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(57) ABSTRACT 
Disease Subtyping is accomplished by a computer-imple 
mented algorithm that manipulates a first genetic dataset to 
construct a set of first connectivity matrices. To this set of 
matrices Gaussian noise is introduced to generate a perturbed 
dataset. The computer-implemented algorithm assesses 
which of the set of first connectivity matrices was least 
affected by introduction of noise and that matric is used to 
define the optimal clustering. Once the optimal clustering is 
determined, computer-implemented Supervised classifica 
tion is performed to determine, for a particular patient, with 
which disease Subtype cluster that person's genetic data most 
closely aligns. Armed with this knowledge, the treatment 
regimen is specified with much higher likelihood of Success. 
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PNS: A PERTURBATON CLUSTERING 
APPROACH FOR DATA INTEGRATION AND 

DISEASE SUBTYPNG 

CROSS-REFERENCE TO RELATED 
APPLICATIONS 

0001. This application claims the benefit of U.S. Provi 
sional Application No. 62/132,263 filed on Mar. 12, 2015 and 
U.S. Provisional Application No. 62/221,727 filed on Sep. 22, 
2015. The entire disclosure of each of the above applications 
is incorporated herein by reference. 

FIELD 

0002 The present disclosure relates to disease diagnosis 
using genetic analysis. 

BACKGROUND 

0003. The advent of high-throughput genomics technolo 
gies has resulted in massive amounts of diverse genome-scale 
data. Gene expression data, measured by microarrays or next 
generation sequencing platforms, are the most prevalent data 
type available for biological data analysis. Gene Expression 
Omnibus stores thousands of datasets with independent 
experimental series of similar patient cohorts and experiment 
design. As technologies advance, other data types become 
available and together they offer complementary information 
on the same disease or biological phenomenon. The Cancer 
Genome Atlas (TCGA) has already gathered genome, tran 
Scriptome, and epigenome information for over 20 cancers 
for thousands of patients. The challenge is to interpret the 
massive amounts of high-dimensional and heterogeneous 
data types to gain insights into biological processes. 
0004 Disease subtyping is often the first step to better 
understand a disease or biological phenomenon. The goal is 
to detect unknown groups of patients based on intrinsic fea 
tures without external information. The disease Subtyping 
problem includes the following fundamental issues: 1) how to 
determine the number of clusters and assign patients to each 
group, 2) how to combine complementary information to 
determine the final partitioning. The former problem often 
involves clustering mRNA expression where the data has 
Small sample size but very high dimension. This is still an 
important problem since gene expression is one of the most 
prevalent data type available. The latter problem includes 
integration of multi-omics data, Such as mRNA expression, 
DNA methylation, and miRNA, for class discovery. With the 
rapidly advancing technologies, more and more data types are 
available for the same set of patients, making the increasing 
need for combining multi-omics data. 
0005. In functional genomics, agglomerative hierarchical 
clustering (HC) is a frequently used approach for clustering 
genes or samples that show similar expression patterns. HC 
provides for a structural view of the data that makes it appeal 
ing in exploratory data analysis. However, classical HC 
imposes a tree structure on the data that might not reflect the 
underlying structure, and is highly sensitive to the metric used 
to assess similarity among elements. Divisive clustering 
methods, such as k-means, global k-means, fuzzy modifica 
tion of k-means, have been applied for the same application. 
These methods provide clear cluster boundaries and tighter 
clusters, but they lack the visual appeal of HC. Another group 
of methods are neural network clustering, Such as self-orga 
nizing maps (SOM), Self-Organizing Tree Algorithm 
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(SOTA), and Dynamically Growing Self-Organizing Tree 
(DGSOT). Neural networks can be modeled as a collection of 
nodes with weighted interconnections, which can be adap 
tively learned. The common drawbacks of both k-means 
based methods and neural networks based methods is the 
need to specify the number of clusters beforehand. 
0006 Resampling-based methods have been proposed to 
determine the number of clusters. They assess the stability of 
the clustering results with respect to resampling variability. 
Arguably the state-of-the-art approach in this area is Consen 
SuS Clustering (CC). It develops a general, model indepen 
dent resampling-based methodology of class discovery, clus 
ter validation, and visualization. CC calculates the pair-wise 
similarities (frequency of how often the elements are grouped 
together) and their empirical cumulative distribution function 
(CDF) using Sub-Sampling. The pair-wise similarities are 
then used for visualization and for estimating the cluster 
number. This approach has been widely used and gained 
laudable results. The main assumption of CC is that if the 
samples were drawn from K distinct Sub-populations that 
truly exist, different sub-samples would show the greatest 
level of stability at the true K. Unfortunately, this makes CC 
claim apparent structure when there is none, or declare cluster 
stability when the stability is subtle. 
0007. The goal of an integrative analysis is to identify 
Subgroups of samples that are similar not only at one level 
(e.g., mRNA), but from a holistic perspective, that can take 
into consideration phenomena at various other levels (e.g., 
DNA methylation, miRNA, etc.). One strategy is to analyze 
each data type independently before combining them. One of 
the drawbacks of this approach is that it might lead to incon 
sistent conclusions that are hard to integrate. Another 
approach is to use machine learning techniques. However, 
these methods are not scalable to the full spectrum of mea 
Surements, making them sensitive to gene selection step. One 
recent approach, Similarity Network Fusion (SNF), creates a 
network of patients for each data type before fusing the net 
work using a metric fusion technique developed for image 
processing applications. The fused network is then parti 
tioned using spectral clustering. The unstable nature of the 
spectral clustering and the metric fusion technique makes the 
method sensitive to its parameters. In addition, this method is 
not designed to solve the clustering when only one data type 
is available. 

SUMMARY 

0008 Here we present a new approach to address both of 
the mentioned issues. Our framework is divided into two 
stages. In the first stage, we solve the classical clustering 
problem given a single data type. Although several specific 
high-dimensionality data types are illustrated in our examples 
here, our technology is general enough to be applicable for 
any high-dimensional genetic or life Science data. The second 
stage combines the partitionings of individual data types to 
determine the final partitioning. In our experimental study, we 
evaluate the first stage by clustering 8 gene expression 
datasets of different diseases. For all the 8 datasets, PINS 
outperforms its competitors in recovering the true classes. To 
evaluate the second stage, we downloaded mRNA, DNA 
methylation, and miRNA data of 6 difference cancers from 
TCGA: kidney renal clear cell carcinoma (KIRC), glioblas 
toma (GBM), lung Squamous cell carcinoma (LUSC), breast 
invasive carcinoma (BRCA), acute myeloid leukemia 
(LAML), and colon adeno-carcinoma (COAD) with survival 
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and clinical data. PINS substantially outperforms other meth 
ods in identifying Subtypes and in predicting Survival using 
the multi-omics data. 

BRIEF DESCRIPTION OF THE DRAWINGS 

0009 FIG. 1 is a flowchart diagram depicting the Stage I 
process for perturbation clustering for high dimensional data; 
0010 FIGS. 2A-2D (collectively referred to as FIG. 2) 
depicts a first exemplary dataset (Gaussian1-1 class) associ 
ated with the perturbation clustering process of FIG. 1, spe 
cifically: 
0011 FIG. 2A also referred to as FIG. 2, Panel (A) is 
a graphical plot of the gene expression profile of the exem 
plary dataset; 
0012 FIG.2B also referred to as FIG. 2, Panel(B) is a 
series of connectivity matrices, comparing original data VS 
perturbed data for different values of k: 
0013 FIG. 2C also referred to as FIG. 2, Panel (C) is a 
graph of the empirical cumulative distribution functions 
(CDF) of the difference matrix D; 
0014 FIG. 2D also referred to as FIG. 2, Panel (D) is 
a graph of the area under the curve (AUC) of the CDFs for 
each value of k: 
0015 FIGS. 3A-3D (collectively referred to as FIG. 3) 
depicts a second exemplary dataset (Gaussian2-2 classes) 
associated with the perturbation clustering process of FIG. 1, 
the individual FIG. 3 Panels (A)-(D) displaying comparable 
information as described in connection with FIG. 2; 
0016 FIGS. 4A-4D (collectively referred to as FIG. 4) 
depicts a second exemplary dataset (Gaussian3-3 classes) 
associated with the perturbation clustering process of FIG. 1, 
the individual FIG. 4 Panels (A)-(D) displaying comparable 
information as described in connection with FIG. 2; 
0017 FIGS. 5A-5D (collectively referred to as FIG. 5) 
depicts a second exemplary dataset (GaussianS-5 classes) 
associated with the perturbation clustering process of FIG. 1, 
the individual FIG. 5 Panels (A)-(D) displaying comparable 
information as described in connection with FIG. 2; 
0018 FIGS. 6A-6D (collectively referred to as FIG. 6) 
depicts a second exemplary dataset (Gaussian9-9 classes) 
associated with the perturbation clustering process of FIG. 1, 
the individual FIG. 6 Panels (A)-(D) displaying comparable 
information as described in connection with FIG. 2; 
0019 FIG. 7 is an area under the curve (AUC) graph for 
ten (10) simulated datasets; 
0020 FIGS. 8A-8D (collectively referred to as FIG. 8) 
depict data for the lung cancer dataset GSE 19188, useful in 
understanding the disclosed clustering technique, specifi 
cally: 
0021 FIG. 8A also referred to as FIG. 8, Panel (A) is 
a set of connectivity matrices, comparing original data VS 
perturbed data for k=3 and k=6: 
0022 FIG. 8B also referred to as FIG. 8, Panel (B)— 
depicts the cumulative distribution functions (CDF) for dif 
ferent values of k: 
0023 FIG. 8C also referred to as FIG. 8, Panel (C)— 
depicts the area under the curve (AUC) graph for dataset 
GSE 19188 and dataset Gaussian1; 
0024 FIG. 8D also referred to as FIG. 8, Panel (D)— 
depicts the clustering result in the first two principal compo 
nents, where the circles represent the LCC samples; the tri 
angles represent the ADC samples; the crosses represent the 
SCC samples: 
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0025 FIG. 9 is a data flow diagram illustrating data inte 
gration and disease Subtyping for a kidney renal clear cell 
carcinoma (KIRC); 
(0026 FIGS. 10A-10C (collectively referred to as FIG. 10) 
are cluster diagrams for dataset GSE 10245, comparing the 
presently disclosed PINS technique (FIG. 10A) with the SNF 
technique (FIG. 10B) and the CC technique (FIG.9C); 
(0027 FIGS. 11A-11C (collectively referred to as FIG. 11) 
are cluster diagrams for dataset GSE 19188, comparing the 
presently disclosed PINS technique (FIG. 11A) with the SNF 
technique (FIG. 11B) and the CC technique (FIG. 11C); 
(0028 FIGS. 12A-12C (collectively referred to as FIG. 
12)are cluster diagrams for dataset GSE43580, comparing 
the presently disclosed PINS technique (FIG. 12A) with the 
SNF technique (FIG.12B) and the CC technique (FIG. 12C); 
(0029 FIGS. 13 A-13C (collectively referred to as FIG. 
13)are cluster diagrams for dataset GSE14924, comparing 
the presently disclosed PINS technique (FIG. 13A) with the 
SNF technique (FIG. 13B) and the CC technique (FIG. 13C); 
0030 FIGS. 14A-14C (collectively referred to as FIG. 14) 
are cluster diagrams for dataset GSE 15061, comparing the 
presently disclosed PINS technique (FIG. 14A) with the SNF 
technique (FIG. 14B) and the CC technique (FIG. 14C); 
0031 FIGS. 15A-15C (collectively referred to as FIG. 15) 
are cluster diagrams for dataset AML2004, comparing the 
presently disclosed PINS technique (FIG.15A) with the SNF 
technique (FIG. 15B) and the CC technique (FIG. 15C); 
0032 FIGS. 16A-16C (collectively referred to as FIG. 16) 
are cluster diagrams for dataset Lung2001, comparing the 
presently disclosed PINS technique (FIG.16A) with the SNF 
technique (FIG. 16B) and the CC technique (FIG.16C); 
0033 FIGS. 17A-17C (collectively referred to as FIG. 17) 
are cluster diagrams for dataset Brain2002, comparing the 
presently disclosed PINS technique (FIG. 17A) with the SNF 
technique (FIG. 17B) and the CC technique (FIG. 17C); 
0034 FIG. 18A-18E3 (collectively referred to as FIG. 18) 
are Kaplan-Meier Survival analysis graphs for kidney renal 
clear cell carcinoma (KIRC), comparing the presently dis 
closed PINS technique (FIG. 18A) with the SNF technique 
(FIG. 18B); 
0035 FIG. 19A-19B (collectively referred to as FIG. 19) 
are Kaplan-Meier Survival analysis graphs for glioblastoma 
multiform (GMB), comparing the presently disclosed PINS 
technique (FIG. 19A) with the SNF technique (FIG. 19B); 
0036 FIG. 20A-20B (collectively referred to as FIG. 20) 
are Kaplan-Meier Survival analysis graphs for lung squamous 
cell carcinoma (LUSC), comparing the presently disclosed 
PINS technique (FIG. 20A) with the SNF technique (FIG. 
20B); 
0037 FIG. 21A-21B (collectively referred to as FIG. 21) 
are Kaplan-Meier Survival analysis graphs for breast invasive 
carcinoma (BRCA), comparing the presently disclosed PINS 
technique (FIG. 21A) with the SNF technique (FIG. 21B); 
0038 FIG.22A-22B (collectively referred to as FIG. 22) 
are Kaplan-Meier Survival analysis graphs for acute myeloid 
leukemia (LAML), comparing the presently disclosed PINS 
technique (FIG.22A) with the SNF technique (FIG.22B); 
0039 FIG. 23 A-23B (collectively referred to as FIG. 23) 
are Kaplan-Meier Survival analysis graphs for colon adeno 
carcinoma (COAD), comparing the presently disclosed PINS 
technique (FIG. 23A) with the SNF technique (FIG. 23B); 
0040 FIG. 24A-24B (collectively referred to as FIG. 24) 
are Kaplan-Meier Survival analysis graphs for glioblastoma 
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multiform (GMB) phase 1 (FIG. 24A) and phase 2 (FIG. 
24B), applying the presently disclosed PINS technique: 
0041 FIG.25 is a heatmap of features differentials among 
glioblastoma multiform (GMB) subtypes, comparing three 
data types: mRNA, DNA methylation, and miRNA; 
0042 FIG. 26 is a chart showing age distribution of the 
discovered subtypes for glioblastoma multiform (GMB); 
0043 FIG. 27A-27B (collectively referred to as FIG. 27) 
are Kaplan-Meier Survival analysis graphs for kidney renal 
clear cell carcinoma (KIRC) phase 1 (FIG. 27A) and phase 2 
(FIG.27B), applying the presently disclosed PINS technique: 
0044 FIG. 28 is a heatmap of features differentials among 
kidney renal clear cell carcinoma (KIRC) subtypes, compar 
ing three data types: mRNA, DNA methylation, and miRNA; 
0045 FIG. 29 is a chart showing age distribution of the 
discovered Subtypes for kidney renal clear cell carcinoma 
(KIRC) 
0046 FIG. 30 is a simplified flow diagram depicting the 
major steps of the disclosed PINS technique; 
0047 FIGS. 31a and 31b are simplified flow diagrams 
depicting the major steps of the disclosed technique for Sub 
typing multi-omics data; 
0048 FIG. 32 is a computer system diagram illustrating 
one combined hardware and software embodiment of imple 
menting the disclosed technique. 

DESCRIPTION OF PREFERRED 
EMBODIMENTS 

0049. In this disclosure, we present a new technological 
approach to address both of the mentioned issues. We refer to 
our new technological approach by the acronym PINS (Per 
turbation clustering approach for data INtegration and dis 
ease Subtyping). Our technology is divided into two stages. In 
the first stage, we solve in a new way the classical clustering 
problem given a single data type. While particularly well 
Suited to analyzing genetic data, our approach is general 
enough to be applicable for any high-dimensional data. The 
second stage combines the partitionings of individual data 
types to determine the final partitioning. 
0050. In our experimental study described here, we evalu 
ate the first stage by clustering 8 gene expression datasets of 
different diseases. For all the 8 datasets, PINS outperforms its 
competitors in recovering the true classes. To evaluate the 
second stage, we downloaded mRNA, DNA methylation, and 
miRNA data of 6 difference cancers from TCGA: kidney 
renal clear cell carcinoma (KIRC), glioblastoma (GBM). 
lung squamous cell carcinoma (LUSC), breast invasive car 
cinoma (BRCA), acute myeloid leukemia (LAML), and 
colon adenocarcinoma (COAD) with survival and clinical 
data. PINS substantially outperforms other methods in iden 
tifying Subtypes and in predicting Survival using the multi 
omics data. 

II. Methods 

0051. Here we describe the perturbation clustering for a 
single data type and data integration for multiple data type. 
This section is organized as follows. Section II-A describes 
the perturbation clustering (stage I), in which the patients are 
partitioned using one data type. This first stage outputs the 
clustering and the pair-wise connectivity of the patients. Sec 
tion II-B describes the data integration and disease Subtyping 
(stage II) using multi-Omics data. This second stage consists 
of 2 phases. In phase 1, the pair-wise connectivity (between 

Sep. 15, 2016 

patients) for multiple data types are combined to form the 
network between patients. This network is then partitioned to 
determine the grouping using the integrated data. In phase 2. 
we further split each group into Sub-groups if possible. The 
output of the phase 2 is then reported as the output of PINS 
using the multi-omics data. 
0.052 A. Perturbation Clustering (Stage I) 
0053. In stage I of PINS, we solve the classical clustering 
problem, i.e., we focus on clustering samples (patients) using 
one data type. The approach is based on the observation that 
Small changes in any kind of quantitative assay will be inher 
ently present between individuals, even in a truly homoge 
neous population in the absence of any Subtypes. Here, the 
hypothesis is that if well-defined subtypes of disease do exist, 
these have to be stable with respect to small changes in the 
measured values. Hence, we are not interested in any clusters 
that form or disappear due to Small changes in the data, but 
rather we are looking for those groupings that remain stable 
across many clusterings built in the presence of Small 
changes. In order to find Such clusters, we add Gaussian noise 
to the data and reconstruct the clustering many times. The 
stability is assessed by the discrepancies in the clustering 
results between the original and the perturbed data. Based on 
this, we extract the “true number of clusters as being the one 
that is least affected by such perturbations. In the absence of 
any true Subtypes, the repeated clusterings will show lack of 
stability thus allowing us to avoid the discovery of false 
Subtypes. 
0054 The framework will be described here using 
k-means clustering as the basic building block of our Subtype 
discovery approach, but a number of other classical clustering 
approaches could be used instead. It is well-known that the 
k-means algorithm may converge to a local minimum 
depending on the initialization. To overcome this problem, 
we use the “modified version' of k-means, i.e., we run 
k-means many times with different random initialization and 
then choose the result that gives the least residual sum of 
squares (RSS). In the rest of this manuscript, the term 
k-means refers to the “modified version' of k-means. 
0055. The high-level algorithm can be briefly described as 
follows: i) For a given number of clusters k, we cluster the 
original data using k-means and then construct the connec 
tivity between patients (original connectivity). ii) We add 
noise to the data and re-cluster the perturbed data many times 
to determine the average connectivity between patients when 
the data are perturbed (perturbed connectivity). iii) We cal 
culate the discrepancy between the original clustering and the 
perturbed clustering for each k. iv) We repeat the above steps 
for all values of k in a range of interest (e.g., 2 ... 10). v) We 
choose the k which gives the least discrepancy between the 
original and perturbed connectivity. The corresponding clus 
tering is then returned as the most stable one. 
0056. Our approach differs from the existing methods in 
the following aspects: i) we accept the noisy nature of the 
biological measurement and use the data as they are (without 
data pre-processing) and therefore do not suffer from infor 
mation loss and do not require a preliminary feature selection, 
nor a dimensionality reduction; ii) our stability metric is 
expected to deterministically and reliably identify the number 
of clusters present in the data. 
0057 FIG. 1 shows the detailed workflow of the perturba 
tion clustering algorithm (stage I). The input of the algorithm 
is a dataset (matrix) IeR^*', where N is the number of 
patients and M is the number of measurements for each 
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patient. In the example of gene expression, N is the number of 
samples and M is the number of genes (or probes) measured 
in each sample. In short, the rows of the matrix I represents the 
patients and the columns represents the components (fea 
tures). The algorithm parameters are K (default 10) and H 
(default 200) where K is the maximum number of clusters and 
His the number of perturbation H. The algorithm consists of 
11 steps, which will be described step-by-step in the follow 
ing sections. 
0058 1. Construction of Original Connectivity Matrices 
(Steps 1-2) 
0059. In step (1), we partition the patients using all pos 
sible number of clusters k=2...K. Formally, the input I can 
be presented as a set of N patients I={e, e. . . . . ex} where 
each element e, is in a M" dimensional space and represents 
the molecular profile of the i' patient (ie: 1...N). A parti 
tioning P. (k clusters) of I can be written in the form P={P, 
P.,..., P.} where P, is a set of patients, such that U, P, I 
and P?nP-0. Wi, je1, . . . k), iai. After step (1), we have 
(K-1) partitionings: {P2,..., P}, one for each value of ke|2 
... K. 
0060. In step (2), we build the pair-wise connectivity 
between the patients using the partitionings obtained from 
step (1). For a partitioning P, two patients are connected if 
they are clustered together. We build the connectivity matrix 
Ce{0,1}^*Y from the partitioning P ={P, P, P} as fol 
lows: 

1 if t e 1.k): i, ie P, (1) 
0 otherwise C (i, j) ={ 

0061. In other words, the connectivity between two 
patients is 1 if and only if they belong to the same cluster. Let 
us consider one example. We cluster a set of 5 elements into 
2 clusters with the resulted partitioning P={{1,2}, {3,4,5}}. 
In this case, element 1 is connected to element 2 and is not 
connected to other elements {3,4, and 5}. Similarly, elements 
{3, 4, 5} are all connected to each other, but not to elements 
{1, 2}. Using equation (1), we construct the connectivity 
matrix forP is as follows: 

1 1 0 O O 

1 1 0 O O 

C = 0 0 1 1 1 
0 0 1 1 1 

0 0 1 1 1 

0062 Intuitively, a partitioning can be presented as a 
graph in which each patient is a node and the connectivity 
between two patients is an edge. Such that the edge exists if 
and only if the two patients have similar gene expression 
profile and thus are clustered together. Any two patients of a 
cluster are connected by an edge, and any two patients of 
different clusters are not connected. The connectivity matrix 
of is exactly the adjacency matrix of the graph. 
0063 We construct one connectivity matrix for each value 
of ke|2 . . . K. After step (2), we have (K-1) connectivity 
matrices C. . . . . C. We refer to these matrices as original 
connectivity matrices because they are constructed from the 
original data without perturbation or resampling. 
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0064. 2. Generating Perturbed Datasets (steps 3-4) 
0065. In order to assess the stability of the partitionings 
obtained in steps (1-2), we generate H new datasets by adding 
Gaussian noise to the original data I. In step (3), we calculate 
the noise variance from the input. We first calculate the vari 
ances of the M components (columns). For example, for gene 
expression assay of 20,000 genes, we will get 20,000 vari 
ances, each variance for a gene represents the variability of 
that gene among the individuals. We then choose the median 
of the M variances to be the noise variance. Our reasoning is 
that the majority of the genes should have similar expression 
across individuals. The difference between individuals for 
those genes is due to technical variability and individual 
heterogeneity. By choosing the median variance, we hope that 
our noise setting is automatically adjusted to the noise of the 
system. Formally, the noise variance is calculated as follows: 

{ e (1.M): C = vari(i, j), ie (1...N)} (2) 
C = mediankoti,..., Oil: 

(0066. In step (4), we generate new datasets JeR^* 
(hel ... H) by adding Gaussian noise to the original data as 
follows: 

where of is calculated inequation(2). After this step, we have 
Hperturbed datasets J. J. . . . . J. We refer to these 
datasets as perturbed datasets because they are generated by 
perturbing the original data. The perturbed datasets will be 
used to compute the perturbed connectivity matrices in the 
following section. 
0067 3. Construction of Perturbed Connectivity Matrices 
(Steps 5-7) 
0068. In step (5), we cluster each of the H perturbed 
datasets using k-means with varying values of ke2 . . . A. 
For example, for k=2, we partition the dataset J' into 2 
clusters and get the Q' partitioning. We perform k-means 
with k=2 for all the H perturbed datasets and get H different 
partitionings Q', Q.’,..., Q.' for k=2. Please note that 
all these perturbed datasets were generated by adding Small 
noise to th same input I. In the ideal case, Q.', Q.'', . . . . 
Q,') are all identical to P. The more difference between 
them, the less reliable the P. partitioning. 
0069. After step (5), we have H different partitionings 
Q., Q.’...., Q.' for each value of ke|2...K). In step 
(6), we construct a connectivity matrix for each partitioning 
created in step (5). Specifically, for the partitioning Q." 
(he 1 . . . H., ke2 . . . K), we construct the connectivity 
matrix G'e{0,1}^*Y as follows: 

1 if i, i belong to the same cluster (4) G'(i, j) = { 0 otherwise 

0070. After this step, we have H connectivity matrices 
G.'', G.,..., G.' for a value ofk In the context of graph, 
each connectivity matrix can be considered as the presenta 
tion of the network between patients. For a given value of k, 
C. represents the network for the original data while G." 
represents the network between patients each time we perturb 
the data. The stability of the clustering is assessed based on 
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the discrepancy between these altered networks and the origi 
nal network. We first combine the altered networks before 
comparing the combined network to the original network. In 
step (7), we calculate the perturbed connectivity matrix by 
averaging the connectivity from G', G., . . . . G.' as 
follows: 

1 h) (5) 
Ak = i2. G. 

where Ae|0,1,\, ke|2 ... K. We refer to these matrices 
as perturbed connectivity matrices. For each value of ke2.. 
. K. we have one original connectivity matrix and one per 
turbed connectivity matrix. The discrepancy between the two 
matrix reflects the stability of the partitioning P. 
(0071. 4) Stability Assessment (Step 8-10) 
0072 Given the number of cluster k, we would like to 
quantify the discrepancy between the Cand A. We calculate 
the difference matrix DeIO,1Y as follows: 

D(i,j) represents the change in connectivity between i andj 
when the data are perturbed. D consists of numbers falling 
into the interval 0.1. The distribution of the entries of D. 
reflects the stability of the clustering. The more this distribu 
tion shifts towards 1, the less robust the clustering. To quan 
tify the discrepancy, we compute the empirical cumulative 
distribution function (CDF) of the for the entries of D. In step 
(9) we compute the function F as follows: 

{ D (i, j) is C M i, ie 1...N} (7) 
F. (c) = N2 

where the numerator represents the number of elements in D, 
that are smaller than or equal to c while the denominator 
represents the total number of elements in the matrix D. 
0073. In step (10), we calculate the area under the curve 
AUC of the CDFs. When C and A are identical (i.e., data 
perturbation do not change the clustering result), the differ 
ence matrix D consists of only 0's. In this case, F(0)=1, and 
thus the area under the curve AUC to be maximized, i.e., 
AUC-1. If C and A differ from each other, then the entries 
of D. shift towards 1, making AUC smaller than 1. The more 
different between C and A, the smaller the AUC. The 
smaller the AUC, the more stable the partitioning. Therefore, 
we choose the optimal k for which the area under the curve 
(AUC) is maximized. 

k = argmax(AUC., ke (2...Kl) (8) 
k 

(0074. At the end of stage I, we return the optimal value of 
k, the partitioning P, the original connectivity matrix C, and 
the perturbed connectivity matrix A. The connectivity matri 
ces C. A represent the network between patients for one data 
type. These matrices will be used to combine multi-omics 
data for the final clustering in stage II of PINS. 
0075 To illustrate the workflow of the algorithm, we 
simulate 10 simulated datasets named Gaussian 1, Gaussian2. 
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..., Gaussian10. The number in each name is the number of 
classes of the dataset. Each dataset has 100 samples and 1,000 
genes. The samples are equally divided among the classes. 
For example Gaussian2 has 2 classes of size 50 and Gauss 
ian3 has 3 classes of size 33 and 34. We will show that the 
AUC values are notably low for Gaussian1 dataset, which 
Suggests that any partitioning of this dataset is very unstable 
against data perturbation (FIG.2). For the other 9 datasets, we 
will show that the partitioning is stable when the number of 
cluster equals the true number of classes (FIGS. 3, 4, 5, 6, 7). 
0076 FIG. 2 shows the workflow of PINS for the simu 
lated dataset Gaussian1. The dataset consists of 100 samples 
and 1,000 genes. The expression values of each gene follow 
the Gaussian distribution N(0,1) as shown in panel (A). From 
the data, we calculate the variance of each gene. We have 
o,’s 1, Wiel 1 ... 1000), and therefore o’s 1. We note that the 
variance of the distribution has no impact on the result of 
PINS because the noise variance is set to be the median 
variance of the genes. 
0077 FIG. 2B shows the original connectivity matrices 
(upper row) and perturbed connectivity matrices (lower row). 
For each value ofk, PINS partitions the original data and then 
builds the connectivity matrix. The elements in one cluster are 
all connected to each other and are disconnected to elements 
of other clusters. For example, when k=2, PINS forms 2 
clusters of approximately equal sizes from the original data. 
However, when the data are perturbed, each data point ran 
domly moves around its original location and thus it can be 
grouped together with any other point with the same prob 
ability. By perturbing the data, we construct 200 connectivity 
matrices G.he 1 . . . 200). The perturbed connectivity 
matrix is then calculated as the average of these 200 matrices: 

0078 Visually, the perturbed connectivity matrix A in 
panel (B) shows that data points are randomly connected. 
This is also true for any other value of ke2 . . . 10. In 
Summary, the original connectivity greatly disagree with the 
perturbed connectivity, which reflects the real structure of the 
data. 

(0079 FIG. 2C displays the CDFs of the entries of the 
difference matrices for all values of ke2 ... 10. The hori 
Zontal axis represents the entries of the difference matrix 
while the vertical axis represents the values of the CDFs. 
Panel (D) shows the area under the curve (AUC) of the CDFs. 
The horizontal axis shows the number of clusters and the 
vertical axis shows the AUC values. To understand the vari 
ability of the AUC values, we repeat the whole process 20 
times with different simulated datasets having normally dis 
tributed gene expression. The vertical lines show the 95% 
confidence interval of the AUCs at each value ofk The AUC 
values barely change when the data change. We also plot the 
AUC values for a simulated dataset with uniformly distrib 
uted expression values. The figure shows that when the data 
are random, regardless of their distribution, the AUC values 
vary only slightly. In addition, these AUC values monotoni 
cally increase with k, and range from 0.5 to 0.85, which is 
notably smaller than 1. 
0080. As we understand the behavior of PINS for random 
data, we would like to know how PINS works on datasets that 
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have separable classes. FIG. 3 displays the workflow of PINS 
for the simulated dataset Gaussian2 (2 classes). The dataset 
consists of 100 samples and 1,000 genes. Panel (A) shows the 
gene expression of the 2 cluster, in which each cluster has 50 
samples. The samples of the first cluster has the genes 1-100 
up-regulated while the second cluster has the genes 101-200 
up-regulated. These up-regulated genes are normally distrib 
uted with mean 2 and variance 1 (N(2, 1)). Other genes are 
normally distributed with mean 0 and variance 1 (N(0, 1)). 
0081 FIG. 3B shows the original connectivity matrices 
(upper row) and the perturbed connectivity matrices (lower 
row) of the simulated dataset Gaussian2. Using the original 
data, the basic k-means algorithm correctly separate the 2 
classes when k 2. As we perturb the data, each data point 
moves around its original position but still stays close to its 
own cluster. Therefore, samples of the same cluster are still 
grouped together, making the perturbed connectivity matrix 
identical to the original connectivity matrix when k=2. When 
k2, the original connectivity matrices show that the k-means 
algorithm further split the data into Smaller groups. However, 
when the data are perturbed, the connectivity between data 
points of the same cluster, which were mistakenly separated, 
tend to recover. Regardless of the value of k being used, the 
perturbed connectivity matrices clearly show that the data 
consists of 2 clusters, which is the true structure of the dataset 
Gaussian2. Panel (C) shows the CDFs of the difference 
matrix while panel (D) shows the AUC values of the CDFs. 
Since the original and perturbed connectivity matrices are 
identical for k=2, we have F(0)=1 and AUC-1. In other 
words, P is the only partitioning that is stable against data 
perturbation, and therefore k=2 is the optimal number of 
clusters for the dataset Gaussian2. PINS correctly and deter 
ministically discovers the true classes of the dataset Gauss 
ian2. 

I0082 FIG. 4 displays the workflow of PINS for the simu 
lated dataset Gaussian3. Panel (A) shows the expression of 
the 3 classes. Each of the first and second classes have 33 
samples while the third class has 34 samples (totally 100 
samples). The first class has the genes 1-100 up-regulated; the 
second class has the genes 101-200 up-regulated; the third 
class has the genes 200-300. These up-regulated genes are 
normally distributed with mean 2 and variance 1 (N(2, 1)). 
Other genes are normally distributed with mean 0 and vari 
ance 1 (N(0, 1)). 
0083 FIG. 4B shows the original connectivity matrices 
(upper row) and perturbed connectivity matrices (lower row). 
For k=3, the basic k-means algorithm correctly separate the 3 
classes using the original data. As we perturb the data, 
samples of the same class are still grouped together, making 
the perturbed connectivity matrix identical to the original 
connectivity matrix. For k?3, the k-means algorithm further 
splits each class into Smaller groups. However, when the data 
are perturbed, samples of the same class tend to connect to 
each other. Fork 2, the original connectivity matrix C shows 
that 2 of the 3 classes are merged but the connectivity between 
them is not stable when the data are perturbed. The perturbed 
connectivity matrices clearly Suggest that the data consists 3 
groups of samples, which is the true structure of Gaussian3. 
0084 FIG. 4C displays the empirical cumulative distribu 
tion functions (CDF) F of the difference matrix D. Ke2.. 
... 10. The horizontal axis represents the entries of the differ 
ence matrix while the vertical axis displays the values of the 
function (the number of elements in D. Smaller or equal to 
each entry). Panel (D) shows the area under the curve (AUC) 
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of the CDFs. The horizontal axis shows the number of clusters 
and the vertical axis shows the AUC values. The AUC curve 
shows that only the partitioning P is stable against data 
perturbation, i.e., k=3. PINS correctly and deterministically 
discovers the true classes of the dataset Gaussian3. 

I0085. Similarly, FIGS. 5 and 6 display the workflow of 
PINS for the simulated datasets Gaussians (5 classes) and 
Gaussian9 (9 classes). In both cases, the perturbed connec 
tivity matrices clearly show the true structure of the data, 
regardless of the value of k being used. We note that for these 
two datasets, the noise variance is set to the median variance 
of the genes, which can be higher than the real noise. For 
example with Gaussian9, only that last 100 genes have vari 
ance equal to the noise variance. The other 900 genes have 
variance higher than the noise variance because there is at 
least one cluster having those genes up-regulated. Even in 
these cases, PINS still correctly identify the number of clus 
ters with the optimal AUC equals to 1. 
I0086. As a summary, we display the AUC values of all the 
10 simulated datasets from Gaussian1 to Gaussian 10 in FIG. 
7. The number in the name of each simulated dataset is the 
number of classes in that dataset. When the data have no 
structure as in Gaussian1, the AUC values monotonically 
increase with k, and range from 0.5 to 0.85. These AUC values 
vary only slightly regardless of the gene expression variance 
or distribution (FIG. 2). In addition, for any value of k, the 
AUC value of Gaussian1 is always smaller than the AUC 
value of any other dataset that has a clear structure. When the 
data consist of more than 1 class, the AUC values greatly 
increase and reach the maximum value when the number of 
cluster equals to the number of classes. PINS correctly iden 
tify the optimal number of clusters k with AUC 1 for all 
these 9 simulated datasets. 

I0087 FIG. 8 shows and example of the real dataset 
GSE 19188PINS result for the real dataset GSE 19188, which 
consists of 91 lung cancer samples and 19,851 genes. The 
dataset has 3 subtypes: 45 adenocarcinomas (ADC), 19 large 
cell carcinoma (LCC), and 27 Squamous cell carcinomas 
(SCC). The goal is to cluster the samples according to their 
Subtypes using the gene expression. Panel (A) shows the 
connectivity matrices for k=3 and k=6. Visually, the per 
turbed and original connectivity matrices are almost identical 
for k=3 and are greatly different for k=6. Panel (A) displays 
the CDF of the different matrices for ke2 ... 10. The CDF 
for k=3 reaches its maximum quickly, which reflects the fact 
that the partitioning P is the most stable among other parti 
tionings. Panel (C) displays the AUC values, in which AUC 
has the highest value and thus k=3. Panel (D) displays the 
clustering result in the first two principal components. The 
circles represent the LCC samples; the triangles represent the 
ADC samples; the crosses represent the SCC samples. PINS 
correctly identifies the number of the subtypes and separate 
most of the samples accordingly with high Rand index (RI) 
and adjusted Rand index (ARI). More details about the real 
datasets will be explained in the Experimental Results section 
below. 

I0088. Before moving to a detailed discussion of how sub 
typing of multi-omics data are processed, FIG.30 will be used 
to summarize what has been described in detail above and 
also to illustrate how multi-omics data can be introduced into 
the analysis. The process begins by Supplying a dataset, Such 
as dataset 10, which represents a single data type (Such as 
mRNA data), or dataset 12, which represents a collection of 
plural datasets, each of a different data type (such as mRNA, 
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DNA methylation, and miRNA). The dataset can be gener 
ated by collecting human tissue samples, analyzing those 
samples using a laboratory genetic analyzer and storing in a 
MxN array in non-transitory computer memory, where M 
represents an element of the data type and N represents the 
individual person from whom the sample was collected. Suit 
able datasets can be obtained from previously developed 
sources available commercially and/or from the Internet. 
0089. Whether a single dataset 10 or a multi-omics dataset 
12 is being used, the dataset is processed to construct the 
original connectivity matrices 14, as described in detail 
above. In parallel with the original connectivity matrices con 
struction, perturbed datasets are generated as at 16. This is 
done, as described above by injecting a Suitably configured 
Gaussian noise into the data. The perturbed datasets are then 
used to construct perturbed connectivity matrices 18. 
0090. With original and perturbed connectivity matrices 
now both constructed, a stability assessment is performed at 
20. As a result of this assessment, the computer-implemented 
algorithm identifies several important data values that 
describe the optimal clusters for the given datasets. These 
data values include, the optimal value of k, designating the 
optimal number of clusters; and the optimal partitioning of 
the dataset, indicating to which cluster each person's data 
belongs. In addition, the algorithm stores the original connec 
tivity matrix and the perturbed connectivity matrix, for use in 
Subsequent processing steps. Note that the stability assess 
ment step defines these data values for each dataset Supplied. 
Thus if the dataset 10 was used, a single optimalk value and 
single optimal partition would be generated. If dataset 12 
were instead used, the stability assessment step would gen 
erate a separate optimal k value for each data type (e.g., 
mRNA, DNA methylation, and miRNA) and a separate opti 
mal partition for each data type as well. 
0091. Note that the process illustrated in FIG. 30 repre 
sents unclassified clustering. The process finds the optimal 
clusters without requiring any a priori knowledge of how the 
individual subjects may have been classified (if at all) prior to 
performing the process. Essentially, the process describe in 
FIG. 30 and above, uses the raw dataset data to find the 
optimal clusters, without any requirement that a k value be 
selected in advance. 
0092 B. Subtyping Multi-Omics Data 
0093. In this section, we describe the workflow of PINS 
for multi-omics data. Let us denote T as the number of data 
types. The input of PINS is a set ofT matrices where IFI, I, 
..., I} where 1,6R'' represents the measurements of the 
i" data type, N is the number of patients, and M, is the number 
of measurements per patient for thei" data type. The T matri 
ces have the same number of rows (patients) but might have 
different number of columns. 

0094. Our disclosed workflow consists of two stages: i) 
integrate the data and cluster the patients, ii) further split each 
group into subgroups if possible. In stage I, we construct the 
combined similarity matrix between patients using the con 
nectivity information from individual data types. We then 
combine 3 similarity-based algorithms to determine the final 
partitioning of the multi-Omics data. In stage II, we further 
split each discovered subtype if possible. 
0095. 1) Stage I—Data Integration and Subtyping: 
0096. The algorithm starts by clustering each data type 
using the perturbation clustering (as described above). Con 
sider thei" data type with the data matrix I. The perturbation 
clustering estimates k, as the number of clusters and then 
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partitions the data into k, clusters. The algorithm returns the 
original connectivity matrix C, in which the connectivity 
between elements of the same clusters is 1 and the connec 
tivity between elements of different clusters is 0. Please note 
that the index i here denotes the index of the data type. For T 
data types, we have T original connectivity matrices C. C. 
... C. We combine the connectivity matrices for the original 
data as follows: 

X. C; (9) 

0097 We refer to S, as the original similarity matrix 
because it is constructed from the original connectivity matri 
ces. If we consider each patient as a node, and the connectivity 
between two patients is an edge, then each connectivity 
matrix for each data type represents a graph. Our goal is to 
identify Subgraphs that are strongly connected across all data 
types. 
0098. We then measure the agreement between the T data 
types using the concept similar to the pair-wise agreement of 
Rand index (RI). Given two partitionings of the same set of 
items, the RI is calculated as the number of pairs that "agree'. 
divided by the total number of possible pairs. A pair "agrees’ 
if the two samples are either grouped together in both parti 
tionings or they are separated in both partitionings. We extend 
this concept to T partitionings of T data types. First we 
defined that the connectivity between two patients is consis 
tent if it does not change across data types. We then define the 
agreement of T data types as the number of pairs having 
consistent connectivity, divided by the total number of pos 
sible pairs. In other words, the agreement between the data 
types can be calculated as follows: 

|{Sc(i, j) = 0 V Sc(i, j) = 1} (10) 
agree(Sc) = —ws - 

0099. If the majority of pairs are consistent, i.e., agree(S) 
>50%, we say that the T data types have strong agreement. In 
this case, we define a strong similarity matrix S as follows: 

1 if Sc(i, j) = 1 (11) 
0 otherwise 

where S (i,j)=1 if and only ifi andjare clustered together in 
all data types and 0 otherwise. A hierarchical clustering is 
then applied on this matrix and the resulting tree is cut at the 
height that provides maximum cluster separation. 
0100 When the data types do not have strong agreement, 
we perform a cluster ensemble of 3 different methods as will 
be explained as follows. The matrix {S-(i,j)} represents the 
similarity between patients, and therefore {1-S-(i,j)} repre 
sents the pair-wise distance between patients, which can be 
directly used by similarity-based clustering algorithms, such 
as hierarchical clustering, partitioning around medoids, or 
dynamic tree cut. Here we use all the 3 algorithms to partition 
the patients and then choose the partition that agrees the most 
with the partitionings of individual data types. The dynamic 
tree cut algorithm can automatically determines the number 
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of clusters, but the other two algorithms, hierarchical cluster 
ing (HC) and partitioning around medoids (PAM), need us to 
provide the number of clusters. 
0101 To determine the number of clusters for HC and 
PAM, we introduce the perturbed similarity matrix, which 
can be calculated as follows: 

X, A, (12) 

where A, is the perturbed connectivity matrix of the i' data 
type. Please note that S is constructed by averaging the 
original connectivity of T data types while S is constructed 
by averaging the perturbed connectivity of T data types. We 
use this both matrices to assess the stability of HC and PAM. 
0102 For hierarchical clustering, we first build the H tree 
using the original similarity matrix Si, and then we build the 
He tree using the perturbed similarity matrix S. For each 
value of k, we cut H to get k clusters and then build the 
connectivity matrix. We do the same for H and then calculate 
the instability d as the sum of absolute difference between 
the two connectivity matrices. We choosek for which the dis 
the Smallest, i.e., k-argmax.(de. ke2 ... KI). 
0103 Similarly for PAM, we partition the patients using 
both original and perturbed similarity matrices. For each 
value of k, we have one partitioning using the original simi 
larity matrix S and one partitioning using the perturbed 
similarity matrix S. We build the connectivity matrices from 
the two partitioning and then calculate the instability das the 
absolute difference between the two connectivity matrices. 
We choosek for which the d is the smallest, i.e., k-argmax, 
(d, ke2 ... KI) 
0104. After having the 3 partitionings using the 3 similar 
ity-based clustering algorithms, we calculate the agreement 
between each partitioning and the T data types. Again, we use 
the agreement concept introduced in Equation (10). For each 
algorithm, we calculate the agreement between its partition 
ing and the T partitionings for the T data types. We then 
choose the result of the algorithm that has the highest agree 
ment with the T data types. 
0105 2) Stage II—Splitting Groups into Subgroups 
0106. In stage II, we further split one discovered group of 
patients at a time, if possible. We check each group indepen 
dently. If a group has more than % of the total samples, we run 
the procedure described in stage I again, but this time the 
input consists of only the patients belonging to the group we 
are working on. The goal is to separate samples of this group, 
that would not be possible with the presence of samples from 
other groups. 
0107 If a group has less than 2/3 but more than 2/3 of the 

total samples, we need to check the agreement between the T 
data types. We take into consideration only the samples 
belonging to this group. We cluster each data type and build 
the T connectivity matrices. Here we calculate the agreement 
between the data types using Equation (10). If the agreement 
is more than 50% (i.e., the majority of pairs agree across all 
data types), we further split the group. Otherwise, the group is 
not split. 
0108 FIG.9 displays the subtyping of where the workflow 
goes through both stages. In stage I, we first cluster each data 
type independently and then build the corresponding connec 
tivity matrices (panel 9A). We then compute the combined 
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similarity matrix, which is the average connectivity across all 
the data types. For this dataset, the data types have strong 
connectivity (>50% agreement) and thus we use the strong 
similarity matrix to determine the final partitioning (panel 
9B). We perform a hierarchical clustering on the strong con 
nectivity matrix. The structure of the data is well defined, so 
using any linkage would return the same tree. As customary, 
the tree is cut where the height is the most different (dashed 
line in panel 9B) yielding 3 groups. 
0109 The Kaplan-Meier survival curves for these groups 
are shown in FIG.9C. In stage II we check if the discovered 
groups can be further split into Subgroups. Group 1 has more 
than /3 of total samples and thus can be considered for further 
splitting. The connectivity matrices of samples belonging to 
group 1 also have strong agreement (>50% agreement). 
Therefore, this group is further split into 2 subgroups. Group 
2 also has more than /3 of total samples, but the connectivity 
matrices do not have strong agreement and thus this group is 
not split further. 
0110. The survival curves of the final partitioning is dis 
played in FIG.9D. We note that although the subtype discov 
ery was done on molecular data alone, with no use of clinical 
information, the 4 groups identified have significantly differ 
ent clinical profiles: groups 1-1 contains short-term Survival 
women, group 1-2 contains longer Survival women, group 2 
contains only men, and group 3 Survival (all patients that were 
still alive at the end of the study). The survival analysis 
indicates that these groups have very significantly different 
survival profiles (Cox p value 1.3x10) 
0111 Remarkably, the significantly different groups can 
be obtained only when the 3 types of data are integrated and 
analyzed together. PINS cannot find subgroups with signifi 
cantly different survival for any one of the single data types: 
mRNA, methylation, and miRNA (more details in Table IV in 
section III-B). However, when all types of data are integrated 
by our approach, the p-value of the obtained subtypes 
becomes 4 orders of magnitude more significant. 
0112 The above-described computer-implemented algo 
rithm for Subtyping multi-omics data will now be summa 
rized with reference to FIGS. 31a and 31b. FIG. 31a depicts 
the Stage I procedure detailed above: FIG. 31b depicts the 
Stage II procedure detailed above. Referring first to FIG.31a, 
the Stage I procedure begins as 22. The original connectivity 
matrix 23, comprising original connectivity matrices for each 
of the plural data types, are averaged as at 24 using Equation 
(9) detailed above. This produces the original similarity 
matrix 25. The State I algorithm examines this original simi 
larity matrix to determine if there is strong agreement among 
the plural data types. While any numeric measure of strong 
agreement can be used, the preferred embodiment determines 
agreement to be strong if there is agreement among more than 
50% among the data types. If the data shows strong agree 
ment, a hierarchical clustering algorithm is applied to the data 
as at 27. This produces a hierarchical cluster “tree' which is 
then cut as at 28 for maximum separation. The result of such 
clustering is then passed on to Stage II. 
0113 Ifat step 26 there is not strong agreement, the algo 
rithm applies plural different clustering algorithms, as indi 
cated diagrammatically at 29. These plural algorithms are 
effectively run in parallel. While a number of different clus 
tering algorithms may be utilized, for purposes of explaining 
the technique, FIG. 31a illustrates three clustering algo 
rithms: hierarchical clustering 30, partitioning around 
medoids 31 and dynamic tree cut 32. The results of each of 
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these plural clustering algorithms are individually examined 
at 33, to measure the degree of agreement between each 
clustering partition and the data types. Agreement is assessed 
essentially the same as in step 26, using Equation (10) 
detailed above. The output of the clustering algorithm that 
produces the highest agreement is selected to be passed on to 
Stage II. 
0114 Referring now to FIG. 31b, the Stage II algorithm 
begins at 34. The algorithm is performed for each cluster 
group passed to it from Stage I. Thus each group is examined 
for size. If the size is deemed large as at 35, it is sent back to 
Stage I at step 36 to be subdivided. While any suitable size 
metric can be used, the current embodiment considers a group 
to be large if it contains more than two-thirds of the total 
samples. A group is considered to be of medium size if it 
contains more than one-third of the total samples, but less 
than two-thirds thereof. 

0115 If the group is deemed to be of medium size, at step 
37, some additional processing is performed. However, if the 
group is already below the medium size (e.g., less than one 
third of the total samples, it will be retained as-is, without 
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clustering method is assessed by comparing their partition 
ings against the true classes of each dataset. To evaluate the 
data integration (stage II) of multi-omics data, we download 
mRNA, methylation, and miRNA data of 6 different cancers 
from The Cancer Genome Atlas (TCGA) website. The per 
formance of the clustering methods are assessed by compar 
ing the Survival of the patients. 
0117 A. Experimental Studies Using Gene Expression 
Data 

0118. In this section we assess the performance of PINS in 
clustering a single data type (stage I). Details of the 8 gene 
expression datasets are described in Table I. The 5 datasets 
GSE 10245, GSE 19188, GSE43580, GSE15061, and 
GSE 14924 were downloaded from Gene Expression Omni 
bus (http://www.ncbi.nlm.nih.gov/geo/). The 3 datasets 
Lung2001 (http://www.broadinstitute.org/imprilung/), 
AML2004 (http://www.broadinstitute.org/cancer/pub/nmf), 
and Brain2002 (http://www.broadinstitute.org/MPR/CNS/) 
were downloaded from the corresponding websites of Broad 
Institute. 

TABLE I 

Description of 8 Gene Expression Datasets Used in Experimental Studies 

Class Sample Component Chip Sample 
Datasets Number Number Number Type Description 

GSE10245 2 58 9851 hgu133plus2 40 adenocarcinomas and 18 squamous cell 
carcinomas 

GSE1918.8 3 91 9851 hgu133plus2 45 adenocarcinomas, 19 large cell carcinomas, and 
27 Squamous cell carcinomas 

GSE4358O 2 150 9851 hgu133plus2 77 adenocarcinomas and 73 squamous cell 
carcinomas 

GSE14924 2 2O 9851 hgu133plus2 10 acute myeloid leukemia CD4 T cell and 10 CD8 T 
cell 

AML 2004 3 38 SOOO hguó800 11 acute myeloid leukemia, 19 acute lymphoblastic 
leukemia B cell, and 8 T cell 

GSE15061 2 366 9851 hgu133plus2 202 acute myeloid leukemia samples and 164 
myelodyplastic syndrome samples 

Lung2001 4 237 8641 hgu95a 190 adenocarcinomas, 21 squamous cell 
carcinomas, 20 carcinoid, and 6 Small-cell lung 
carcinomas 

Brain2002 5 42 5299 hguó800 10 meduloblastomas, 10 malignant gliolas, 10 

requiring further subdividing, as indicated at 41. However if 
the group is of medium size, the algorithm checks at Step 38 
to check agreement among data types. If agreement among 
data types is high (e.g., greater than 50% agreement), as 
detected at 39, the group is eligible to be further subdivided. 
Thus at step 40, the group is sent back to be further subdi 
vided. On the other hand, if agreement among data types is 
not high the group is left un-split as at 41. 

III. Experimental Studies 

0116 Our experimental studies include a wide range of 
cancers using a single data type as well as using multi-omics 
data. To evaluate the perturbation clustering (stage I) using a 
single data type, we download 8 gene expression datasets 
with known classes (subtypes) from Gene Expression Omni 
bus and Broad Institute websites. The performance of each 

atypical teratoid rhaboid tumors, 4 normal 
cerebellums, and 8 primitive neuroectodermal 
tumors 

0119 We compare the performance of PINS with the per 
formance of the other 2 state-of-the-art clustering algorithms, 
Consensus Clustering (CC), and Similarity Network Fusion 
(SNF). The range of the number of clusters k is set to 2... 10 
for all 3 clustering algorithms. A Suitable computer imple 
mentation of Consensus Clustering is found in the R statisti 
cal software package (ConsensusClusterPlus version 1.18.0). 
The code for CC is run according to get the change in area 
under the curve A(k) when the number of clustersk increases. 
We choose the number of clusters k where the CDF levels off 
and the corresponding A(k) gets close to zero, according to 
the classical CC manuscript. 
I0120 Regarding Similarity Network Fusion (SNF), 
although SNF focuses on the data integration, it also provides 
an option to cluster a single data type. The R package of 
SNF tool version 2.1 were downloaded from Bioconductor 
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website. The code is run according to the description of the 
software. We calculate the number of clusters for SNF using 
the function estimateNumberOfClustersGivenGraph with the 
range set to 2 . . . 10. This function returns 4 possible 
choices. We use the first one as the number of clusters in this 
study. 
0121 For all the 8 gene expression datasets, we know the 
true labels (subtypes) of each sample. Therefore, we use Rand 
Index (RI) and adjusted Rand Index (ARI) as the metrics to 
assess the agreement between the clustering and the ground 
truth (true classes of the elements). Briefly, Rand Index of 2 
partitionings the number of pairs that agree divided by the 
total number of pairs. In short, 

where a is the number of pairs that are clustered together in 
both partitionings, b is the number of pairs that are separated 
in both partitionings, and 

is the total possible pairs from Nelements. The adjusted Rand 
index (ARI) is the corrected-for-chance version of the Rand 
index (Appendix A). The clustering results are calculated 
using all genes without filtering. However, for illustration 
purpose, the clustering results will be displayed only in the 
first 2 principal components. 
0122 FIG. 10 displays the clustering results of the dataset 
GSE 10245. The dataset consists of 58 non-small cell lung 
cancer samples of 2 classes: 40 adenocarcinomas (ADC), and 
18 squamous cell carcinomas (SCC). From left to right are the 
results of PINS, Similarity Network Fusion (SNF), and Con 
sensus Clustering (CC) in the first 2 principal components. 
Different shapes of the points represent different classes 
while different colors represent different clusters in the 
results. Visually, the classes are separable with an exception 
of only some samples. Using perturbing the data, PINS rec 
ognizes that the clustering is the most stable with k=2 and 
then correctly separate most of the samples. Using eigen 
gaps, SNF correctly identifies the number of classes but mis 
classifies many ADC samples. Using Sub-Sampling, CC iden 
tifies the stability atk-6 and then splits the 2 classes to smaller 
groups of samples. In summary, PINS achieves the best per 
formance among the clustering methods (with ARI 0.08 com 
pared to 0.38 and 0.32 of SNF and CC) 
0123 FIG. 11 displays the clustering results of the dataset 
GSE 19188. The dataset consists of 91 non-small cell lung 
cancer samples of 3 classes: 45 adenocarcinomas (ADC), 19 
large cell carcinomas (LCC), and 27 squamous cell carcino 
mas (SCC). From left to right are the results of PINS, SNF, 
and CC in the first 2 principal components. Different shapes 
of the points represent different classes while different colors 
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represent different clusters in the results. PINS correctly rec 
ognizes that the clustering is the most stable against data 
perturbation when (k=3). Both SNF and CC divides the 
samples into 4 clusters but CC has a much higher ARI than 
SNF. In overall, PINS has the highest adjusted Rand index 
(ARI), which is 0.66 compared to 0.12 and 0.6 of SNF and 
CC. 

0.124 FIG. 12 displays the clustering results of the dataset 
GSE43580. The dataset consists of 150 non-small cell lung 
cancer samples: 77 adenocarcinomas (ADC) and 73 squa 
mous cell carcinomas (SCC). From left to right are the results 
of PINS, SNF, and CC in the first 2 principal components. 
Different shapes of the points represent different classes 
while different colors represent different clusters in the 
results. Both PINS and SNF correctly identify the number of 
classes while CC divides the samples into 3 clusters. Due to 
the complex nature of the data, all 3 clustering methods fail to 
separate the samples of different classes, resulted in low ARI. 
In overall, PINS has the highest adjusted Rand index (ARI), 
which is 0.44 compared to 0.15 and 0.37 of SNF and CC. 
0.125 FIG. 13 displays the clustering results of the dataset 
GSE 14924. The dataset consists of 2 classes: 10 acute 
myeloid leukemia CD4 T cells and 4 CD8 T cells. From left 
to right are the results of PINS, SNF, and CC in the first 2 
principal components. Different shapes of the points repre 
sent different classes while different colors represent differ 
ent clusters in the results. PINS correctly identifies the num 
ber of classes and perfectly separate the samples with ARI-1. 
SNF returns an error message without any clustering result. 
CC divides the samples into 7 clusters, which is much higher 
than the real number of classes. 

0.126 FIG. 14 displays the clustering results of the dataset 
GSE 15061. The dataset consists of 366 leukemia samples of 
2 classes: 202 acute myeloid leukemia samples and 164 
myelodyplastic syndrome samples. Both PINS and SNF cor 
rectly identify the number of classes but PINS has much 
higher ARI than that of SNF. CC divides the samples into 7 
clusters, which is much higher than the true number of 
classes. PINS has the highest adjusted Rand index (ARI), 
which is 0.65 compared to 0.05 and 0.43 of SNF and CC. 
I0127 FIG. 15 displays the clustering results of the dataset 
AML2004. The dataset consists of 38 samples of 3 classes: 11 
acute myeloid leukemia (AML), 19 acute lymphoblastic leu 
kemia B cells (ALL Bcell), and 8 T cells (ALL Tcell). From 
left to right are the results of PINS, SNF, and CC in the first 2 
principal components. Different shapes of the points repre 
sent different classes while different colors represent differ 
ent clusters in the results. In the first 2 principal components, 
the AML samples can be separated from the rest with an 
exception one AML sample that is coordinated very close to 
ALL Bcell samples. The samples classes ALL Tcell and 
ALL Bcell stay close to each other and hard to be separated. 
None of the mentioned methods discovers the number of 
classes in the this dataset. PINS recognizes that the clustering 
is the most stable with k=4. It separates the AML and ALL 
Tcell classes accordingly, but also splits the ALL Tcell class 
into 2 clusters. SNF divides the dataset into 2 clusters, 
resulted in the lowest ARI. Similar to PINS, CC separate the 
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AML and ALL Tcell classes well but also splits the ALL 
Bcell into 3 clusters. In overall, PINS has the highest adjusted 
Rand index (ARI), which is 0.65 compared to 0.17 and 0.56 of 
SNF and CC. 
0128 FIG. 16 displays the clustering results of the dataset 
Lung2001. The dataset consists of 237 samples of 4 classes: 
190 adenocarcinomas (ADENO), 21 squamous cell carcino 
mas (SQUAMOUS), 20 carcinoids (CARCINOID), and 6 
small-cell lung carcinomas (SMALL CELL). From left to 
right are the results of PINS, SNF, and CC in the first 2 
principal components. Different shapes of the points repre 
sent different classes while different colors represent differ 
ent clusters in the results. The CARCINOID class stands out 
from the rest, but the other 3 are mixed together and hard to 
separate. PINS recognizes the stability when the partitioning 
has 2 clusters, one consists of the CARCINOID samples 
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classes. It separates the most samples of classes Brain Rhab 
and Brain MD but fail to separate the rest of the samples from 
the remaining 3 classes. In overall, PINS has the highest 
adjusted Rand index (ARI), which is 0.61 compared to 0.13 
and 0.46 of SNF and CC. 

0.130. The summary of all results is shown in Table II. The 
first 3 columns in the table show the names, sample numbers, 
and true class numbers of the data sets. The next 3 columns 

show the number of clusters, RI, and ARI for the clustering 
results of PINS. The last 6 columns show those of CC and 
SNF. For each dataset (row), cells highlighted in green have 
the highest RI and ARI. We put NA in the result of SNF for 
dataset GSE 14924 because it returns an error message with 
out a result. For all the 8 datasets, PINS achieves higher 
clustering performance than SNF and CC. 

TABLE II 

Performance of PINS, Consensus Clustering (CC), and Similarity 
Network Fusion (SNF) Using Gene Expression Datasets 

Dataset PINS SNF CC 

Name #Sample #Class #Cluster RI ARI #Cluster RI ARI #Cluster RI ARI 

GSE10245 58 2 2 O.90 O.80 2 0.67 0.33 6 O.64 O.32 

GSE19.188 91 3 3 O.84 0.66 2 O.S8 O.16 4 O.82 0.60 

GSE4358O 150 2 2 O.72 0.44 2 O.S7 O.14 3 O.68 0.37 

GSE15061 366 2 2 O.83 0.65 2 O.S4 O.08 6 O.72 0.43 

GSE14924 2O 2 2 1.OO 100 NA NA NA 7 O.64 O.25 

Lung2001 237 4 2 O.82 0.54 3 O.62 0.28 8 O44. O.11 

AML 2004 38 3 4 O.85 0.66 2 O.S9 O.17 5 O.81 O.S6 

Brain2002 42 5 7 O.89 0.61 2 O.S7 O.13 5 O.80 O.46 

while the another one consists of all other samples. SNF I0131 B. Experimental Studies Using Multi-Omics Data 
separates the CARCINOID samples and split the rest into 2 I0132) 1) Analysis Across a Wide Spectrum of Cancer: 
clusters. However, each of these 2 clusters consists of a mix- 0.133 We downloaded 6 different cancer datasets from 
ture of ADENO, SMALL CELL, and SQUAMOUS, result 
ing in a lower ARI. CC splits the samples into 8 clusters, 
which is much higher than the number of classes. In addition, 
each of the cluster consists of a mixture of Some classes. In 
overall, PINS has the highest adjusted Rand index (ARI), 
which is 0.54 compared to 0.28 and 0.11 of SNF and CC. 
0129 FIG. 17 displays the clustering result for the dataset 
Brain2002. The dataset consists of 42 samples of 5 classes: 10 
meduloblastomas (Brain MD), 10 malignant gliolas (Brain 
Mglio), 10 atypical teratoid/rhaboid tumors (Brain Rhab), 4 
normal cerebellums (Brain Ncer), and 8 primitive neuroec 
todermal tumors (Brain PNET). From left to right are the 
results of PINS, SNF, and CC in the first 2 principal compo 
nents. Different shapes of the points represent different 
classes while different colors represent different clusters in 
the results. PINS recognizes stability with k=8, which is more 
than the number of classes. It successfully separates the most 
of samples from classes Brain MD, Brain Rhab, Brain 
Ncer, and Brain Mglio but splits the rest to many clusters. 
SNF divides all the samples into 2 clusters for each of which 
is a mixture of many classes. CC discovers the number of 

The Cancer Genome Atlas (TCGA): glioblastoma multiform 
(GBM), lung squamous cell carcinoma (LUSC), breast inva 
sive carcinoma (BRCA), acute myeloid leukemia (LAML), 
kidney renal clear cell carcinoma (KIRC), and colon adeno 
carcinoma (COAD). For each cancer dataset, we downloaded 
TCGA-curated level 3 data of mRNA expression, DNA 
methylation, and mRNA expression. We analyze the set of 
patients that have measurements across all the 3 data types. 
TCGA contains different platforms for each data type. We 
choose the platforms of each data type so that they have the 
largest set of common patients. 
0.134 Table III displays details of the data for the 6 cancer 
datasets. The number of samples is the set of patients that 
have measurements across all the 3 data types. The number of 
component for a data type is the number of measurements for 
a patient for that data type. The expression values of DNA 
methylation fall between 0 and 1 and the expression values of 
microarray measurements (gene expression) fall between 2 
and 14. We use these data as they are without processing. For 
sequencing data, since the values are too large (up to mil 
lions), we use their log transformation (base 2). 
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Description of the 6 Datasets 

Dataset #Sample Data Type #Components Platform Data Level 

KIRC 124 mRNA 17974 umina HiSeq RNASeq, 3 
Methylation 2316S Human Methylation27 3 
miRNA 590 umina GASeq miRNASeq, 3 

GBM 273 mRNA 12042 HTHG-U133A 3 
Methylation 22833 Human Methylation27 3 
miRNA 534 umina HiSeq miRNASeq, 3 

LUSC 110 mRNA 12042 HTHG-U133A 3 
Methylation 23348 Human Methylation27 3 
miRNA 706 umina GASeq miRNASeq, 3 

BRCA 172 mRNA 2O100 umina HiSeq RNASeqV2 3 
Methylation 22533 Human Methylation27 3 
miRNA 718 umina GASeq miRNASeq, 3 

LAML 164 mRNA 16818 umina GASeq RNASeq, 3 
Methylation 22833 Human Methylation27 3 
miRNA 552 umina GASeq miRNASeq, 3 

COAD 146 mRNA 17062 umina GASeq RNASeq, 3 
Methylation 244.54 Human Methylation27 3 
miRNA 710 umina GASeq miRNASeq, 3 

0135 Since the Consensus Clustering (CC) does not have 0.137 FIG. 18 displays the Kaplan-Meier analysis for 
the functionality to integrate multiple data types, we compare 
PINS against SNF in this section. Using the clinical data from 
TCGA, we calculate the Cox log-rank test p-values for the 
each partitioning. We note that Cox p-values were also used to 
assess clustering performance for SNF. We report the number 
of clusters and Cox p-values for each data type as well as for 
the integrated data in Table IV. The first 3 columns describe 
the data while the next 4 columns show the number of clusters 
and Cox p-value for PINS and SNF. The results for the inte 
grated data are displayed in bold. The cells highlighted in 
green have significant p-values (cutoff 0.05). SNF gives sig 
nificant p-value for only LAML while PINS gives significant 
p-values for KIRC, GBM, LUSC, BRCA, and LAML. 
0.136 For the kidney renal clear cell carcinoma (KIRC) 
dataset, neither algorithm can find groups with significantly 
different survival using any single data type. SNF cannot find 
significant different groups even after data integration. In 
contrast, when all data types are integrated by PINS, the 
p-value of the obtained Subtypes becomes 4 order of magni 
tude more significant. 

Name 

KIRC 

GBM 

LUSC 

BRCA 

KIRC. SNF finds 2 groups with no significantly different 
survival (p=0.138). In contrast, PINS discovers 4 different 
groups with very different survival profiles (p=1.3x10). In 
phase 1, PINS finds 3 groups of patients: group 1 consists of 
50 patients, group 2 consists of 62 patients, and group 3 
consists of 12 patients who all Survive. In phase 2, only group 
1 satisfy the splitting condition and is further divided into 
groups 1-1 (25 patients) and 1-2 (25 patients) with very dif 
ferent survival. Remarkably, the significantly different 
groups can be obtained only when the 3 data types of data are 
integrated and analyzed together. Table IV shows the results 
obtained by both PINS and SNG on each individual data type, 
as well as by integrating the data. Neither algorithm can find 
Subgroups with significantly different Survival for any one of 
the single data types: mRNA, methylation, and miRNA. SNF 
cannot find significant different Subtypes even after data inte 
gration. However, when all types are integrated by our pro 
posed approach, the p-value of the obtained subtypes 
becomes 4 orders of magnitude more significant. The clinical 
and mutation information associated with each group are 
reported in Experimental Studies section below. 

TABLE IV 

Subtypes Discovered by PINS and SNF for 6 TCGA Cancer Datasets 
Using Individual Data Types as well as Integrated Data 

TCGADataSet PINS SNF 

#Sample Data Type #Cluster Cox p-value #Cluster Cox p-value 

124 mRNA 2 O.176 2 O.219 
Methylation 3 O. 111 3 0.577 
miRNA 2 O.138 2 O.138 
Data integration 4 1.3 x 10 2 O.138 

273 mRNA 2 O.408 2 O.992 
Methylation 2 10-4 2 O.O17 
miRNA 4 O.O86 2 O401 
Data integration 3 8.7 x 10 4 O.062 

110 mRNA 3 O.12S 3 O.095 
Methylation 8 O.019 2 O.376 
miRNA 2 O. 117 2 O.OO1 
Data integration 3 9.7 x 10 3 O428 

172 mRNA 2 O.902 2 O.969 
Methylation 4 O.048 5 O.878 
miRNA 3 O.218 2 O. 105 
integration 7 3.4 x 102 2 O.398 
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Using Individual Data Types as well as Integrated Data 

TCGADataSet PINS SNF 

Name #Sample Data Type #Cluster Cox p-value #Cluster Cox p-value 

LAML 164 mRNA 5 O.OO3 2 0.327 
Methylation 6 O.239 2 O.993 
miRNA 2 O.O72 3 O.183 
Data integration 4 2.4 x 10 2 3.7 x 102 

COAD 146 mRNA 2 O. 113 2 O.148 
Methylation 2 O.741 2 O.389 
miRNA 4 O.452 3 O.131 
Data integration 5 O.2O1 2 O.296 

0138 For glioblastoma multiform (GBM) dataset, SNF pass after entry into the study while the vertical axes represent 
cannot find significant different groups using mRNA or 
miRNA but it finds 2 significant different groups using 
methylation data (p=0.017). Similarly, PINS cannot find sig 
nificant groups using mRNA or miRNA but finds 2 signifi 
cantly different groups using methylation data (p=10). SNF 
cannot find significant different groups after data integration 
despite having significantly different groups using methyla 
tion data. In contrast, data integration by PINS finds 3 groups 
with even more significant p-value than those of individual 
data types (p=8.7x10). 
0139 FIG. 19 displays the Kaplan-Meier analysis for 
GBM. SNF finds 4 groups with no significantly different 
survival (p=0.062). In contrast, PINS discovers 3 different 
groups with very different survival profiles (p=8.7x10). In 
phase 1, PINS finds 2 groups of patients: group 1 consists of 
249 patients, and group 2 consists of 24 patients. In phase 2. 
group 1 is further divided into group 1-1 (181 patients) and 
1-2 (68 patients). The clinical and mutation information asso 
ciated with each group are reported in the Experimental Stud 
ies section below. 

0140 FIG. 20 displays the Kaplan-Meier analysis for 
LUSC. SNF finds 3 groups with no significantly different 
survival (p=0.428). In contrast, PINS discovers 5 different 
groups with different survival profiles (p=9.7x10). None of 
the groups is split further in phase 2. 
0141 FIG. 21 displays the Kaplan-Meier analysis for 
BRCA. SNF finds 3 groups with no significantly different 
survival (p=0.428). In contrast, PINS discovers 5 different 
groups with different survival profiles (p=0.034). 
0142 FIG. 22 displays the Kaplan-Meier analysis for 
LAML. SNF finds 3 groups with significantly different sur 
vival (p=0.037). PINS discovers 4 different groups with dif 
ferent survival profiles (p=2.4x10). 
0143 FIG. 23 displays the Kaplan-Meier analysis for 
COAD. SNF discovers 2 groups while PINS discovers 4 
groups. Neither algorithm can find Subgroups with significant 
different survival for any one of the single data types nor with 
the integrated data. 
0144. C. First Case Study Glioblastoma Multiform 
(GBM) 
(0145 We use PINS to subtype multi-omics data for 273 
patients with glioblastoma multiform (GBM). The data types 
are mRNA expression (HT HG-U133A), DNA methylation 
(Human Methylation27), and miRNA expression (Illumina 
HiSeq miRNASeq) as shown in Table III. FIG. 24 shows the 
discovered subtypes. The upper panel shows the 2 subtypes 
discovered in stage I and the lower panel shows the 3 subtypes 
discovered in stage II. The horizontal axes represent the time 

estimated Survival percentage. 
0146 We downloaded the somatic mutation data for GBM 
from TCGA website. Among 273 samples, only 125 samples 
have Somatic mutation information. Here we take into con 
sideration a mutation (gene) if it is positive in at least 5 
samples. We count the number of mutations in each subtype 
for each gene. We then calculate the enrichment p-value using 
Fisher exact test and then adjust for multiple comparison 
using FDR correction. Table V displays the 3 mutations that 
are enriched after FDR correction (at cutoff 0.01). We can see 
that IDH1 and ATRX mutations only appear in subtype 2 and 
not in other Subtypes. 
0147 Here we integrate three data types (mRNA, DNA 
methylation, miRNA) of 131 patients (Table III). FIG. 24 
displays the results of PINS. 
0.148 We downloaded the somatic mutation data for the 
samples in GBM dataset from TCGA, and apply the same 
approach explained above for the samples in GBM. The genes 
which are mutationally enriched in each of the subtypes are 
shown in Table VI. Again, we observe that the subtypes found 
for GBM data set are significantly over-represented by 
samples that have at least one mutation in the genes that are 
mutated frequently in the samples in the different survival 
groups. 

TABLEV 

Somatic Mutation Information for Glioblastoma Multiform (GMB 

Group 1-1 Group 1-2 Group 2 
78 (181) 38 (68) 9 (24) pFisherfdr 

IDEH1 O O 9 7 x 10-12 
ATRX O O 8 4 x 109 
TP53 24 8 9 O.OO1 

0149) D. Second Case Study Kidney Renal Clear Cell 
Carcinoma (KIRC): 
0150 Multiple integrative approaches have been applied 
to identify the subtypes of kidney renal clear cell carcinoma 
(KIRC). Depending on the data types, these analyses can lead 
to different conclusions. 
0151. Here we integrate three data types (mRNA, DNA 
methylation, miRNA) of 131 patients (Table III). FIG. 23 
displays the results of PINS. 
0152 We downloaded the somatic mutation data for the 
samples in KIRC dataset from TCGA. Using the mutation 
information for the samples, which have been subtyped using 
the approach described above, we identify genes that are 
mutated frequently in the samples in the different survival 
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groups. The significance of mutations for each gene in each 
Subtype is assessed by the number of samples with at least one 
mutation in that gene in that Subtype and in the whole analysis 
using Fisher's exact test. We apply this approach to the KIRC 
datasets downloaded from TCGA. The genes which are muta 
tionally enriched in each of the subtypes are shown in TableV. 
We observe that the subtypes found in the analysis are sig 
nificantly over-represented by samples that have at least one 
mutation in these genes. 
0153. We use PINS to integrate multi-omics data for 124 
patients with kidney renal clear cell carcinoma (KIRC). The 
data types are mRNA expression (Illumina HiSeq), DNA 
methylation (Human Methylation27), and miRNA expression 
(Illumina GASeq) as shown in Table III. FIG. 27 shows the 
discovered Subtypes. The upper panel shows the Subtypes 
discovered in stage I and the lower panel shows the Subtypes 
discovered in stage II. The horizontal axes represent the time 
pass after entry into the study while the vertical axes represent 
estimated survival percentage. In stage I, PINS discovers 3 
subtypes: subtype 1 (black) consisting of 50 females, subtype 
2 (red) consisting of 61 males and 1 female, and Subtype 3 
(green) consisting of 9 males and 3 females. The Survival rate 
between the large male and female groups is comparable. 
0154) In stage II, subtype 1 is equally divided into 2 sub 
groups with very different survival rates. Subtype 3 is not 
considered in stage II because it consists two few samples. 
Subtype 2 is not divided in stage II because the 3 data types 
give very contradictory signals for this group. In Summary, 
PINS discovers 4 different subtypes with very different sur 
vival profiles (p=1.3x10). The significant different sub 
types can be obtained only when the 3 data types are inte 
grated and analyzed together. Although the Subtype discovery 
was done on molecular data alone, with no use of clinical 
information, the 4 groups identified have significantly differ 
ent clinical profiles: group 1-1 contains short-term Survival 
women, group 1-2 contains longer-term Survival women, 
group 2 contains only men, and group 3 contains Survivors 
(all patients were still alive at the end of the study). 
(O155 FIG.28 displays the heatmap of features differential 
among kidney recall clear cell carcinoma (KIRC) Subtypes. 
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The panels display the expression of the three data types: top 
panel mRNA expression, middle panel—DNA methyla 
tion, and bottom panel—miRNA expression. The color band 
on the top shows the 4 subtypes (1-1, 1-2, 2, and 3). The 
features are selected as follows: we cluster the data using each 
feature independently with k=4 (number of subtypes using 
PINS). Rand index (RI) is then calculated between the 
resulted clustering and PINS found subtypes. We then order 
all the RI values and show those that are ranked highest for 
each data type. We show top 100 features for mRNA (out of 
17: 974), 100 features for DNA methylation (out of 23; 165), 
and 30 features for miRNA (out of 590). mRNA and miRNA 
provide a clear signal between Subtype 3 (highest Survival) 
and the rest. The expression values for those features are 
either much lower (red) or much higher (green) than the rest. 
DNA methylation gives a clear distinction between males and 
females and thus helps to separate Subtype 2 from Subtype 1 
(the union of 1-1 and 1-2). mRNA helps to separate subtype 
1-1 from 1-2. 

0156 1) KIRC Clinical Parameters: 
O157 Enrichment for different clinical characteristics was 
analyzed for each of the four survival clusters. Table VI shows 
the numbers and percentages of each of the 124 patients into 
each of the survival clusters and clinical categories. FDR 
adjusted p-values were calculated for phenotype enrichment 
in each of the clusters versus the others, and good versus poor 
survivors. Using an FDR cutoff of 5%, we find that group 3 
(all survivors) are typically between ages 50 and 60, with 
normal calcium levels, while the medium Survivors are typi 
cally younger, and poor Survivors tend to be over 70. Group 2 
(medium survival male) tends to have low calcium and fall 
into grade III. Poor survivors (female group 1-1) have 
elevated platelets and elevated calcium, and fall into grade 
G4, stages III and IV. Group 1-2 (medium-good Survival 
females) are predominantly stage I with normal hemoglobin. 
The two pure female clusters (1-1 and 1-2) include the major 
ity of patients with elevated platelets. The low survivors (1-1 
and 2) compared to the high Survivors (groups 3 and 1-2) have 
low hemoglobin and high grade. 

TABLE VI 

Distribution of Patients in Four Survival Clusters in Each Phenotypic Category 

Survival 
Group 
Gender 

Tumor 
Grade 

AJCC 
pathologic 
tumor stage 

Serum 
Calcium 
Level 
Hemoglobin 
Level 
Platelet 
Count 
Age 

(A) Number in 
each group 

(B) % phenotype 
in each group 

(C) 96 group in 
each phenotype 

3 1-2 2 1-1 3 1-2 2 1-1 3 1-2 2 1-1 

Female 3 25 1 25 6 46 2 46 25 100 2 100 
Male 9 O 61 O 13 O 87 O 75 O 98 O 
G1 O 1 1 1 0 33 33 33 O 4 2 4 
G2 6 1S 28 12 10 2S 46 20 75 60 45 48 
G3 2 9 28 S S 20 64 11 25 36 45 2O 
G4 O O S 7 O O 42 S8 O O 8 28 
I 7 17 31 5 12 28 52 8 58 68 SO 2O 
II 4 3 9 2 22 17 SO 11 33 12 15 8 
III 1 4 18 12 3 11 S1 34 8 16 29 48 
IV O 1 4 6 O 9 36 SS O 4 6 24 
Low 1 9 27 9 2 20 S9 20 14 60 68 43 
Normal 6 6 12 9 18 18 36 27 86 40 30 43 
Elevated O O 1 3 O O 25 75 O O 3 14 
Low 3 8 34 18 S 13 S4 29 38 38 68 75 
Normal S 13 16 6 13 33 40 15 63 62 32 25 
Normal 7 17 42 16 9 21 S1 20 88 81 88 67 
Elevated 1 3 2 8 7 21 14 S7 13 14 4 33 
<50 1 6 16 1 4 2S 67 4 8 24 26 4 
SO-60 7 4 15 6 22 13 47 19 S8 16 24 24 
60-70 3 10 17 S 9 29 49 14 25 40 27 2O 
>70 1 S 14 13 3 15 42 39 8 20 23 52 
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TABLE VII 

Distribution of Patients in Two Clusters and 
AJCC Pathologic Tumor Stage 

AJCC Pathologic female.1 female.2 
Tumor Stage (poor Survival) (good Survival) Total 

Stage I 5 (23%) 17 (77%) 22 
Stage II 2 (40%) 3 (60%) 5 
Stage III 12 (75%) 4 (25%) 16 
Stage IV 6 (86%) 1 (14%) 7 

Total 25 25 

0158. 2) KIRC Female Subgroups Clinical Parameters: 
0159. The low survival group includes 86% of the Stage 
IV cases, while the high survival group includes 77% of the 
Stage I cases, representing an FDR corrected p-values of less 
than 0.5%. Other parameters that were significant at 
FDR-5% included tumor grade (poor survivors had a higher 
incidence of G4' tumors, FDR 2%), tumor status (poor sur 
vivors were with tumor, FDR 2%), hemoglobin level (poor 
survivors had low levels, FDR 2%), metastasis (2%). 
(0160 3) KIRC Female Subgroups Differential Gene 
Expression: 
0161 Based on absolute log-fold-change of 1.5 and maxi 
mum FDR adjusted p-value of 1%, there were 165 differen 
tially expressed genes between long- and short-term Survi 
vors. Eighty percent (132) of these were down-regulated in 
the poor Survivors. Functional analysis of all 165 genes using 
iPathwayGuide points to damaged proximal tubules in the 
nephrons of women with poor outcome. Most common renal 
cell carcinomas occur in the proximal tubules. Two KEGG 
pathways had FDRs on the order of 10: Metabolic Path 
ways, and Mineral Absorption. Several differentially 
expressed solute carriers on the Mineral Absorption Pathway 
are located in brush border membrane, shown in FIG. 36. In 
kidney, brush border membranes are found in the proximal 
tubules, which carry filtrate away from the glomerulus in the 
nephron, and Support the secretion and absorption of charged 
molecules into and out of the filtrate. Gene Ontology (GO) 
terms analyzed at 1% FDR significance Support a hypothesis 
of damage to proximal tubule membranes. Thirteen signifi 
cant Cellular Component terms were related to plasma mem 
brane, in particular brush border membrane. All 23 Biologi 
cal Process terms concern known proximal tubule functions: 
metabolic/catabolic processes, immune response, transmem 
brane and ionic transport. All but one (glucosidase activity) 
of 15 Molecular Function terms involve active ionic transport 
across a plasma membrane. These terms included many dif 
ferentially expressed solute carriers. The alpha-glucosidase 
precursor has been localized to the proximal tubule brush 
border, where it is secreted into the urine. 

TABLE VIII 

Gene Ontology and Disease Summary 

Database 33 up 132 down 

GO Biological Metallothionein and Metabolic processes, 
Process metallopeptidase activity transport 
GO Molecular Enzyme Inhibition Transporter activity, binding 
Function 
GO Cellular Extracellular Region Brush Border Membrance, 
Component Plasma Membrane 
Webgestalt Cancer and Respiratory Kidney Disease 
Disease Tract Diseases 

15 
Sep. 15, 2016 

(0162 4) KIRC Female Subgroups. MiRNAs: 
0163 iPathway Guide also outputs a ranked list of miR 
NAs that are up-regulated between short and long survival 
women. We select the top 10 miRNA and performs the t-test 
using miRNA expression. Two microRNAs that were signifi 
cantly up-regulated (after FDR correction) in the low survival 
group were among the 10 miRNAs identified by iPath 
wayGuide with significant enrichment of down-regulated tar 
get genes: hsa-mir-497 and hsa-mir-27a dysregulation. These 
2 miRNAs have been observed in multiple cancers and may 
be up or down regulated depending on the context (mircancer. 
ecu.edu). 
0164 Hsa-mir-497 is a tumor suppressor reported to be 
involved in antiproliferation (cell cycle G1 arrest, p53 cor 
relation), increased apoptosis (through WEE1), Suppression 
of angiogenesis (through VEGFA), Suppression of migration 
and invasion (through SMURF1), and modulation of multi 
drug resistance (through BCL2). Hsa-mir-497 dysregulation 
has been found in carcinomas (prostate, bladder, colon, pan 
creas, breast, lung, gastric, liver, cervical, peritoneal,...), and 
is thought to participate in the following biological processes/ 
pathways: cadherin, WNT, T-cell activation, cell-cycle pro 
gression, apoptosis, PI3K/AKT, and MAPK/ERK. 
0.165 Hsa-mir-27a is considered to be an onco-miR with 
potential SNP inactivation. It is associated with numerous 
cancers: breast (familial), cervical (HeLa), glioma, AML. 
ALL, renal, colorectal, prostate, gastric, ovarian, pancreatic, 
lung, ... and carcinomas: oral squamous cell, hepatocellular, 
esophageal Squamous cell, gastric adenocarcinoma, . . . . It 
has been implicated in promoting cellular proliferation, 
migration and invasion and inhibiting apoptosis (through 
MCPH1, FOXO1 and SPRY2), control of endothelial cell 
repulsion and angiogenesis (through SEMA6A and VEGF), 
promoting metastasis by inducing epithelial to mesenchymal 
transition, enhanced expression of proinflammatory cytok 
ines, and impairment of adipocyte differentiation and mito 
chondrial function. It is thought to participate in the following 
biological processes and pathways: cell adhesion and cell 
cell interactions, VEGFmediated signaling, MAPK/ERK sig 
naling, EGFR signaling, cell cycle, NF-kb signaling, proin 
flammatory cytokines, and basal transcription of the p53-273 
H/mir-27a/EGFR pathway. 

IV. Exemplary Embodiment 
0166 Referring now to FIG. 32, an exemplary implemen 
tation of a medical testing system utilizing the disclosed 
concepts will now be described. As illustrated a laboratory 
genetic analyzer 50 is supplied with samples 52 from a plu 
rality of human Subjects and the results are stored in data store 
54 as the base dataset. Next the PINS unsupervised cluster 
analysis process 56, as described herein, is performed using 
data processor 60 and its associated non-transitory memory 
62 (e.g. RAM and/or non-transitory storage) to find the opti 
mal clusters 58 from the base dataset in data store 54. The 
optimal clusters so discovered are stored as cluster data in 
memory 62. 
0167. Thereafter, a DNA sample from an individual 
patient is obtained at 74 and analyzed with a benchtop ana 
lyzer 72. Essentially, the benchtop analyzer 72 is obtaining 
sample data from the individual patient that is identical to or 
of a similar character to the data collected from the plurality 
of human Subjects as processed by the laboratory genetic 
analyzer 50. The output from the benchtop analyzer 72 is 
Supplied to data processor 66. Data processor has an associ 
ated non-transitory memory 64 into which has been loaded 
the cluster data from memory 62, representing the previously 
discovered unsupervised optimal clusters. Processor 66 uses 
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the data from the individual patient to perform a supervised 
classification analysis which identifies which cluster most 
closely represents the data from the individual patient, as 
shown at 70. 
0168 With the individual patient now assigned to the opti 
mal cluster that most closely corresponds to that patients 
actual genetically analyzed data, the treating physician 
selects the treatment regimen that is best suited to that 
patient’s needs. As noted above, without this knowledge the 
conventional treatment protocol might well dictate that the 
patient be given the “most popular treatment, unaware that in 
this case that treatment will not work and thus valuable life 
giving time is being wasted. 

V. Conclusions 

0169. In this disclosure, we present a new approach for 
data integration and disease Subtyping. Our contribution is 
two-folds. First, we proposed a novel method to efficiently 
cluster high-dimensional data. This approach adds noise to 
the input to learn the data's behavior. The algorithm then 
chooses the partitioning that is the most robust against data 
perturbation. Second, we integrate multi-omics data by com 
bining the similarity matrices of individual data types. Our 
framework looks for strong connections across all data types 
to determine the number of clusters for the final partitioning. 
This makes the partitioning more stable than by looking at the 
partitioning of each data type alone. 
0170 The advantage of the new approach is demonstrated 
by extensive data analysis. We examine 8 gene expression 
datasets of different diseases: lung cancer, leukemia, and 
brain tumors. Rand Index (RI) and Adjusted Rand Index 
(ARI) are used as metrics to compare the performance of 
PINS, Consensus Clustering (CC), and Similarity Network 
Fusion (SNF). For all the 8 datasets, Perturbation Clustering 
outperforms its competitor and also correctly identifies the 
number of subtypes for most of the datasets. 
0171 To evaluate the new approach’s ability to combine 
multi-omics data, we examine 6 cancers available on The 
Cancer Genome Atlas (TCGA): glioblastoma multiform 
(GBM), lung squamous cell carcinoma (LUSC), breast inva 
sive carcinoma (BRCA), acute myeloid leukemia (LAML). 
kidney renal clear cell carcinoma (KIRC) and colon adeno 
carcinoma (COAD). Using the Cox log-rank test, we show 
that our framework has a clear advantage among the compet 
ing methods. 

APPENDIX 

(0172. Adjusted Rand Index 
0173 We use Rand index (RI) and adjusted Rand Index 
(ARI) as the metrics to assess the agreement between a clus 
tering and the ground truth (true classes of the elements). 
Rand Index of 2 partitionings is the number of pairs that agree 
divided by the total number of pairs. In short, 

a + b 

() 2 

where a is the number of pairs that are clustered together in 
both partitionings, b is the number of pairs that are separated 
in both partitionings, and 

() 
is the total possible pairs from N elements 
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TABLE IX 

Contingency Table of Two Partitionings 

Class Cluster G G2 G Total 

C Ill Ild Illg Ill. 
C2 Il-2 Il-22 Il2g Il-2. 

C. Il-1 Ilg. Il-. 
Total Ill Il-2 Illg ll. . . . . 

0.174. The adjusted Rand index (ARI) is the corrected-for 
chance version of the Rand index. Let us consider two parti 
tionings {C, C2, . . . , C, and G. G. . . . . G.). The 
agreement between these two partitionings is Summarized by 
the contingency Table IX. The adjusted Rand index (ARI) is 
the corrected-for-chance version of the Rand index. ARI can 
be calculated as follows: 

(0175 While RI falls into the interval 0.1, ARI can be 
negative. It can be shown that ARI has an expected value of 0 
for two random partitionings. 

1. A method of treating a disease that manifests differently 
depending on the quantitative biological characteristics of a 
patient, comprising: 

acquiring a first quantitative biological dataset from a 
population of human Subjects who are stricken with the 
disease; 

processing the acquired first quantitative biological dataset 
using a computer-implemented unsupervised cluster 
analysis process to define a plurality of clusters; 

storing said plurality of clusters in a data store comprising 
a non-transitory computer-readable memory; 

acquiring second quantitative biological data from an indi 
vidual patient who has been diagnosed as being stricken 
with the disease; 

processing the acquired second quantitative biological data 
using a computer-implemented classifier, the classifier 
ingesting the plurality of clusters in said data store and 
using the plurality of clusters to find which of the plu 
rality of clusters represents a closest match to the 
acquired second quantitative biological data of the indi 
vidual patient; 

storing the cluster found to represent the closest match as 
patient classification data in a non-transitory computer 
readable memory; 

using the patient classification data in the selection of a 
disease treatment regimen, 

wherein the unsupervised cluster analysis process com 
prises: 

a) applying a computer-implemented algorithm to the first 
quantitative biological dataset to construct a set of first 
connectivity matrices which are then stored in non-tran 
sitory computer-readable memory; 

(b) using a computer-implemented algorithm to construct 
and store in non-transitory computer-readable memory a 
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perturbed dataset by introducing noise into the first 
quantitative biological dataset; 

(c) applying a computer-implemented algorithm to the per 
turbed dataset to construct a set of perturbed connectiv 
ity matrices which are then stored in non-transitory com 
puter-readable memory; 

(d) using a computer-implemented algorithm to perform a 
stability assessment that reads from memory and com 
pares the first connectivity matrices with the perturbed 
connectivity matrices; 

(e) using a computer-implemented algorithm to select from 
among the first set of connectivity matrices the one 
matrix whose corresponding perturbed matrix was least 
affected by the introduction of noise; and 

(f) storing the selected one matrix in non-transitory com 
puter-readable memory and using a computer-imple 
mented algorithm to construct the plurality of clusters. 

2. The method of claim 1 wherein the quantitative biologi 
cal data is selected from the group consisting of mRNA 
expression, DNA methylation, miRNA expression, protein 
abundance (proteomics), and metabolic concentrations (me 
tabolomics) and genetic data. 

3. A disease subtyping/patient Subgrouping method of 
defining Subtypes of a disease or subgroups of patients, com 
prising: 

using as input molecular data from a population of human 
subjects who are stricken with the disease, the molecular 
data being measured by high-throughput assays and 
being selected from the group consisting of mRNA 
expression, DNA methylation, miRNA expression, pro 
teomic expression, and metabolic concentration, 

forming a molecular profile dataset for a set of patients, and 
performing the following steps: 

a) applying k-means to the dataset with different settings of 
numbers of clusters, each setting resulting in one clus 
tering of patients; 

b) constructing the original connectivity matrix for each 
clustering of patients; 

c) introducing Gaussian noise to the dataset and construct 
ing the perturbed connectivity matrices; 

d) performing stability assessment between the original 
and perturbed connectivity matrices; 

e) selecting one original connectivity matrix that is the least 
affected by noise; and 

f) choosing the partitioning of patients that corresponds to 
the selected connectivity matrix as the optimal Subtyp 
ing. 

4. A disease Subtyping/patient Subgrouping method of inte 
grating multiple types of molecular data to define Subtypes of 
a disease or subgroups of patients, comprising: 

using as input multiple types of molecular data from the 
same population of human Subjects who are stricken 
with the disease, 

defining T molecular profiles for a set of patients, and 
performing the following steps: 

a) applying the algorithm defined in (1)–(6) below to define 
Subtypes of the disease for each data type: 
(1) applying a computer-implemented algorithm to the 

first quantitative biological dataset to construct a set 
of first connectivity matrices which are then stored in 
non-transitory computer-readable memory; 

(2) using a computer-implemented algorithm to con 
struct and store in non-transitory computer-readable 
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memory a perturbed dataset by introducing noise into 
the first quantitative biological dataset; 

(3) applying a computer-implemented algorithm to the 
perturbed dataset to construct a set of perturbed con 
nectivity matrices which are then stored in non-tran 
sitory computer-readable memory; 

(4) using a computer-implemented algorithm to perform 
a stability assessment that reads from memory and 
compares the first connectivity matrices with the per 
turbed connectivity matrices; 

(5) using a computer-implemented algorithm to select 
from among the first set of connectivity matrices the 
one matrix whose corresponding perturbed matrix is 
least affected by the introduction of noise; and 

(6) storing the selected one matrix in non-transitory 
computer-readable memory and using a computer 
implemented algorithm to construct the plurality of 
clusters, 

b) constructing the connectivity matrix for each data type; 
c) constructing the similarity matrix from T connectivity 

matrices to gain a holistic view of the integrated data; 
and 

d) partitioning the integrated similarity matrix to define the 
Subtypes of the disease using the integrated data. 

5. A disease subtyping/patient Subgrouping method of 
treating a disease that manifests differently depending on the 
molecular profile of a patient comprising: 

defining a molecular profiling of a patient, and performing 
the steps as follows: 
a) acquiring a dataset from a population of human Sub 

jects who are stricken with the disease; 
b) performing a unsupervised cluster analysis on the 

dataset to define clusters of the population, wherein 
each cluster represents a subtype of the disease; 

c) using machine learning techniques to extract prede 
termined features of each subtype: 

d) finding the Subtype that represents the closest match 
to the patient’s molecular profile; and 

e) using the patient classification data in the selection of 
a disease treatment regimen. 

6. A subtyping/subgrouping method of integrating mul 
tiple types of molecular data to define subtypes of a life 
condition or subgroups of a lifeform, comprising: 

using as input multiple types of molecular data from the 
same lifeform population that exhibits a predetermined 
life condition, 

defining T molecular profiles for a set of entities of said 
lifeform, and performing the following steps: 

a) applying the algorithm defined in (1)–(6) below to define 
subtypes of the life condition for each data type: 
(1) applying a computer-implemented algorithm to the 

first quantitative biological dataset to construct a set 
of first connectivity matrices which are then stored in 
non-transitory computer-readable memory; 

(2) using a computer-implemented algorithm to con 
struct and store in non-transitory computer-readable 
memory a perturbed dataset by introducing noise into 
the first quantitative biological dataset; 

(3) applying a computer-implemented algorithm to the 
perturbed dataset to construct a set of perturbed con 
nectivity matrices which are then stored in non-tran 
sitory computer-readable memory; 

(4) using a computer-implemented algorithm to perform 
a stability assessment that reads from memory and 
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compares the first connectivity matrices with the per 
turbed connectivity matrices; 

(5) using a computer-implemented algorithm to select 
from among the first set of connectivity matrices the 
one matrix whose corresponding perturbed matrix 
was least affected by the introduction of noise; and 

(6) storing the selected one matrix in non-transitory 
computer-readable memory and using a computer 
implemented algorithm to construct the plurality of 
clusters, 

b) constructing the connectivity matrix for each data type; 
c) constructing the similarity matrix from T connectivity 

matrices to gain a holistic view of the integrated data; 
and 

d) partitioning the integrated similarity matrix to define the 
Subtypes of the disease using the integrated data. 

7. A disease Subtyping/Subgrouping method of treating a 
life condition that manifests differently depending on the 
molecular profile of a lifeform entity comprising: 

defining a molecular profiling of a lifeform entity, and 
performing the steps as follows: 

a) acquiring a dataset from a population that exhibits 
said life condition; 

b) performing unsupervised cluster analysis on the 
dataset to define clusters of the population, wherein 
each cluster represents a subtype of the life condition; 

c) using machine learning techniques to extract prede 
termined features of each subtype: 

d) finding the Subtype that represents the closest match 
to the lifeform entity's molecular profile and to define 
a lifeform entity classification; and 

e) using the lifeform entity classification data in the 
selection of a disease treatment regimen. 

8. A disease subtyping/patient Subgrouping method of 
evaluating clusters of a disease or Subgroups of patients, 
comprising: 

using as input molecular data from a population of human 
subjects who are stricken with the disease, the molecular 
data being measured by high-throughput assays and 
being selected from the group consisting of mRNA 
expression, DNA methylation, miRNA expression, pro 
teomic expression, and metabolic concentration, 

forming a molecular profile dataset for a set of patients, and 
performing the following steps: 

a) applying k-means to the dataset with different settings of 
numbers of clusters, each setting resulting in one clus 
tering of patients; 

b) constructing the original connectivity matrix for each 
clustering of patients; 

c) introducing Gaussian noise to the dataset and construct 
ing the perturbed connectivity matrices; 

d) performing stability assessment between the original 
and perturbed connectivity matrices; and 

e) selecting one original connectivity matrix that is the least 
affected by noise. 

9. A method of treating a disease that manifests differently 
depending on the quantitative biological characteristics of a 
patient, comprising: 

acquiring a first quantitative biological dataset from a 
population of human Subjects who are stricken with the 
disease; 

processing the acquired first quantitative biological dataset 
using a computer-implemented unsupervised cluster 
analysis process to define a plurality of clusters; 
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storing said plurality of clusters in a data store comprising 
a non-transitory computer-readable memory; 

acquiring second quantitative biological data from an indi 
vidual patient who has been diagnosed as being stricken 
with the disease; 

processing the acquired second quantitative biological data 
using a computer-implemented classifier, the classifier 
ingesting the plurality of clusters in said data store and 
using the plurality of clusters to find which of the plu 
rality of clusters represents a closest match to the 
acquired second quantitative biological data of the indi 
vidual patient; 

storing the cluster found to represent the closest match as 
patient classification data in a non-transitory computer 
readable memory; 

using the patient classification data in the selection of a 
disease treatment regimen, 

wherein the unsupervised cluster analysis process com 
prises: 

(a) applying a computer-implemented algorithm to the first 
quantitative biological dataset to construct a set of first 
connectivity matrices which are then stored in non-tran 
sitory computer-readable memory; 

(b) using a computer-implemented algorithm to construct 
and store in non-transitory computer-readable memory a 
perturbed dataset by introducing noise into the first 
quantitative biological dataset; 

(c) applying a computer-implemented algorithm to the per 
turbed dataset to construct a set of perturbed connectiv 
ity matrices which are then stored in non-transitory com 
puter-readable memory; 

(d) using a computer-implemented algorithm to perform a 
stability assessment that reads from memory and com 
pares the first connectivity matrices with the perturbed 
connectivity matrices; 

(e) using a computer-implemented algorithm to select from 
among the first set of connectivity matrices the one 
matrix whose corresponding perturbed matrix is least 
affected by the introduction of noise; and 

(f) storing the selected one matrix in non-transitory com 
puter-readable memory and using a computer-imple 
mented algorithm to construct the plurality of clusters. 

10. A method of conducting a drug/treatment trial, com 
prising: 

acquiring a first quantitative biological dataset from a 
population of candidates; 

processing the acquired first quantitative biological dataset 
using a computer-implemented unsupervised cluster 
analysis process to define a plurality of clusters; 

storing said plurality of clusters in a data store comprising 
a non-transitory computer-readable memory; 

acquiring second quantitative biological data from at least 
one individual candidate and processing the acquired 
second quantitative biological data using a computer 
implemented classifier, the classifier ingesting the plu 
rality of clusters in said data store and using the plurality 
of clusters to find which of the plurality of clusters 
represents a closest match to the acquired second quan 
titative biological data of the individual patient; 

storing the cluster found to represent the closest match as 
patient classification data in a non-transitory computer 
readable memory; 
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using the patient classification data in determining whether 
said at least one individual candidate qualifies as a Suit 
able subject of said drug/treatment trial, 

wherein the unsupervised cluster analysis process com 
prises: 

(a) applying a computer-implemented algorithm to the first 
quantitative biological dataset to construct a set of first 
connectivity matrices which are then stored in non-tran 
sitory computer-readable memory; 

(b) using a computer-implemented algorithm to construct 
and store in non-transitory computer-readable memory a 
perturbed dataset by introducing noise into the first 
quantitative biological dataset; 

(c) applying a computer-implemented algorithm to the per 
turbed dataset to construct a set of perturbed connectiv 
ity matrices which are then stored in non-transitory com 
puter-readable memory; 

(d) using a computer-implemented algorithm to perform a 
stability assessment that reads from memory and com 
pares the first connectivity matrices with the perturbed 
connectivity matrices; 

(e) using a computer-implemented algorithm to select from 
among the first set of connectivity matrices the one 
matrix whose corresponding perturbed matrix is least 
affected by the introduction of noise; and 

(f) storing the selected one matrix in non-transitory com 
puter-readable memory and using a computer-imple 
mented algorithm to construct the plurality of clusters. 

11. The method of claim 10 further comprising adminis 
tering a drug/treatment regimen to at least one candidate who 
has been qualified as a suitable subject of said drug/treatment 
trial. 

12. A method of conducting a drug/treatment trial, com 
prising: 

acquiring a first quantitative biological dataset from a 
population of candidates; 

processing the acquired first quantitative biological dataset 
using a computer-implemented unsupervised cluster 
analysis process to define a plurality of clusters; 

storing said plurality of clusters in a data store comprising 
a non-transitory computer-readable memory; 

acquiring second quantitative biological data from at least 
one individual candidate and processing the acquired 
second quantitative biological data using a computer 
implemented classifier, the classifier ingesting the plu 
rality of clusters in said data store and using the plurality 
of clusters to find which of the plurality of clusters 
represents a closest match to the acquired second quan 
titative biological data of the individual patient; 

storing the cluster found to represent the closest match as 
patient classification data in a non-transitory computer 
readable memory; 

using the patient classification data in selecting at least one 
individual candidate; 

administering a drug/treatment to said at least one indi 
vidual candidate and assessing whether said at least one 
individual candidate exhibits a response to the drug/ 
treatment, 

wherein the unsupervised cluster analysis process com 
prises: 

(a) applying a computer-implemented algorithm to the first 
quantitative biological dataset to construct a set of first 
connectivity matrices which are then stored in non-tran 
sitory computer-readable memory; 
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(b) using a computer-implemented algorithm to construct 
and store in non-transitory computer-readable memory a 
perturbed dataset by introducing noise into the first 
quantitative biological dataset; 

(c) applying a computer-implemented algorithm to the per 
turbed dataset to construct a set of perturbed connectiv 
ity matrices which are then stored in non-transitory com 
puter-readable memory; 

(d) using a computer-implemented algorithm to perform a 
stability assessment that reads from memory and com 
pares the first connectivity matrices with the perturbed 
connectivity matrices; 

(e) using a computer-implemented algorithm to select from 
among the first set of connectivity matrices the one 
matrix whose corresponding perturbed matrix is least 
affected by the introduction of noise; and 

(f) storing the selected one matrix in non-transitory com 
puter-readable memory and using a computer-imple 
mented algorithm to construct the plurality of clusters. 

13. The method of claim 12 wherein the step of adminis 
tering a drug/treatment to said at least one individual candi 
date is performed by using the patient classification data in 
selecting a plurality of individual candidates; 

administering a first drug/treatment to a first one of said 
plurality of individual candidates: 

administering a second drug/treatment to a second one of 
said plurality of individual candidates; and 

comparing the respective responses by said first and second 
ones of said plurality of individuals in assessing the 
comparative efficacies of said first and second drug/ 
treatmentS. 

14. The method of claim 13 wherein one of said first and 
second drug/treatments is a placebo. 

15. The method of claim 12 wherein the step of assessing 
whether said at least one individual candidate exhibits a 
response to the drug/treatment is performed multiple times 
over a designated time period. 

16. The method of claim 15 further comprising correlating 
said multiple times to different states or stages of a disease. 

17. A method of conducting genealogical research com 
prising: 

acquiring a first quantitative biological dataset from a 
population of candidates; 

processing the acquired first quantitative biological dataset 
using a computer-implemented unsupervised cluster 
analysis process to define a plurality of clusters; 

storing said plurality of clusters in a data store comprising 
a non-transitory computer-readable memory; 

wherein the unsupervised cluster analysis process com 
prises: 

(a) applying a computer-implemented algorithm to the first 
quantitative biological dataset to construct a set of first 
connectivity matrices which are then stored in non-tran 
sitory computer-readable memory; 

(b) using a computer-implemented algorithm to construct 
and store in non-transitory computer-readable memory a 
perturbed dataset by introducing noise into the first 
quantitative biological dataset; 

(c) applying a computer-implemented algorithm to the per 
turbed dataset to construct a set of perturbed connectiv 
ity matrices which are then stored in non-transitory com 
puter-readable memory; 
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(d) using a computer-implemented algorithm to perform a 
stability assessment that reads from memory and com 
pares the first connectivity matrices with the perturbed 
connectivity matrices; 

(e) using a computer-implemented algorithm to select from 
among the first set of connectivity matrices the one 
matrix whose corresponding perturbed matrix is least 
affected by the introduction of noise; and 

(f) storing the selected one matrix in non-transitory com 
puter-readable memory and using a computer-imple 
mented algorithm to construct the plurality of clusters. 

18. The method of claim 17 wherein the population of 
candidates is an indigenous population. 
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