of these p - values , X = & i = 1 " P ; ( XE 
[ 0 , m ] ) , be the new random variable . X follows the Irwin 
Hall distribution with the following probability density 
function ( pdf ) : 

f ( x ) = + 
( m ) 

( - 1 ) ( x - 1 ) m - 1 

Ilu , o ? ; y ) = i = 0 

m 

2 

i = 1 i = 1 
when m is large , some addends will be too small or too large 
to be stored in the memory . This leads to a totally inaccurate 
calculation when m passes a certain threshold , depending on 
the number of bits used to store numbers on the computer . 
For this reason , a modified version of the additive method , 
named add - CLT , was proposed . 
[ 0085 ] Let Y represent the average of p - values : 

Y = - ( YE [ 0 , 1 ] ) . m 

Since 
[ 0086 ] 

[ 0079 ] The REML estimators of u and o2 are then com 
puted by iteratively maximizing the log - likelihood . In the 
current framework , u is calculated for each node ( mRNA 
and miRNA ) of the extended pathways . The estimated 
overall effect size u and the combined p - value of individual 
genes and miRNAs serve as input for Impact Analysis . 
[ 0080 ] Combining Independent P - Values 
[ 0081 ] Here is a summary of some classical methods for 
combining independent p - values . The additive method that 
is used to combine p - values for each mRNA and miRNA 
molecule in the current framework is then described . 
[ 0082 ] Fisher ' s method is the most widely used method 
for combining independent p - values . Considering a set of m 
independent significance tests , the resulting p - values P1 , P2 , 
. . . , Pm are independent and uniformly distributed on the 
interval [ 0 , 1 ] under the null hypothesis . The random vari 
ables X = - 2InP , ( iE { 1 , 2 , . . . , m ) follow a chi - squared 
distribution with two degrees of freedom ( X 2 ) . Conse 
quently , the log product of m independent p - values follows 
a chi - squared distribution with 2m degrees of freedom . If 
one of the individual p - values approaches zero , which is 
often the case for empirical p - values , then the combined 
p - value approaches zero as well , regardless of other indi 
vidual p - values . For example , if P , ( ) , then X > 0 and 
therefore , Pr ( X ) regardless of P2 , P3 , . . . , Pm . 
[ 0083 ] Stouffer ' s method is another classical method that 
is closely related to Fisher ' s . The test statistic of Stouffer ' s 
method is the sum of p - values transformed into standard 
normal variables , divided by the square root of m . Denoting 
o as the standard normal cumulative distribution function , 
and p ; ( iE [ 1 . . m ] ) the individual p - values that are indepen 
dently and uniformly distributed under the null , the z - scores 

Y = a 

the probability density function ( pdf ) and the corresponding 
cumulative distribution function ( cdf ) of Y can be derived 
using a linear transformation of X as follows : 

[ my ] 9 ) 
m . / m 

( - 1 ) ' g ( y ) = lim y - 1 ) " . 
( m - 1 ) ! 

i = 0 

my ] 

G ( y ) = Guy ) - - = " + ( im : Y - 7 ) 
22 

i = 0 
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The variable Y is the mean of m independent and identically 
distributed ( i . i . d . ) random variables ( the p - values from each 
individual experiment ) , that follow a uniform distribution 
with a mean of 1 / 2 and a variance of 1 / 12 . From the Central 
Limit Theorem , the average of such m i . i . d . variables 
follows a normal distribution with mean u = 1 / 2 and variance 

the specific genes that are differentially expressed as well as 
on the interactions described by the pathway . It is calculated 
based on the perturbation factor in each pathway . The 
perturbation factor of a gene , PF ( g ) , is calculated as follows . 

PF ( u ) Bug : N . ( 11 ) PF ( g ) = AE ( g ) + > 
ueUS 

o = t . mie , Y ~ N ( ) . 1 m ) 
for sufficiently large values of m . The transition from the 
additive method to the Central Limit Theorem takes place at 
the mx20 threshold 
[ 0087 ] Here , the add - CLT method described above is used 
to combine the p - values calculated from the modified t - test 
( limma package ) . 
[ 0088 ] Graphical Representation of Augmented Pathways 
[ 0089 ] A formal description of the pathway augmentation 
process is provided . Let P = ( V , E ) be the graphical represen 
tation of the pathway to be extended with miRNA - mRNA 
interactions . V is the set of vertices ( genes ) while the 
directed edges in E represent the interactions between genes 
in the pathway . Each interaction includes an ordered pair of 
vertices and the type of interaction between the pair , i . e . , 
E = { ( x , y : ) , r ; } where X? , Y ; EG ( gene set ) and r ; is the type 
of relation between x ; and y ; , such as activation , repression , 
phosphorylation , etc . Topology - based pathway analysis 
methods , such as Impact Analysis , use interaction types to 
weigh the edges or to set the strength of signal propagation 
along the paths in a pathway . 
10090 ) From the miRNA database , a set of miRNAs and 
their targets is provided . Denote Z as the set of known 
miRNAs , CEZ is one miRNA , and t ( ) is the set of known 
targets for the miRNA G . The augmented pathway of P = ( V , 
E ) is denoted as p * = ( V * , E * ) and is constructed as follows . 

\ * = VU { & E Z : t ( $ ) V + Ø } 

The first term represents the signed normalized expression 
change of the gene g , i . e . , log standardized mean difference 
as shown in panels ( e , f ) of FIG . 5 . The second term is the 
sum of perturbation factors of upstream genes , normalized 
by the number of downstream genes of each such upstream 
gene . The value of Pue quantifies the strength of interaction 
between u and g . Here , Bue = 1 for activation and Bug = - 1 for 
repression . 
[ 0095 ] The above equation essentially describes the per 
turbation factor PF for a gene as a linear function of the 
perturbation factors of all genes in a given pathway . In the 
stable state of the system , all relationships must hold , so the 
set of all equations defining the impact factors for all genes 
form a system of simultaneous equations whose solution 
will provide the values for the gene perturbation factors PF 
The net perturbation accumulation at the level of each gene , 
Acc ( g ) , is calculated by subtracting the observed expression 
change from the perturbation factor . 

Acc ( g ) = PF ( g ) - AE ( g ) 
[ 0096 ] The total accumulated perturbation in the pathway 
is then computed as follows . 

( 12 ) 

Acc ( P ; ) = Acc ( 8 ) ( 13 ) 
geP ; 

E * = E U { ( 5g , repression ) : SE 2 , g Et ( s ) øv } ( 10 ) 
[ 0091 ] In other words , if a miRNA & targets a gene g that 
belongs to the pathway , & is added to the pathway and is 
then connected with its targets in the pathway . By default , 
the interaction type of new edges is repression , which 
represents the translation blockage of miRNAs to mRNA . 
The interaction type can be changed to suit the interaction 
between the miRNA molecule and its targets . All pathways 
in the pathway database are extended using the formulation 
described in Equation ( 10 ) . The R package mirIntegrator for 
pathway augmentation is available on Bioconductor website 
( world wide web . bioconductor . org ) . 
[ 0092 ] Impact Analysis of Augmented Pathways 
[ 0093 ] The Impact Analysis method combines two types 
of evidence : ( i ) the over - representation of DE genes in a 
given pathway , and ( ii ) the perturbation of that pathway , 
caused by disease , as measured by propagating expression 
changes through the pathway topology . These two aspects 
are captured , respectively , by the independent probability 
values , PNDE and PPERt . Impact Analysis formulation is 
summarized . 
[ 0094 ] The first p - value , PYDE , is obtained using the 
hypergeometric model , which is the probability of obtaining 
at least the observed number of differentially expressed 
genes . The second p - value , PPERT , depends on the identity of 

[ 0097 ] The null distribution of Acc ( P : ) is built by permu 
tation of expression change . The p - value , PPERT , is then 
calculated by the probability of having values more extreme 
than the actually observed Acc ( P ; ) . 
[ 0098 ] To compute PNDE and PPERT , the following input is 
required : the graphical representation of the pathway , the 
combined p - value of each node of the graph , and the 
estimated overall standardized mean difference . In short , the 
graphical representation of the augmented pathways is pro 
vided in Equation ( 10 ) , the p - value for each node of the 
augmented pathways is computed using Equation ( 9 ) , and 
the expression change , AE ( g ) , is estimated by iteratively 
maximizing the log - likelihood function in Equation ( 7 ) . 
These two p - values , PNDE and PPERT , are then combined to 
get a single p - value that represents how likely the pathway 
is impacted under the effect of the disease . In one or more 
embodiments , the processor 170 causes the display 176 to 
generate a graphical representation of the single p - value . 
Additionally , the processor 170 causes the display 176 to 
generate a graphical representation of the impact analysis 
representing the disease and / or the augmented pathways ( see 
panel ( g ) of FIG . 5 ) . 

Experimental Results 
[ 0099 ] A total of 1 , 471 samples from 29 public datasets for 
two human diseases , colorectal and pancreatic cancer , were 
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analyzed . The datasets were generated in independent labo 
ratories , from different individual tissue samples , and were 
run on different high - throughput platforms . The diseases 
were selected based on two criteria : ( i ) there are many 
publicly available miRNA and mRNA datasets , and ( ii ) there 
is a pathway specific to the disease ( target pathway ) . The 
colorectal data consists of 7 mRNA and 8 miRNA datasets 
while the pancreatic data consists of 8 mRNA and 6 miRNA 
datasets . The processed data sets were downloaded directly 
from the Gene Expression Omnibus using the GEOquery 
package . The data were rescaled using a log transformation 
if they were not already in log scale ( base 2 ) . The details of 
each dataset , such as the number of samples , tissues , and 
platforms , are reported in Table 1 . 

TABLE 1 

cant genes , mRNA / miRNAs are chosen that have the high 
est estimated SMD as differentially expressed , up to 10 % of 
total measured mRNA / miRNAs . All the R scripts used for 
data processing , pathway augmentation , and analysis are 
available . 
[ 0101 ] For both diseases , the orthogonal approach ( Impac 
tAnalysis _ I ) is compared with 5 other approaches : pathway 
level meta - analysis ( ImpactAnalysis _ P ) , gene - level meta 
analysis ( ImpactAnalysis _ G ) , plus the 3 meta - analysis 
approaches available in MetaPath package . Because the 
input data sets include multiple studies , none of which are 
sample - matched , pathway analysis using approaches that 
integrate matched mRNA and miRNA expression cannot be 
performed 

Description of miRNA and mRNA expression datasets used in the 
experimental studies . All of the data were downloaded from Gene Expression 

Omnibus . 

Cancer Data Accession ID Control Disease Tissue Platform 

10 
12 

Colorectal mRNA GSE4107 
GSE9348 
GSE15781 
GSE21510 
GSE23878 
GSE41657 

oint 
GSE62322 

miRNA GSE33125 
GSE35834 
GSE39814 
GSE39833 
GSE41655 UPO 

40 GSE49246 
GSE54632 
GSE73487 

Pancreatic mRNA GSE15471 
GSE19279 
GSE27890 
GSE32676 
GSE36076 
GSE43288 
GSE45757 
GSE60601 

miRNA GSE24279 
GSE25820 
GSE32678 
GSE34052 
GSE43796 
GSE60978 

WONA wowa 

12 Colonic mucosa Affymetrix HG U133 Plus 2 . 0 
70 Colonic mucosa Affymetrix HG U133 Plus 2 . 0 
13 Colon ABI HG Survey 2 

123 Colon Affymetrix HG U133 Plus 2 . 0 
Colon Affymetrix HG U133 Plus 2 . 0 

25 Colonic mucosa , epithelial Agilent - 014850 HG 4x44K G4112F 
neoplasm 
Colon Affymetrix HG U133A 

9 Colon Illumina Human v2 MicroRNA 
55 Colon & rectum Affymetrix miRNA 1 . 0 
10 FHC , HCT116 , & SW480 cells Agilent - 021827 Human miRNA 
88 Peripheral blood serum t - 021827 Human miRNA 
33 Colonic mucosa , & epithelial Agilent - 021827 Human miRNA 

neoplasm 
40 Colon Sun Yat - Sen Human microRNA 
5 Colonic and rectal mucosa Affymetrix miRNA 1 . 0 

90 Colon Affymetrix miRNA 1 . 0 
39 Pancreas Affymetrix HG U133 Plus 2 . 0 
4 . Pancreas , pancreatic duct Affymetrix HG U133A 
4 . Pancreas , ductal epithelia Affymetrix HG U133 Plus 2 . 0 

Pancreas Affymetrix HG U133 Plus 2 . 0 
3 Peripheral blood mononuclear cells Affymetrix HG U133 Plus 2 . 0 
4 . Pancreas Affymetrix HG U133A 

132 Pancreatic epithelial & cancer cells Affymetrix HG U133A 
9 CD14 + + & CD16 - cells Affymetrix HG U133 Plus 2 . 0 

136 Pancreas Febit human mirBase v11 
Pancreatic duct Agilent - 019118 Human miRNA 

25 Pancreas miRCURY LNA microRNA , v . 11 . 0 
Pancreas Agilent - 029297 Human miRNA 

26 Pancreas Agilent - 031181 Human miRNA V16 
51 Pancreatic duct Agilent - 031181 Human miRNA V16 

in 

[ 0100 ] The databases used in this analysis are KEGG for 
pathways , and miRTarBase for miRNAs . 182 signaling 
pathways are downloaded from KEGG version 76 ( Dec . 4 , 
2015 ) by means of the R package ROnto Tools . These 
pathways are augmented with known miRNAs and their 
target interactions , downloaded from miRTarBase . For each 
mRNA / miRNA , the modified t - test , available in the limma 
package , is used to test for differential expression of mRNA / 
miRNAs . add - CLT is used as the method to combine inde 
pendent p - values . The combined p - values are then adjusted 
for multiple comparisons using False Discovery Rate 
( FDR ) . For expression change , Hedges ' g is used as effect 
size , and the REML method is used to estimate the central 
tendency of effect sizes . Following convention , only mRNAI 
miRNAs having FDR - corrected combined p - values less 
than 5 % are taken into consideration . Among these signifi 

[ 0102 ] For pathway - level meta - analysis ( ImpactAnalysis _ 
P ) , Impact Analysis is performed on each mRNA expression 
dataset and then the independent p - values for each pathway 
are combined . For example , if there are 7 mRNA datasets , 
there are 7 nominal p - values per pathway — one for each 
study . These 7 p - values are independent and thus can be 
combined using the add - CLT method to get one combined 
p - value . The final result is a list of 182 p - values for 182 
signaling pathways . The combined p - values for multiple 
comparisons are then adjusted using FDR . 
[ 0103 ] For gene - level meta - analysis ( ImpactAnalysis _ G ) , 
the modified t - test for each mRNA dataset were performed 
and then the p - values were combined . With 7 mRNA 
datasets , for example , each gene will have 7 independent 
p - values , which will be combined into one p - value . We also 
calculate the SMD and standard error of each gene in each 
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study , then use the REML algorithm to calculate the overall 
effect size across the 7 studies . Finally , pathway analysis is 
performed on 182 KEGG pathways using the combined 
p - values and the estimated effect sizes , resulting in a graphi 
cal representation , i . e . , a list , of pathways ranked according 
to their p - values . The p - values of pathways for multiple 
comparisons are adjusted using FDR . 
[ 0104 ] The integrative approach ( ImpactAnalysis _ I ) is 
similar to ImpactAnalysis _ G , with the exception that Impac 
tAnalysis I uses both mRNA and miRNA data . The meta 
analysis is done on the mRNA / miRNA level and then the 
combined p - values and estimated effect sizes of mRNA 
miRNAs serve as the input to the ImpactAnalysis . 
[ 0105 ] MetaPath is a dedicated approach that performs 
meta - analysis at both gene ( MetaPath _ G ) and pathway 
levels ( MetaPath _ P ) with a GSEA - like approach , and then 
combines the results ( MetaPath _ I ) to give the final p - value 
and ranking of pathways . MetaPath first calculates the 
t - statistic for each gene in each study . In MetaPath _ G , these 
statistics are combined for each gene using maxP . The 
combined statistics are then used to calculate enrichment 
scores for each pathway using a Kolmogorov - Smirnov test . 
In MetaPath _ P , the pathway enrichment analysis is done first 
before meta - analysis . In MetaPath _ l , the p - values of 
MetaPath _ G and MetaPath _ P are combined using minP . 
[ 0106 ] For each of the two diseases , there is a target 
KEGG pathway , which is the pathway created to describe 
the main phenomena involved in the respective disease . The 
augmented pathway for Colorectal cancer is displayed in 
FIG . 6 . The green rectangle nodes ( light shaded rectangles ) 
show the KEGG genes and the black arrows show the 
interactions between the genes . The blue nodes ( dark shaded 
rectangles ) and the bar - headed lines show the miRNA 
molecules and their interactions with the genes , where the 

bar - headed lines represents the “ repression ” activity . In each 
augmented node , two types of information are displayed : i ) 
the total number of miRNAs that are known to target the 
corresponding gene , and ii ) the miRNAs that were actually 
measured in the 8 miRNA colorectal datasets . The former is 
displayed in circles while the latter is listed in blue rect 
angles ( dark shaded rectangles ) . For example , the gene 
TGFB ( in the far left of the figure ) has 9 miRNAs that are 
known to target the gene but only two miRNAs ( hsa : miR 
375 and hsa : miR - 633 ) were included in the miRNA data . 
Similarly , the augmented pathway for Pancreatic cancer is 
displayed in FIG . 7 . The graphs show that both target 
pathways are heavily regulated by miRNA molecules . 
10107 ] In this experimental study , it is expected that a 
good pathway analysis approach would be able to identify 
the very pathway that describes the disease phenomena as 
the most significant in each particular disease . Hence , the 
various methods based on this criterion are compared . 
10108 ] Colorectal Cancer 
0109 ] 8 miRNA ( GSE33125 , GSE35834 , GSE39814 , 
GSE39833 , GSE41655 , GSE49246 , GSE54632 , and 
GSE73487 ) and 7 mRNA ( GSE4107 , GSE9348 , GSE15781 , 
GSE21510 , GSE23878 , GSE41657 , and GSE62322datasets 
are obtained from the Gene Expression Omnibus ( GEO ) , as 
shown in Table 1 . 
[ 0110 ] Table 2 shows the results of the 6 approaches . The 
horizontal line across each list marks the cutoff FDR = 0 . 01 . 
The pathway highlighted in green is the target pathway 
Colorectal cancer . MetaPath _ P ( pathway - level meta - analy 
sis ) identifies no significant pathway at the 1 % cutoff , and 
ranks the target pathway at position 16th . Similarly , 
MetaPath _ G ( gene - level meta - analysis ) and MetaPath _ I 
( combination of gene - and pathway - level ) identify no sig 
nificant pathways . They rank the target pathway at positions 
9th and 15th , respectively . 

TABLE 2 

The 16 top ranked pathways and FDR - corrected p - values obtained by 
combining colorectal data using 6 approaches : MetaPath _ P , MetaPath _ G , MetaPath _ I , 
ImpactAnalysis _ P , ImpactAnalysis _ G , and ImpactAnalysis _ I . The horizontal lines show 

the 1 % significance threshold . The target pathway is colorectal cancer . All other 
approaches , MetaPath _ P , MetaPath _ G , MetaPath _ I , ImpactAnalysis _ P , 

ImpactAnalysis _ G fail to identify the target pathway as significant , and rank it at the 
positions 16th , 9th , 15th , 61st , and 10th , respectively . On the contrary , the integrative 
approach , ImpactAnalysis _ I , identifies the target pathway as significant and ranks it on 

top . 

MetaPath _ P ( mRNA , pathway - level ) MetaPath _ G ( mRNA , gene - level ) MetaPath _ I ( mRNA , both - level ) 

Pathway p . fdr Pathway p . fdr Pathway p . fdr 
0 . 0941 Thyroid cancer 0 . 1460 Thyroid cancer 0 . 1460 ? Aldosterone - regulated sodium 

reabsoption 
Peroxisome 0 . 2319 0 . 1533 0 . 1880 ? Dorso - ventral axis 

formation 
Mineral absorption ?? Pancreatic cancer 0 . 2402 0 . 1550 0 . 2006 

Aldosterone - regulated 
sodium reabsorption 
Endocrine and other factor - 
regulated calcium 
reabsorption 
Mineral absorption 
PPAR signaling pathway 

0 . 2500 
0 . 2540 

0 . 1575 
0 . 2376 

0 . 2047 
0 . 2065 

Small cell lung cancer 
Endocrine and other factor 
regulated calcium reabsorption 
Epithelial cell signaling in 
Helicobacter pylori infection 
Mineral absorption 
Glioma 

PPAR signaling pathway 
Ribosome biogenesis in 
eukaryotes 
Renin - angiotensin system 0 . 2630 0 . 2609 0 . 227 Dorso - ventral axis 

formation 
Small cell lung cancer 
Renin - angiotensin system 

0 . 2727 
0 . 3234 

0 . 3002 
0 . 3478 

0 . 2713 
0 . 2731 

Vibrio cholerae infenction 
Aldosterone - regulated 
sodium reabsorption 
Colorectal cancer 
Bile secretion 
Pancreatic secretion 

10 
11 

Dorso - ventral axis formation 
Epstein - Barr virus infection 
NOD - like receptor signaling 
pathway 

4 . 4665 
0 . 4683 
0 . 4772 

0 . 3514 
0 . 4286 
0 . 4361 

Pancreatic cancer 
Peroxisome 
Ribosome biogensis in 
eukaryotes 

0 . 2811 
0 . 2870 
0 . 2906 
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TABLE 2 - continued 
The 16 top ranked pathways and FDR - corrected p - values obtained by 

combining colorectal data using 6 approaches : MetaPath _ P , MetaPath _ G , MetaPath _ I , 
ImpactAnalysis _ P , ImpactAnalysis _ G , and ImpactAnalysis _ I . The horizontal lines show 

the 1 % significance threshold . The target pathway is colorectal cancer . All other 
approaches , MetaPath _ P , MetaPath _ G , MetaPath _ I , ImpactAnalysis _ P , 

ImpactAnalysis _ G fail to identify the target pathway as significant , and rank it at the 
positions 16th , 9th , 15th , 61st , and 10th , respectively . On the contrary , the integrative 
approach , ImpactAnalysis _ I , identifies the target pathway as significant and ranks it on 

top . 

Legionellosis 0 . 4772 0 . 4427 Vibrio cholerae infection 0 . 2918 

GmRH signaling pathway 0 . 4778 

Epithelial cell signaling in 
Helicobacter pylori infection 
Intestinal immune netwrok 
for IgA production 
Type I diabetes mellitus 

0 . 4519 0 . 2951 Epithelial cell signaling in 
Helicobacter 
Glioma 0 . 4946 0 . 4576 0 . 3561 Progesterone - mediated oocyte 

maturation 
TNF signaling pathway 
Colorectal cancer 

0 . 5135 
0 . 5178 

Cardiac muscle contraction 
Allograft rejection 

0 . 4607 
0 . 4616 

Colorectal cancer 
NOD - like receptor 
signaling pathway 

0 . 4047 
0 . 4693 

ImpactAnalysis _ P ( mRNA , pathway - level ) ImpactAnalysis _ G ( mRNA , gene - level ) Impact Analysis _ I ( mRNA , both - level ) 
Pathway p . fdr Pathway p . fdr Pathway p . fdr 

PPAR signaling pathway < 10 - 4 0 . 0008 Colorectal cancer 0 . 0002 Ribosome biogenesis in 
eukaryotes 
Cell cycle Rheumatoid arthritis < 10 - 4 0 . 0008 0 . 0002 Ribosome biogensis in 

eukaryotes 
PPAR signaling pathway < 10 - 4 Mineral absorption 0 . 0185 0 . 0002 Cytokine - cytokine receptor 

interaction 
Chemokine signaling pathway 
Bile secretion 

< 10 - 4 0 . 0292 
0 . 0347 

0 . 0006 
0 . 0077 < 10 - 4 

tin Naga MicroRNAs in cancer 
Malaria 
Mineral absorption 
Pancreatic secretion 
ECM - receptor interaction 
Insulin secretion 
Amoebiasis 
Complement and coagulation 
cascades 

0 . 0005 
0 . 0007 
0 . 0012 
0 . 0046 
0 . 0047 
0 . 0047 
0 . 0056 
0 . 0111 

p53 signaling pathway 
Progesterone - mediated 
oocyte maturation 
Oocyte Meiosis 
Bile secretion 
PPAR signaling pathway 
Small cell lung cancer 
Colorectal cancer 
RNA transport 
RNA degradation 
MicroRNAs in cancer 

0 . 0348 
0 . 0364 
0 . 0915 
0 . 1014 
0 . 1036 
0 . 1059 
0 . 1720 
0 . 2051 

Cell cycle 
Progesterone - mediated 
oocyte maturation 
Oocyte meiosis 
TGF - beta signaling pathway 
Parkinson ' s disease 
Peroxisome 
MicroRNAs in cancer 
Thyroid cancer 
RNA transport 
AGE - RANGE signaling 
pathway in diabetic 
complications 
NOD - like receptor 
signaling pathway 
Endometrial cancer 
Pancreatic cancer 

0 . 0130 
0 . 0130 
0 . 0130 
0 . 0139 
0 . 0140 
0 . 0214 
0 . 0214 
0 . 0214 

14 P13K - Akt signaling pathway 0 . 0131 Peroxisome 0 . 2051 0 . 0304 

15 TNF signaling pathway 
Transcriptional misregulation 
in cancer 

0 . 0194 
0 . 0267 

Pathways in cancer 
Parkinson ' s disease 

0 . 2080 
0 . 3194 

0 . 0309 
0 . 0309 16 

[ 0111 ] The ImpactAnalysis _ P approach identifies 12 path 
ways , among which there are many pathways that are related 
to cancer . However , the target pathway Colorectal cancer is 
not significant and is ranked 61st with adjusted p = 0 . 99 . The 
gene - level meta - analysis ( ImpactAnalysis _ G ) offers some 
improvement over ImpactAnalysis _ P by improving the 
ranking ( 10th ) and adjusted p - value ( p = 0 . 1 ) of the target 
pathway Colorectal cancer . However , the target pathway is 
still not significant with the given threshold . The orthogonal 
meta - analysis , ImpactAnalysis _ I , is able to further boost the 
power of the gene - level meta - analysis . It identifies 5 sig 
nificant pathways , with the target pathway Colorectal cancer 
ranked at the very top . This is very likely due to the 
additional information provided by miRNA expression and 
prior knowledge accumulated in miRTarBase . 
[ 0112 ] Three of the other 4 pathways that are identified by 
ImpactAnalysis _ I appear to be true positives . The Cell Cycle 

and Ribosome Biogenesis pathways are implicated in the 
proliferation aspect of cancer tissue . PPAR signaling has a 
role in colorectal cancer , although it is not fully understood . 
Progesterone - mediated oocyte maturation is clearly a false 
positive which may have appeared due to the presence of 
several cell cycle genes in that pathway . 
[ 0113 ] Pancreatic Cancer 
[ 0114 ] 8 mRNA ( GSE15471 , GSE19279 , GSE27890 , 
GSE32676 , GSE36076 , GSE43288 , GSE45757 , and 
GSE60601 ) and 6 miRNA datasets ( GSE24279 , GSE25820 , 
GSE32678 , GSE34052 , GSE43796 , and GSE60978 ) are 
obtained from Gene Expression Omnibus ( GEO ) , as shown 
in Table 1 . Again , the current approach ( ImpactAnalysis _ I ) 
is compared with 5 other approaches : pathway - level meta 
analysis , gene - level meta - analysis using only mRNA data , 
plus 3 meta - analysis approaches available in the MetaPath 
package as shown in Table 3 . 
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TABLE 3 
The 10 top ranked pathways and FDR - corrected p - values obtained by 

combining colorectal data using 6 approaches : MetaPath _ P , MetaPath _ G , MetaPath _ I , 
ImpactAnalysis _ P , ImpactAnalysis _ G , and ImpactAnalysis _ I . The horizontal lines show 

the 1 % significance threshold . The target pathway is pancreatic cancer . All other 
approaches , MetaPath _ P , MetaPath _ G , MetaPath _ I , ImpactAnalysis _ P , 

ImpactAnalysis G fail to identify the target pathway as significant , and rank it at the 
positions 17th , 91st , 91st , 32nd , and 8th , respectively . On the contrary , the integrative 

approach , ImpactAnalysis _ I , identifies the target pathway as significant and ranks it on 
top . 

MetaPath _ P ( mRNA , pathway - level ) MetaPath _ G ( mRNA , gene - level ) MetaPath _ I ( mRNA , both - level ) 

Pathway p . fdr Pathway p . fdr Pathway p . fdr 

0 . 4782 
0 . 5440 
0 . 553 

Autoimmune thyroid disease 
Allograft rejection 
Type I diabetes mellitus 

0 . 0020 
0 . 0020 
0 . 003 

Type I diabetes mellitus 
Autoimmune thyroid disease 
Allograft rejection 

0 . 0040 
0 . 0040 
0 . 004 Awn 

1 Graft - versus - host - disease 
2 Small cell lung cancer 
3 SNARE interactions in vesicular 

transport 
4 Leishmaniasis 
5 Bladder cancer 
6 MicroRNAs in cancer 
7 Phagosome 
8 Type I diabetes mellitus 
9 Pertussis 

0 . 6404 
0 . 7010 
0 . 7244 
0 . 7330 
0 . 7515 
0 . 7682 

Graft - versus - host disease 
GABAergic synapse 
Asthma 
Morphine addiction 
ECM - receptor interaction 
Maturity onset diabetes of the 
young 
Renin - angiotensin system 

0 . 0040 Graft - versus - host - disease 
0 . 0050 GABAergic synapse 
0 . 0073 Asthma 
0 . 0074 Morphine addiction 
0 . 0104 ECM - receptor interaction 
0 . 0139 Maturity onset diabetes of the 

young 
0 . 0153 Renin - angiotensin system 

0 . 0080 
0 . 0100 
0 . 0147 
0 . 0149 
0 . 0208 
0 . 0278 

10 Dorso - ventral axis formation 0 . 7941 0 . 0307 

ImpactAnalysis _ P ( mRNA , pathway - level ) ImpactAnalysis _ G ( mRNA , gene - level ) ImpactAnalysis _ I ( mRNA + miRNA ) 
Pathway p . fdr Pathway p . fdr Pathway p . fdr 

1 PI3K - Akt signaling pathway 
2 MicroRNAS in cancer 
3 Small cell lung cancer 

Pathways in cancer 
5 TNF signaling pathway 
6 PPAR signaling pathway 

0 . 0019 
0 . 0076 
0 . 0276 
0 . 0962 
0 . 1106 
0 . 1216 

Small cell lung cancer 
Pathways in cancer 
Viral carcinogenesis 
ECM - receptor interaction 
Hepatitis B 
HRLV - I infection 

0 . 0217 Pancreatic cancer 
0 . 0217 Small cell lung cancer 
0 . 0217 Pathways in cancer 
0 . 0480 Proteoglycans in cancer 
0 . 0480 Amoebiasis 
0 . 0623 AGE - RANGE signaling pathway in 

diabetic complications 
0 . 0623 Focal adhesion 
0 . 0623 HTLV - I infection 
0 . 0639 Chronic myeloid leukemia 
0 . 0639 ECM - receptor interaction 

0 . 0017 
0 . 0017 
0 . 0017 
0 . 0017 
0 . 0031 
0 . 0040 

7 NF - kappa B signaling pathway 
8 Shigellosis 
9 Chemokine signaling pathway 

10 T cell receptor signaling pathway 

0 . 1502 
0 . 2491 
0 . 2742 
0 . 3200 

Chronic myeloid leukemia 
Pancreatic cancer 
Amoebiasis 
Pathogenic Escherichia coli 
infection 

0 . 0040 
0 . 0119 
0 . 0125 
0 . 0142 

[ 0115 ] MetaPath _ P identifies no significant pathway and 
Graft - versus - host disease is ranked on top with adjusted 
p - value 0 . 4782 . The target pathway Pancreatic cancer is 
ranked 17th with adjusted p = 0 . 89 . MetaPath _ G identifies 7 
significant pathways . The target pathway is not significant 
( adjusted p = 0 . 22 ) and is ranked 91st . In consequence , the 
combination of these two methods , MetaPath _ I , also fails to 
identify the target pathway as significant ( adjusted p = 0 . 34 
with ranking 91 ” ) . 
[ 0116 ] The pathway - level meta - analysis ( ImpactAnaly 
sis _ P ) identifies the PI3K - Akt signaling pathway and Micro 
RNAs in cancer as significant . The significance of Micro 
RNAs in cancer may indicate the importance of miRNA in 
pancreatic cancer , and PI3K - Akt signaling alteration is 
known to be involved in many cancers . However , the target 
pathway is not significant ( adjusted p = 0 . 95 with ranking 
32nd ) . The gene - level meta - analysis ( ImpactAnalysis _ G ) 
improves the ranking of the target pathway ( 8th ) but the 
p - value of the target pathway is still not significant . The 
orthogonal approach , ImpactAnalysis _ 1 , identifies 7 path 
ways as significant . The target pathway Pancreatic cancer is 
ranked on top with FDR - corrected p - value 0 . 0017 . 
[ 0117 ] Of the 6 significant non - target pathways found by 
ImpactAnalysis _ 1 , three are cancer - related by name ( Small 
cell lung cancer , Pathways in cancer , Proteoglycans in 
cancer ) . The breakdown of cell matrix adhesions , such as 

Focal Adhesion is an important property of metastasis 
most pancreatic cancers are discovered when they are 
already high grade . 
f0118 ] In contrast to the 3 variations of the existing 
method , MetaPath , the proposed method ImpactAnalysis _ I 
was able to effectively combine both independent datasets , 
as well as the two different types of data ( mRNA and 
miRNA ) , and correctly report the target pathway as the most 
significantly impacted pathway in both meta - analysis stud 
ies . The results demonstrate that the correct pathways are 
identified only when the data are integrated both horizon 
tally ( combining multiple studies using the same data type ) 
and vertically ( combining miRNA with mRNA expression ) . 
This orthogonal meta - analysis uses three different kinds of 
data integration : integration of mRNA and miRNA , com 
bining p - values and combining SMDs for genes and miRNA 
molecules . 
[ 0119 ] Time Complexity 
10120 ] The data analysis was done on a personal MacBook 
Pro that has 8 GB 1600 MHz DDR3 RAM , 2 . 9 GHz Intel 
Core i7 . Because MetaPath cannot exploit multiple proces 
sors , all the analysis were run using a single core . The time 
needed to run MetaPath was 39 minutes for Colorectal 
cancer and 47 minutes for Pancreatic cancer . 
0121 ] For ImpactAnalysis _ 1 , the p - value for each genel 
miRNA in each dataset is first calculated using the limma 
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package . The p - values are then combined to get one com 
bined p - value per gene / miRNA . Next , the standardized 
mean difference ( SMD ) is calculated for each dataset and 
then the REML algorithm is applied to estimate to overall 
SMD , using the metafor package . The estimated SMDs and 
the combined p - values are processed by ROnto Tools to 
produce the p - value for each pathway . ImpactAnalysis _ I 
performs the analysis using the pathways augmented with 
the relevant miRNAs . The running time for ImpactAnaly 
sis _ I is 4 minutes for each of Colorectal and Pancreatic . The 
running time of each approach is reported in Table 4 . 

TABLE 4 

Running time of each pathway analysis in minutes ( m ) . 
Method Input Colorectal Pancreatic 

ImpactAnalysis _ I mRNA & miRNA 
MetaPath mRNA 

4 m 
39 m 

4 m 
47 m 

Discussion 
[ 0122 ] One straightforward horizontal integration is to 
combine individual p - values provided by each study . In this 
way , any pathway analysis approach ( such as GSEA or 
GSA ) can be applied to the collected mRNA datasets in 
order to calculate a p - value for each pathway in each study , 
and then combine these independent p - values . An advantage 
of this approach is its flexibility . MetaPath combines p - val 
ues in this way , but with the slight difference that the 
p - values are combined on both gene and pathway levels . The 
drawback is that each of these methods is designed to work 
with one single matrix of expression values , i . e . , one data 
type . This matrix can be forcefully extended to include other 
data types as well , but in order to do this , the data must be 
sample - matched . In other words , all types of assays must be 
performed on every single sample . In addition , because 
different data types are assayed on different platforms , the 
data need to be normalized together , for these approaches to 
function properly . However , the correct way to do such a 
cross - platform normalization is still an open problem . The 
same limitations apply to analysis tools dedicated to miRNA 
and mRNA integration . For meta - analysis , these approaches 
would require multiple sets of sample - matched data . Per 
forming different assays on one set of samples is already 
expensive ; asking for many sets of matched samples for the 
same disease is even more impractical . 
[ 0123 ] Although primarily designed to overcome the 
matched - sample bottleneck discussed above , the current 
framework also aims to address a well - known limitation of 
p - value - based meta - analyses . Classical approaches often 
rely on hypothesis testing to identify differential expression . 
This results in critical information loss . While the p - value is 
partly a function of effect size , it is also partly a function of 
sample size . For example , with large sample size , a statis 
tical test will tend to find differences as significant , unless 
the effect size is exactly zero . In reality , any individual study 
will include some degree of batch effects , such as sampling 
study bias , noise , and measurement errors . Simply combin 
ing individual p - values would not correct such problems . On 
the contrary , meta - analysis of effect sizes across all studies 
would definitely compensate for and eliminate such random 
effects . This point is illustrated in the results included herein , 
in particular in the difference between ImpactAnalysis _ P 

and ImpactAnalysis G for both colorectal and pancreatic 
cancer ( Tables 2 and 3 ) . The former simply combines the 
p - values , while the latter takes into consideration both 
p - values and effect sizes across different studies . Impact 
Analysis _ G offers a great improvement over ImpactAnaly 
sis _ P using the same sets of mRNA data . 
[ 0124 ] The current framework contemplates the compu 
tational complexity at both gene and pathway levels . For 
individual genes and miRNA molecules , the framework not 
only calculates p - values , but also iteratively estimates the 
effect sizes and variances . In principle , the iterative algo 
rithm requires more computation than meta - analyses that 
use closed - form expressions . At pathway - level , Impact 
Analysis is a non - parametric approach that constructs an 
empirical distribution of all measured values for each path 
way . This requires more computation and storage than 
parametric approaches , such as the hypergeometric test or 
Fisher ' s exact test . However , this is mitigated by the power 
of modern computers which are able to perform all needed 
computations in less than 10 minutes , even for datasets with 
more than 1 , 000 samples ( Table 4 ) . In addition , the current 
framework allows for parallel computing at the gene - level to 
reduce the time complexity . However , the time values 
described here ( see , for example , Table 4 ) do not take 
advantage of the ability to parallelize the computation in 
order to be comparable with the results obtained with 
MetaPath . All values reported in this table are obtained on 
a single core for both approaches . 
[ 0125 ] The biological results presented here could be 
further validated by investigating the other pathways 
reported as significant , and identifying the putative mecha 
nisms that could explain all measured changes . A tool such 
as iPathway - Guide , could be used to provide more in depth 
functional analysis , including identification of drugs that are 
known to act on the observed signaling cascades . Follow - up 
experiments in which tumor cell lines , or samples from 
xenografts , are treated with those drugs would validate ( or 
not ) both the putative mechanisms investigated , as well as 
the other significant pathways . If many or all significant 
pathways were mechanistically implicated in the respective 
conditions , the proposed orthogonal meta - analysis approach 
would be further validated . 
[ 0126 ] Another direct application of the orthogonal frame 
work is to infer condition - specific miRNA activity . The 
proposed gene - level meta - analysis basically identifies genes 
and miRNAs that are differentially expressed ( DE ) under the 
studied condition . This list of DE genes / miRNAs is obtained 
from a large number of studies and therefore it is expected 
to be more reliable than any individual study taken alone . 
From the list of DE genes / miRNAs and the computed 
statistics ( effect sizes and variances ) , new putative targets of 
miRNAs can be identified using casual inference techniques . 
The predicted interactions between miRNA and mRNA can 
be further verified by established gene - specific experimental 
validation , such as qRT - PCR , luciferase reporter assays , and 
western blot . 

Summary 
10127 ] A two - dimensional data integration that is able to 
combine mRNA and miRNA expression data obtained from 
many independent experiments is provided herein . The 
framework first augments pathway knowledge available in 
pathway databases with miRNA - mRNA interactions from 
miRNA knowledge bases . It then computes the statistics that 
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A Pype and the PPERT are combined to generate a single 
p - value that represents how likely a pathway is impacted 
under the effect of the disease . At 824 , the method 800 ends . 

are essential for pathway analysis , i . e . , the standardized 
mean difference ( SMD ) and p - value for differential expres 
sion . For each entity , these p - values and the SMDs are 
computed by combining multiple studies using robust hori 
zontal meta - analysis techniques . Finally , the framework 
performs a topology - based pathway analysis to identify 
pathways that are likely to be impacted under the given 
condition . 
[ 0128 ] To evaluate the framework , 1 , 471 samples from 15 
mRNA and 14 miRNA expression datasets related to two 
human cancers were examined using 6 different meta 
analysis approaches ( 3 MetaPath approaches and 3 meta 
analysis approaches that utilize Impact Analysis ) . It was 
demonstrated that the correct pathways are identified only 
when the data are integrated both horizontally ( combining 
multiple studies using the same data type ) and vertically 
( combining miRNA with mRNA expression ) . 
[ 0129 ] This technology serves as a bridge between the two 
orthogonal types of data integration . The result is to unblock 
the sample - matched data bottleneck , by successfully inte 
grating mRNA and miRNA datasets measured from inde 
pendent laboratories for different sets of patients . Further 
more , it increases the power of statistical approaches 
because it allows many studies to be analyzed together . With 
vast databases of various data types being made available , 
this framework is widely applicable because of its relaxed 
restrictions on the data being integrated . The framework is 
flexible enough to integrate data types other than mRNA and 
miRNA , which was described herein as an example . It can 
also be modified to suit other purposes besides pathway 
analysis . 
[ 0130 ] FIG . 8 illustrates an example method 800 for 
identifying a pathway associated with a disease in accor 
dance with an example embodiment of the present disclo 
sure . Method 800 begins at 802 . At 804 , multiple data 
structures , such as databases 202 , 204 that provide a first 
dataset describing a first quantitative variable related to the 
disease and a second dataset describing a second quantita 
tive variable related to the disease is provided . 
[ 0131 ] At 806 , known pathways are modified that are 
related to the disease with information provided in both the 
first datasets and the second datasets to generate augmented 
pathways including a plurality of first nodes associated with 
the first quantitative variable and a plurality of second nodes 
associated with the second quantitative variable . At 808 , a 
first standardized mean difference ( SMD ) , a first standard 
error , and a first p - value for each of the first datasets is 
calculated . 
0132 ] At 810 , a second standardized mean difference 

( SMD ) , a second standard error , and a second p - value for 
each of the second datasets is calculated . At 812 , a first effect 
size from the first SMD and the first standard error is 
estimated . At 814 , the first p - values are combined . At 816 , 
a second effect size from the second SMD and the second 
standard error is estimated . At 818 , the second p - values are 
combined . 
0133 ] At 820 , a probability of obtaining an observed 

relationship between the first and second quantitative vari 
ables associated with the disease ( PyDE ) and a p - value that 
depends on identities of first or second quantitative variables 
that are differentially related and described by the pathway 
( PPERT ) from the augmented pathways , the estimated first 
effect size , the combined first p - values , the estimated second 
effect size , and the combined second p - values . At 822 , the 

Conclusion 
[ 0134 ] Spatial and functional relationships between ele 
ments ( for example , between modules ) are described using 
various terms , including " connected , ” " engaged , ” “ inter 
faced , ” and “ coupled . ” Unless explicitly described as being 
" direct , " when a relationship between first and second 
elements is described in the above disclosure , that relation 
ship encompasses a direct relationship where no other 
intervening elements are present between the first and sec 
ond elements , and also an indirect relationship where one or 
more intervening elements are present ( either spatially or 
functionally ) between the first and second elements . As used 
herein , the phrase at least one of A , B , and C should be 
construed to mean a logical ( A OR B OR C ) , using a 
non - exclusive logical OR , and should not be construed to 
mean “ at least one of A , at least one of B , and at least one 
of C . ” 
[ 0135 ] In the figures , the direction of an arrow , as indi 
cated by the arrowhead , generally demonstrates the flow of 
information ( such as data or instructions ) that is of interest 
to the illustration . For example , when element A and element 
B exchange a variety of information but information trans 
mitted from element A to element B is relevant to the 
illustration , the arrow may point from element A to element 
B . This unidirectional arrow does not imply that no other 
information is transmitted from element B to element A . 
Further , for information sent from element A to element B , 
element B may send requests for , or receipt acknowledge 
ments of , the information to element A . 
[ 0136 ] In this application , including the definitions below , 
the term “ module ' or the term ' controller ' may be replaced 
with the term ' circuit . ' The term “ module ' may refer to , be 
part of , or include processor hardware ( shared , dedicated , or 
group ) that executes code and memory hardware ( shared , 
dedicated , or group ) that stores code executed by the pro 
cessor hardware . 
[ 0137 ] The module may include one or more interface 
circuits . In some examples , the interface circuits may 
include wired or wireless interfaces that are connected to a 
local area network ( LAN ) , the Internet , a wide area network 
( WAN ) , or combinations thereof . The functionality of any 
given module of the present disclosure may be distributed 
among multiple modules that are connected via interface 
circuits . For example , multiple modules may allow load 
balancing . In a further example , a server ( also known as 
remote , or cloud ) module may accomplish some function 
ality on behalf of a client module . 
[ 0138 ] The term code , as used above , may include soft 
ware , firmware , and / or microcode , and may refer to pro 
grams , routines , functions , classes , data structures , and / or 
objects . Shared processor hardware encompasses a single 
microprocessor that executes some or all code from multiple 
modules . Group processor hardware encompasses a micro 
processor that , in combination with additional microproces 
sors , executes some or all code from one or more modules . 
References to multiple microprocessors encompass multiple 
microprocessors on discrete dies , multiple microprocessors 
on a single die , multiple cores of a single microprocessor , 
multiple threads of a single microprocessor , or a combina 
tion of the above . 
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[ 0139 ] Shared memory hardware encompasses a single 
memory device that stores some or all code from multiple 
modules . Group memory hardware encompasses a memory 
device that , in combination with other memory devices , 
stores some or all code from one or more modules . 
[ 0140 ] The term memory hardware is a subset of the term 
computer - readable medium . The term computer - readable 
medium , as used herein , does not encompass transitory 
electrical or electromagnetic signals propagating through a 
medium ( such as on a carrier wave ) ; the term computer 
readable medium is therefore considered tangible and non 
transitory . Non - limiting examples of a non - transitory com 
puter - readable medium are nonvolatile memory devices 
( such as a flash memory device , an erasable programmable 
read - only memory device , or a mask read - only memory 
device ) , volatile memory devices ( such as a static random 
access memory device or a dynamic random access memory 
device ) , magnetic storage media ( such as an analog or digital 
magnetic tape or a hard disk drive ) , and optical storage 
media ( such as a CD , a DVD , or a Blu - ray Disc ) . 
[ 0141 ] The apparatuses and methods described in this 
application may be partially or fully implemented by a 
special purpose computer created by configuring a general 
purpose computer to execute one or more particular func 
tions embodied in computer programs . The functional 
blocks and flowchart elements described above serve as 
software specifications , which can be translated into the 
computer programs by the routine work of a skilled techni 
cian or programmer . 
[ 0142 ] The computer programs include processor - execut 
able instructions that are stored on at least one non - transitory 
computer - readable medium . The computer programs may 
also include or rely on stored data . The computer programs 
may encompass a basic input / output system ( BIOS ) that 
interacts with hardware of the special purpose computer , 
device drivers that interact with particular devices of the 
special purpose computer , one or more operating systems , 
user applications , background services , background appli 
cations , etc . 
[ 0143 ] The computer programs may include : ( i ) descrip 
tive text to be parsed , such as HTML ( hypertext markup 
language ) , XML ( extensible markup language ) , or JSON 
( JavaScript Object Notation ) ( ii ) assembly code , ( iii ) object 
code generated from source code by a compiler , ( iv ) source 
code for execution by an interpreter , ( v ) source code for 
compilation and execution by a just - in - time compiler , etc . 
As examples only , source code may be written using syntax 
from languages including C , C + + , C # , Objective - C , Swift , 
Haskell , Go , SQL , R , Lisp , Java® , Fortran , Perl , Pascal , 
Curl , OCaml , Javascript® , HTML5 ( Hypertext Markup 
Language 5th revision ) , Ada , ASP ( Active Server Pages ) , 
PHP ( PHP : Hypertext Preprocessor ) , Scala , Eiffel , Small 
talk , Erlang , Ruby , Flash® , Visual Basic® , Lua , MATLAB , 
SIMULINK , and Python® . 
[ 0144 ] None of the elements recited in the claims are 
intended to be a means - plus - function element within the 
meaning of 35 U . S . C . $ 112 ( f ) unless an element is expressly 
recited using the phrase “ means for ” or , in the case of a 
method claim , using the phrases “ operation for or " step 
for . ” 

1 . ( canceled ) 
2 . ( canceled ) 
3 . A method of identifying a pathway associated with a 

disease , the method comprising : 

obtaining , via a processor , a plurality of first datasets 
describing a first quantitative variable related to the 
disease and a plurality of second datasets describing a 
second quantitative variable related to the disease , the 
plurality of first datasets and the plurality of second 
datasets being provided from independent studies , 
wherein each of the plurality of first datasets and each 
of the plurality of second datasets comprises data 
regarding disease samples and healthy control samples ; 

modifying , via the processor , known pathways related to 
the disease with information provided in both the 
plurality of first datasets and the plurality of second 
datasets to generate augmented pathways comprising a 
plurality of first nodes associated with the first quanti 
tative variable and a plurality of second nodes associ 
ated with the second quantitative variable , wherein the 
first nodes and second nodes are individually intercon 
nected ; 

calculating , via the processor , a first standardized mean 
difference ( SMD ) , a first standard error , and a first 
p - value for each of the plurality of first datasets ; 

calculating , via the processor , a second SMD , a second 
standard error , and a second p - value for each of the 
plurality of second datasets ; 

estimating , via the processor , a first effect size from the 
first SMD and the first standard error ; 

combining , via the processor , the first p - values ; 
estimating , via the processor , a second effect size from the 

second SMD and the second standard error ; 
combining , via the processor , the second p - values ; 
calculating , via the processor , a probability of obtaining at 

least an observed relationship between the first and 
second quantitative variables associated with the dis 
ease ( PNDE ) and a p - value that depends on identities of 
first or second quantitative variables that are differen 
tially related and described by the pathway ( PPERT ) 
from the augmented pathways , the estimated first effect 
size , the combined first p - values , the estimated second 
effect size , and the combined second p - values ; and 

combining , via the processor , PNDE and Ppert to generate 
a single p - value that represents how likely a pathway is 
impacted under the effect of the disease . 

4 . The method according to claim 3 , wherein the estimat 
ing a first effect size and the estimating a second effect size 
are performed by using a Restricted Maximum Likelihood 
( REML ) algorithm . 

5 . The method according to claim 3 , wherein the com 
bining the first p - values and the combining the second 
p - values is performed by add - CLT . 

6 . The method according to claim 3 , wherein the first 
quantitative variable and the second quantitative variable 
individually comprise one of molecular data and clinical 
data . 

7 . The method according to claim 6 , wherein : 
the molecular data describes assay results related to at 

least one of mRNA , miRNA , protein abundance , 
metabolite abundance , and methylation ; and 

the clinical data describes patient information related to at 
least one of weight , blood pressure , blood metabolite 
level , blood sugar , heart rate , vision score , and hearing 
score . 

8 . The method according to claim 3 , further comprising : 
generating a plurality of single p - values corresponding to 

a plurality of pathways and generating a graphical 
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representation of the pathways ranked according to 
their corresponding single p - values . 

9 . An apparatus for identifying a pathway associated with 
a disease , the apparatus comprising : 

a memory configured to store one or more applications ; 
a processor communicatively coupled to memory , the 

processor , upon executing the one or more applications , 
is configured to : 
obtain a plurality of first datasets describing a first 

quantitative variable related to the disease and a 
plurality of second datasets describing a second 
quantitative variable related to the disease , the plu 
rality of first datasets and the plurality of second 
datasets being provided from independent studies , 
wherein each of the plurality of first datasets and 
each of the plurality of second datasets comprises 
data regarding disease samples and healthy control 
samples ; 

modify known pathways related to the disease with 
information provided in both the plurality of first 
datasets and the plurality of second datasets to gen 
erate augmented pathways comprising a plurality of 
first nodes associated with the first quantitative vari 
able and a plurality of second nodes associated with 
the second quantitative variable , wherein the first 
nodes and second nodes are individually intercon 
nected ; 

calculate a first standardized mean difference ( SMD ) , a 
first standard error , and a first p - value for each of the 
plurality of first datasets ; 

calculate a second SMD , a second standard error , and 
a second p - value for each of the plurality of second 
datasets ; 

estimate a first effect size from the first SMD and the 
first standard error ; 

combine the first p - values ; 
estimate a second effect size from the second SMD and 

the second standard error ; 
combine the second p - values ; 
calculate a probability of obtaining at least an observed 

relationship between the first and second quantitative 
variables associated with the disease ( PNDE ) and a 
p - value that depends on identities of first or second 
quantitative variables that are differentially related 
and described by the pathway ( PPERT ) from the 
augmented pathways , the estimated first effect size , 
the combined first p - values , the estimated second 
effect size , and the combined second p - values ; and 

combine PNDE and PPERT to generate a single p - value 
that represents how likely a pathway is impacted 
under the effect of the disease . 

10 . The apparatus according to claim 9 , wherein the 
processor is configured to estimate a first effect size and 
estimate a second effect size using a Restricted Maximum 
Likelihood ( REML ) algorithm . 

11 . The apparatus according to claim 9 , wherein the 
processor is configured to combine the first p - values and to 
combine the second p - values by add - CLT . 

12 . The apparatus according to claim 9 , wherein the first 
quantitative variable and the second quantitative variable 
individually comprise one of molecular data and clinical 
data . 

13 . The apparatus according to claim 12 , wherein : 
the molecular data describes assay results related to at 

least one of mRNA , miRNA , protein abundance , 
metabolite abundance , and methylation ; and 

the clinical data describes patient information related to at 
least one of weight , blood pressure , blood metabolite 
level , blood sugar , heart rate , vision score , and hearing 
score 

14 . The apparatus according to claim 9 , wherein the 
processor is configured to generate a plurality of single 
p - values corresponding to a plurality of pathways and gen 
erate a graphical representation of the pathways ranked 
according to their corresponding single p - values . 

15 . The apparatus according to claim 14 , wherein the 
processor is further configured to cause the graphical rep 
resentation to be displayed at a display . 

16 . A distributed computing system for identifying a 
pathway associated with a disease , the distributed comput 
ing system comprising : 

a first server configured to store a plurality of first 
datasets ; 

a second server configured to store a plurality of second 
datasets , the second server different from the first 
server ; 

a third server communicatively coupled to the first server 
and the second server via a distributed communication 
network , the third server comprising : 

a memory configured to store one or more applications ; 
a processor communicatively coupled to the memory , the 

processor , upon executing the one or more applications , 
is configured to : 
obtain the plurality of first datasets describing a first 

quantitative variable related to the disease and the 
plurality of second datasets describing a second 
quantitative variable related to the disease , the plu 
rality of first datasets and the plurality of second 
datasets being provided from independent studies , 
wherein each of the plurality of first datasets and 
each of the plurality of second datasets comprises 
data regarding disease samples and healthy control 
samples ; 

modify known pathways related to the disease with 
information provided in both the plurality of first 
datasets and the plurality of second datasets to gen 
erate augmented pathways comprising a plurality of 
first nodes associated with the first quantitative vari 
able and a plurality of second nodes associated with 
the second quantitative variable , wherein the first 
nodes and second nodes are individually intercon 
nected ; 

calculate a first standardized mean difference ( SMD ) , a 
first standard error , and a first p - value for each of the 
plurality of first datasets ; 

calculate a second SMD , a second standard error , and 
a second p - value for each of the plurality of second 
datasets ; 

estimate a first effect size from the first SMD and the 
first standard error ; 

combine the first p - values ; 
estimate a second effect size from the second SMD and 

the second standard error ; 
combine the second p - values ; 
calculate a probability of obtaining at least an observed 

relationship between the first and second quantitative 
variables associated with the disease ( PNDE ) and a 
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p - value that depends on identities of first or second 
quantitative variables that are differentially related 
and described by the pathway ( PPERT ) from the 
augmented pathways , the estimated first effect size , 
the combined first p - values , the estimated second 
effect size , and the combined second p - values ; and 

combine PNDE and PPERT to generate a single p - value that 
represents how likely a pathway is impacted under the 
effect of the disease . 

17 . The distributed computing system according to claim 
16 , wherein the processor is configured to estimate a first 
effect size and estimate a second effect size using a 
Restricted Maximum Likelihood ( REML ) algorithm . 

18 . The distributed computing system according to claim 
16 , wherein the processor is configured to combine the first 
p - values and to combine the second p - values by add - CLT . 

19 . The distributed computing system according to claim 
16 , wherein the first quantitative variable and the second 
quantitative variable individually comprise one of molecular 
data and clinical data . 

20 . The distributed computing system according to claim 
19 , wherein : 
the molecular data describes assay results related to at 

least one of mRNA , miRNA , protein abundance , 
metabolite abundance , and methylation ; and 

the clinical data describes patient information related to at 
least one of weight , blood pressure , blood metabolite 
level , blood sugar , heart rate , vision score , and hearing 
score . 

21 . The distributed computing system according to claim 
16 , wherein the processor is configured to generate a plu 
rality of single p - values corresponding to a plurality of 
pathways and generate a graphical representation of the 
pathways ranked according to their corresponding single 
p - values . 

22 . The distributed computing system according to claim 
21 , further comprising a display , wherein the processor is 
further configured to cause display of the graphical repre 
sentation at the display . 


