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Identifying impacted pathways is important because it provides insights into the
biology underlying conditions beyond the detection of differentially expressed
genes. Because of the importance of such analysis, more than 100 pathway
analysis methods have been developed thus far. Despite the availability of many
methods, it is challenging for biomedical researchers to learn and properly per-
form pathway analysis. First, the sheer number of methods makes it challeng-
ing to learn and choose the correct method for a given experiment. Second,
computational methods require users to be savvy with coding syntax, and com-
fortable with command-line environments, areas that are unfamiliar to most life
scientists. Third, as learning tools and computational methods are typically im-
plemented only for a few species (i.e., human and some model organisms), it is
difficult to perform pathway analysis on other species that are not included in
many of the current pathway analysis tools. Finally, existing pathway tools do
not allow researchers to combine, compare, and contrast the results of different
methods and experiments for both hypothesis testing and analysis purposes.
To address these challenges, we developed an open-source R package for Con-
sensus Pathway Analysis (RCPA) that allows researchers to conveniently: (1)
download and process data from NCBI GEO; (2) perform differential analy-
sis using established techniques developed for both microarray and sequencing
data; (3) perform both gene set enrichment, as well as topology-based path-
way analysis using different methods that seek to answer different research hy-
potheses; (4) combine methods and datasets to find consensus results; and (5)
visualize analysis results and explore significantly impacted pathways across
multiple analyses. This protocol provides many example code snippets with
detailed explanations and supports the analysis of more than 1000 species, two
pathway databases, three differential analysis techniques, eight pathway anal-
ysis tools, six meta-analysis methods, and two consensus analysis techniques.
The package is freely available on the CRAN repository. © 2024 The Authors.
Current Protocols published by Wiley Periodicals LLC.

Basic Protocol 1: Processing Affymetrix microarrays
Basic Protocol 2: Processing Agilent microarrays

Current Protocols e1036, Volume 4
Published in Wiley Online Library (wileyonlinelibrary.com).
doi: 10.1002/cpz1.1036
© 2024 The Authors. Current Protocols published by Wiley Periodicals
LLC. This is an open access article under the terms of the Creative
Commons Attribution-NonCommercial License, which permits use,
distribution and reproduction in any medium, provided the original work
is properly cited and is not used for commercial purposes.

Nguyen et al.

1 of 75

https://orcid.org/0000-0001-8001-9470
mailto:tinn@auburn.edu
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/


Support Protocol: Processing RNA sequencing (RNA-Seq) data
Basic Protocol 3: Differential analysis of microarray data (Affymetrix and Ag-
ilent)
Basic Protocol 4: Differential analysis of RNA-Seq data
Basic Protocol 5: Gene set enrichment analysis
Basic Protocol 6: Topology-based (TB) pathway analysis
Basic Protocol 7: Data integration and visualization

Keywords: differential analysis � integration and visualization � microarray �

pathway analysis � RNA sequencing

How to cite this article:
Nguyen, H., Nguyen, H., Maghsoudi, Z., Tran, B., Draghici, S., &

Nguyen, T. (2024). RCPA: An open-source R package for data
processing, differential analysis, consensus pathway analysis, and
visualization. Current Protocols, 4, e1036. doi: 10.1002/cpz1.1036

INTRODUCTION

Together with the ability to generate a large amount of data, high-throughput technolo-
gies have also brought the challenge of translating such data into biological knowledge.
Regardless of the laboratory technology being used, a comparative study (e.g., disease
vs healthy) typically yields a set of genes or proteins that are differentially expressed
(DE) between the two phenotypes. Though important, these lists of DE genes do not ex-
plain the mechanisms involved in the underlying conditions by themselves. To translate
DE genes into biological knowledge, researchers have developed knowledge bases that
capture the knowledge about the function, location and other properties of the genes and
gene products. One of the first such knowledge bases was the Gene Ontology (GO) (The
Gene Ontology Consortium, 2021). GO consists of a controlled vocabulary of terms that
describe biological processes, cellular locations, and biochemical functions, as well as
the relationships between them. These together form an ontology. Furthermore, GO also
provides associations between genes and these terms, thus capturing the knowledge about
the gene functions and localization within the cell.

As soon as such annotations started to become available, analysis methods were devel-
oped to take advantage of them. The first analysis approach was the over-representation
analysis (ORA) that identifies the gene sets, e.g., GO terms, which are enriched in dif-
ferentially expressed (DE) genes (Beissbarth & Speed, 2004; Hosack et al., 2003; Khatri
et al., 2002). The drawbacks of ORA approaches include that they: (1) only consider
the number of DE genes and ignore the actual expression changes, and (2) assume that
genes are independent, which is not true. Functional Class Scoring (FCS) approaches
have been developed to address these drawbacks. These include the GSEA family of
methods (Efron & Tibshirani, 2007; Mootha et al., 2003; Subramanian et al., 2005). The
main improvement is that these approaches can identify situations in which small but
coordinated changes in the expression of functionally related genes are important.

While GO captures the associations between genes and various biological processes,
cellular locations, and biochemical functions, it does not provide any direct information
about the interactions between the genes and/or gene products. Basically, each GO term
can be seen as an unordered, unstructured set of genes that are associated with it. The next
step was taken by trying to describe the complex phenomena that take place in living or-
ganisms by describing the various signals and interactions between genes, gene products,
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and/or metabolites. These are captured in directed graphs that are commonly referred to
as pathways. Examples include the Kyoto Encyclopedia of Genes and Genomes (KEGG)
(Kanehisa et al., 2017) and Reactome (Croft et al., 2014). Pathways can be further di-
vided into gene signaling pathways and metabolic pathways. In gene signaling pathways,
the nodes represent genes, and the edges represent signals or interactions between genes
and/or gene products. In a metabolic pathway, nodes represent biochemical molecules
and edges represent reactions that take place between such biomolecules. The reactions
are carried out by enzymes that are coded by genes so that in a metabolic pathway, genes
are associated with the edges rather than the nodes.

Once such sophisticated pathway models have become available, the challenge was to
identify those pathways that are important in a given phenotype. The first analysis ap-
proaches for pathways were to simply consider the pathways as simple sets of genes
and use the methods previously developed for gene set analysis: ORA and FCS. How-
ever, ORA and FCS are limited because they do not account for the hierarchical struc-
ture of pathways or interactions between genes. Topology-based (TB) approaches were
developed to further incorporate knowledge about gene topology and network in their
hypothesis testing (Draghici et al., 2007; Tarca et al., 2009). Topology-based approaches
are able to consider all important elements ignored by ORA and FCS methods, i.e., the
positions and roles of all the genes in every pathway, the direction and type of signals
between them, etc. Because of their advantages, many more topology-based approaches
have since been proposed (Glaab et al., 2010; Gu et al., 2012; Gu & Wang, 2013; Mitrea
et al., 2013; Nguyen, Diaz, et al., 2016; Nguyen et al., 2020).

Despite the availability of many pathway analysis methods, it is tremendously challeng-
ing for biomedical researchers to learn and to properly perform pathway analysis. First,
the sheer number of methods makes it demanding for scientists to learn and choose the
correct method for their experiments. As reported in our previous benchmarking article
(Nguyen et al., 2019), there is no single method that is always superior to others. The
suitability of a method depends on the research hypothesis users seek to answer. Second,
testing available methods requires users to be savvy with coding syntax and comfort-
able with command-line environments, areas that are unfamiliar to most life scientists.
Third, many available tools are typically implemented only for human and a few model
organisms, thus making it difficult to perform pathway analysis on hundreds of other
species that are not included in current analysis tools. Finally, meta-analysis and consen-
sus analysis are missing from many existing pathway analysis tools. Meta-analysis tech-
niques focus on combining independent but related studies to increase statistical power
(Normand, 1999) whereas consensus analysis combines analysis results obtained from
methods with different underlying hypotheses for a better understanding of biological
mechanisms (Nguyen et al., 2021).

To address the challenges above, we introduce the R package for Consensus Pathway
Analysis (RCPA) that implements a complete analysis pipeline, including: (1) down-
loading and processing data from NCBI Gene Expression Omnibus, (2) performing dif-
ferential analysis using techniques developed for both microarray and sequencing data,
(3) performing systems-level analysis using different methods for enrichment analysis
and topology-based (TB) analysis, (4) performing meta-analysis and consensus analysis,
and (5) visualizing analysis results and exploring significantly impacted pathways across
multiple analyses. The package supports the analysis of >1000 species, two pathway
databases, three differential analysis techniques, eight pathway analysis tools, six meta-
analysis methods, and two consensus analysis techniques. The package is freely available
on the CRAN repository (see Internet Resources).
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Figure 1 Overview of the analysis pipeline implemented in the RCPA package. The pipeline
consists of eight protocols that can be divided into four main modules: (1) data processing, (2)
differential analysis, (3) systems-level analysis (gene set enrichment and topology-based pathway
analysis), and (4) integrative analysis (meta-analysis and consensus analysis) and visualization.
The colored bars at the bottom of the figure represent the four modules, each labeled with the
relevant protocols.Each protocol introduces step-by-step instructions for analysis using established
methods and visualization techniques.

STRATEGIC PLANNING

Flowchart

Figure 1 shows the analysis workflow implemented in the RCPA package. The full
pipeline consists of eight protocols that can be divided into four main modules: (1) data
processing (Basic Protocols 1 and 2, and Support Protocol), (2) differential analysis (Ba-
sic Protocols 3 and 4), (3) systems-level analysis (Basic Protocols 5 and 6), and (4) inte-
grative analysis (Basic Protocol 7). Each protocol includes established analysis methods
and visualization techniques. The pipeline is designed to work with transcriptome data,
which can be either the expression data obtained from microarrays or raw read counts
obtained from RNA sequencing (RNA-Seq).

The first module is data processing. We introduce Basic Protocols 1 and 2, and Support
Protocol that can process Affymetrix, Agilent, and RNA-Seq, respectively. The output
of this module is a SummarizedExperiment object that stores both the expression
data and metadata (i.e., sample information, condition, tissue, etc.).

The second module focuses on differential analysis. We introduce Basic Protocols 3 and
4 that provide instructions for performing differential analysis of microarray and RNA-
Seq data, respectively. The module includes differential analysis techniques available
in limma (Ritchie et al., 2015), DESeq2 (Love et al., 2014), and edgeR (Robinson et al.,
2010). The input of the module is the SummarizedExperiment object obtained from
the first module. The output is a SummarizedExperiment object that includes both
the input (expression and metadata) and the differential analysis results.

The third module focuses on systems-level analysis. We introduce Basic Protocols 5 and
6 for gene set enrichment analysis and topology-based (TB) pathway analysis, respec-
tively. The main difference between gene set enrichment and TB pathway analysis is that
the former treats each pathway as a set of genes, whereas the latter considers gene inter-
actions and pathway topology. Basic Protocol 5 covers five gene set enrichment anal-
ysis techniques: the Wilcoxon test (Wilcoxon, 1992), the Kolmogorov-Smirnov (KS)
test (Massey Jr, 1951), over-representation analysis (ORA) (Huang et al., 2009; Kha-
tri et al., 2002), fast gene set enrichment analysis (FGSEA) (Korotkevich et al., 2021;
Sergushichev, 2016), and gene set analysis (GSA) (Efron & Tibshirani, 2007). BasicNguyen et al.
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Protocol 6 covers three TB pathway analysis methods: signaling pathway impact analy-
sis (SPIA) (Draghici et al., 2007; Tarca et al., 2009), centrality-based pathway enrichment
for ORA extension (CePa ORA), and for GSA extension (CePa GSA) (Gu et al., 2012;
Gu & Wang, 2013). The input of the third module is the SummarizedExperiment
object obtained from the second module. The output is a data frame that includes the
systems-level analysis results.

The fourth module focuses on integrative analysis. We introduce Basic Protocol 7 for
meta-analysis and consensus analysis. Meta-analysis includes a range of techniques to in-
tegrate independent but related datasets to increase statistical power and accuracy. Meta-
analysis can be performed at both gene and pathway levels to find robust sets of dif-
ferentially expressed genes and impacted pathways. In contrast, the main objective of
consensus pathway analysis is to allow users to see the differences, as well as the con-
sensus results across many methods that rely on distinctively different hypotheses. Con-
sensus analysis can also be extended to compare multiple experiments and computational
methods at the same time, so that users can compare different hypotheses, experimental
designs, and technologies. The package includes six meta-analysis methods to combine
p-values and statistics across independent datasets: Fisher’s method (Fisher, 1925), Stouf-
fer’s method (Stouffer et al., 1949), addCLT (Nguyen et al., 2017; Nguyen, Tagett, et al.,
2016), minimum p-value (Tippett, 1931), geometric mean (Vovk & Wang, 2020), and
restricted maximum likelihood (REML) (Viechtbauer, 2005). The package also imple-
ments two methods for consensus analysis: robust rank aggregation (RRA) (Kolde et al.,
2012) for combining pathway ranks, and weighted mean for combining z-values obtained
from multiple analyses.

QuickStart

Throughout the eight protocols in this article, we consistently use three datasets of three
data platforms (GSE5281 of Affymetrix, GSE61196 of Agilent, and GSE153873 of
RNA-Seq) in our examples. The data and analysis results of all three datasets are pre-
saved by the package and this allows users to skip any protocol. For example, users can
go directly to Basic Protocol 7 and perform data visualization without executing any code
from the preceding protocols. They only need to call the functionRCPA::loadData()
to load the results from the preceding protocols before running the code in visualization.
We also include the code for RCPA::loadData() to load necessary data at the begin-
ning of each protocol.

For the convenience of readers, we also created Table 1 to list all data objects ob-
tained from each protocol. The first column of the table shows the names of the objects,
while the second column explains the content of each object. Users can load any of the
above objects using the function RCPA::loadData(). For example, users can simply
use affyDEExperiment <- RCPA::loadData(“affyDEExperiment”) to
load the differential analysis results of the Affymetrix dataset GSE5281 stored in the ob-
ject affyDEExperiment. The availability of pre-saved data objects would allow users
to test any of the eight protocols without the need of going through the preceding proto-
cols. Note that the objects of Basic Protocol 7 (Data Integration and Visualization) are
not listed here because it is the last protocol described in this article, and its data objects
are not used in any other protocols. We also organized all code snippets in this article into
a single Jupyter notebook, and it is freely available on GitHub (see Internet Resources).

BASIC
PROTOCOL 1

PROCESSING AFFYMETRIX MICROARRAYS

Basic Protocol 1 guides users through the process of converting raw CEL files into
a SummarizedExperiment object, which is a data structure designed for efficient
downstream analysis. There are three main steps in this protocol: (1) preparing the CEL Nguyen et al.
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Table 1 Saved Data Objects Obtained from Protocols For Data Processing, Differential Analysis, and Pathway Analysisa

Object name Description

Basic Protocol 1: Processing Affymetrix data

affyDataset Affymetrix dataset GSE5281 after pre-processing and normalization

Basic Protocol 2: Processing Agilent data

agilDataset Agilent dataset GSE61196 after pre-processing and normalization

Support Protocol: Processing RNA-Seq data

RNASeqDataset RNA-Seq dataset GSE153873 after pre-processing and normalization

Basic Protocol 3: Differential analysis of microarray data

affyDEExperiment Differential analysis results of the Affymetrix dataset GSE5281

agilDEExperiment Differential analysis results of the Agilent dataset GSE61196

Basic Protocol 4: Differential analysis of RNA-Seq data

RNASeqDEExperiment Differential analysis results of the RNA-Seq dataset GSE153873

Basic Protocol 5: Gene set enrichment analysis

KEGGGenesets Gene sets downloaded from KEGG

GOTerms GO terms downloaded from Gene Ontology (GO)

affyKSResult Enrichment results of the Affymetrix dataset GSE5281 using KS test

affyWilcoxResult Enrichment results of the Affymetrix dataset GSE5281 using Wilcoxon test

affyORAResult Enrichment results of the Affymetrix dataset GSE5281 using ORA

affyFGSEAResult Enrichment results of the Affymetrix dataset GSE5281 using FGSEA

affyGSAResult Enrichment results of the Affymetrix dataset GSE5281 using GSA

agilKSResult Enrichment results of the Agilent dataset GSE61196 using KS test

agilWilcoxResult Enrichment results of the Agilent dataset GSE61196 using Wilcoxon test

agilORAResult Enrichment results of the Agilent dataset GSE61196 using ORA

agilFGSEAResult Enrichment results of the Agilent dataset GSE61196 using FGSEA

agilGSAResult Enrichment results of the Agilent dataset GSE61196 using GSA

RNASeqKSResult Enrichment results of the RNA-Seq dataset GSE153873 using KS test

RNASeqWilcoxResult Enrichment results of the RNA-Seq dataset GSE153873 using Wilcoxon test

RNASeqORAResult Enrichment results of the RNA-Seq dataset GSE153873 using ORA

RNASeqFGSEAResult Enrichment results of the RNA-Seq dataset GSE153873 using FGSEA

RNASeqGSAResult Enrichment results of the RNA-Seq dataset GSE153873 using GSA

Basic Protocol 6: Topology-based (TB) pathway analysis

SPIANetwork KEGG pathway graphs for TP analysis using SPIA

CePaNetwork KEGG pathway graphs for TP analysis using CePa ORA and CePa GSA

affySPIAResult TB pathway analysis results of the Affymetrix dataset GSE5281 using SPIA

affyCePaORAResult TB pathway analysis results of the Affymetrix dataset GSE5281 using CePa
ORA

affyCePaGSAResult TB pathway analysis results of the Affymetrix dataset GSE5281 using CePa GSA

agilSPIAResult TB pathway analysis results of the Agilent dataset GSE61196 using SPIA

agilCePaORAResult TB pathway analysis results of the Agilent dataset GSE61196 using CePa ORA

agilCePaGSAResult TB pathway analysis results of the Agilent dataset GSE61196 using CePa GSA

(Continued)
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Table 1 Saved Data Objects Obtained from Protocols For Data Processing, Differential Analysis, and Pathway Analysisa,
continued

Object name Description

RNASeqSPIAResult TB pathway analysis results of the RNA-Seq dataset GSE153873 using SPIA

RNASeqCePaORAResult TB pathway analysis results of the RNA-Seq dataset GSE153873 using CePa
ORA

RNASeqCePaGSAResult TB pathway analysis results of the RNA-Seq dataset GSE153873 using CePa
GSA

a
Users can load any of the above objects using the function RCPA::loadData(). For example, users can use affyDEExperiment <-

RCPA::loadData(“affyDEExperiment”) to load the differential analysis results of the Affymetrix dataset GSE5281 stored in the object affyDEEx-
periment. Note that the objects of Basic Protocol 7 (Data Integration and Visualization) are not listed here because it is the last protocol, and its data
objects are not used in any other protocols.

files and sample information file, (2) processing the CEL files to obtain the expression
data, and (3) creating the SummarizedExperiment object.

Necessary Resources

Hardware

An internet-connected computer or laptop with at least 8 GB of RAM and 20 GB
of free hard drive space

Software

R runtime environment (version 4.0.0 or later)
RCPA package from the CRAN repository (see Internet Resources)
This can be done by simply executing the following command in the R console:
install.packages("RCPA")

Files

A list of CEL.gz files

CEL files are the raw data files generated by Affymetrix microarray scanners. The .gz
extension indicates that the files are compressed using the gzip program. The raw content
of the CEL files can be read by any text editor. Figure 2 shows an example CEL file. In
this protocol, the example CEL files used for analysis will be downloaded from the GEO
dataset with the accession number GSE5281.

A spreadsheet containing sample information in CSV or TSV format

In this spreadsheet, each row represents a sample, and each column represents its at-
tribute, e.g., sample ID, disease status, tissue, etc. In this protocol, we will create the ex-
ample spreadsheet by extracting the sample information from the GEO dataset GSE5281.

Preparing the CEL files and sample information file

To proceed with the data processing, users need to organize all CEL files in a single
folder. In the following example, we will download the CEL files from the GEO dataset
GSE5281 using the downloadGEO() function implemented in the RCPA package. If
users already have the CEL files, they can skip this step and go directly to the next step.

1. Create a local directory to save the data:

userPath <- tempdir() # or user-defined directory path

downloadPath <- file.path(userPath, "GSE5281")

if(!dir.exists(downloadPath)) dir.create(downloadPath)

This step creates a local directory where we can download the data. This practice enables
users to conveniently reuse the data without repetitive downloads, a particularly advanta-
geous approach when dealing with large datasets that entail significant download times.
The first line of code assigns the storage path for the downloaded data to a variable named

Nguyen et al.
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Figure 2 An example of the content of a CEL file. The CEL file is a text file that contains the raw
data generated by Affymetrix microarray scanners.

Figure 3 Querying results of the Affymetrix dataset GSE5281 from NCBI GEO. (A) Metadata of
the dataset GSE5281. The following information can be found in this window: (A1) GEO accession
ID, (A2) Organism of study, (A3) Platform, (A4) Technology, (A5) List of samples, and (A6) Pre-
processed data. (B) Query results of the sample GSM119615 in the dataset. Users can find the
following information in this window: (B1) Sample ID, and (B2) Sample characteristics.

downloadPath. To exemplify this concept, we use the tempdir() function, which re-
turns a character string representing the path to a directory specific to the current session.
In other words, each time a new R session is initiated, a temporary directory is automati-
cally created, and it remains accessible only for that R session. In this example, the value
of downloadPath is set to "userPath/GSE5281". Nevertheless, it is advisable for
users to specify a local directory of their choice for data storage and to remove it when it
is no longer used. In the second line, we check whether the folder exists. If we do not have
that folder, we can create it by using the function dir.create().

2. Browse and search for the underlying dataset on the GEO website.

Before executing the function downloadGEO() to download the data, we need to
collect the metadata that will be used as parameters of this function. As shown in
Figure 3, searching for a dataset in GEO is relatively straightforward. We only need to

Nguyen et al.
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provide the accession number of the dataset (e.g., GSE5281) in the search box at https:
//www.ncbi.nlm.nih.gov/geo/ . When the search is done, the webpage displays many details
of the dataset, including published date, title, organism, experiment type, dataset summary,
and other information. In this example, the platform of the dataset is “GPL570”, and the
protocol is “affymetrix”, as highlighted in boxes 3 and 4. We will use these values as input
in the function downloadGEO().

3. Download the Affymetrix dataset from GEO using the function downloadGEO():

# download the data

downloadedFiles <- RCPA::downloadGEO(GEOID = "GSE5281", platform = "GPL570", protocol =
"affymetrix", destDir = downloadPath)

# display the list of downloaded files
print(head(downloadedFiles))

# console output

[1] "metadata.csv" "GSM119615.CEL.gz" "GSM119616.CEL.gz" "GSM119617.CEL.gz"

[5] "GSM119618.CEL.gz" "GSM119619.CEL.gz"

The function downloadGEO() requires the following parameters to download an
Affymetrix dataset from GEO: (1) GEOID, a character parameter specifying the GEO
accession ID of the desired dataset; (2) platform, a character parameter specifying
the platform used to generate the GEO dataset in the first parameter; (3) protocol, a
character parameter indicating the protocol of the GEO dataset; and (4) destDir, a
character parameter indicating a user-defined path to save downloaded data. Given these
parameters, the function downloads the raw CEL files and metadata for the samples and
stores them in the directory specified by users. This function returns a list of downloaded
files, which is assigned to the downloadedFiles variable. The first element of the list
is the metadata file, and the remaining elements are the CEL files.

Reading sample information and processing CEL files
4. Read the sample information from the metadata file:

# read the metadata file

affySampleInfo <- read.csv(file.path(downloadPath, "metadata.csv"))

# Display the metadata

print(head(affySampleInfo[, c("geo_accession", "characteristics_ch1.4",

"characteristics_ch1.8")]))

# console output

geo_accession characteristics_ch1.4 characteristics_ch1.8

GSM119615 Organ Region: Entorhinal Cortex Disease State: normal

GSM119616 Organ Region: Entorhinal Cortex Disease State: normal

GSM119617 Organ Region: Entorhinal Cortex Disease State: normal

GSM119618 Organ Region: Entorhinal Cortex Disease State: normal

GSM119619 Organ Region: Entorhinal Cortex Disease State: normal

GSM119620 Organ Region: Entorhinal Cortex Disease State: normal

Here, we use the function read.csv() to read the file metadata.csv generated in
the previous step in the directory downloadPath. The output of this function is a data
frame, which is assigned to the affySampleInfo variable. Next, we print some rows
and some columns of the data frame to the console. Depending on the dataset, the metadata
file might contain different columns. In the above example, we chose to print the columns
geo_accession, characteristics_ch1.4, and characteristics_ch1.8
that represent sample ID, organ region, and sample condition.

5. Process the CEL files and obtain the expression matrix:

# read the CEL files

affyExprs <- RCPA::processAffymetrix(dir = downloadPath, samples =
affySampleInfo$geo_accession)

# display the expression matrix
Nguyen et al.
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print(head(affyExprs, c(5, 6)))

# console output

GSM119615 GSM119616 GSM119617 GSM119618 GSM119619 GSM119620

1007_s_at 3.043234 3.055157 3.144277 3.150378 3.084336 2.989966

1053_at 1.698974 1.645050 1.618537 1.589216 1.676278 1.581733

117_at 1.795751 1.770719 1.805597 1.995794 1.688068 1.961556

121_at 2.553174 2.668456 2.801450 2.784216 2.588638 2.692849

1255_g_at 1.626691 1.940055 1.663162 1.483875 2.354096 1.671216

Here, we use the function processAffymetrix() to process the CEL files and obtain
the expression matrix. This function requires two parameters: (1) dir, a character pa-
rameter specifying the path to the directory containing the CEL files; and (2) samples, a
character vector specifying the list of sample IDs to be processed. The sample IDs are also
the names of the CEL files without the “.CEL.gz” extension. For example, the sample ID of
the CEL file GSM119615.CEL.gz is GSM119615. In this code snippet, the dir param-
eter is set to the downloadPath variable, which is the path to the directory containing
the CEL files downloaded from the GEO dataset GSE5281 in the previous step. The sam-
ples parameter is set to the geo_accession column of the affySampleInfo data
frame, which contains the sample IDs that match the names of the CEL files.

In this function, all CEL files are read using the oligo package (Carvalho & Irizarry, 2010),
followed by a three-step normalization process. These steps include background correc-
tion using the Robust Multi-array Average algorithm (RMA) (Harbron et al., 2007), quan-
tile normalization, and median-polish summarization. The background correction func-
tion subtracts a measure of the background noise from the raw signal intensity values.
The quantile normalization function normalizes the intensity values across arrays so that
the distribution of intensities is similar for all arrays. Lastly, the probe-level model-fitting
function fits a probe-level model to the normalized intensities, which allows for the esti-
mation of expression values for each probe set. We have selected these methods based on
the highly impacted research works (Bolstad et al., 2003; Irizarry et al., 2003).

Creating the SummarizedExperiment object

We will store the processed data in a SummarizedExperiment object, which is an
S4 data object defined by the SummarizedExperiment package. The Summarized-
Experiment object allows users to perform unified operations, e.g., add or remove
samples, for both the metadata and assay. It thereby ensures that the metadata and ob-
servational data remain in sync, mitigating the risk of data mishandling that might occur
when manually processing expression data and metadata.

6. Check that the required package is installed:

# load the SummarizedExperiment package

library(SummarizedExperiment)

We can ensure the required package is installed by loading it as shown in the above code
snippet. We will need to use the functions in the SummarizedExperiment package to create
and access the data stored in the SummarizedExperiment object.

7. Create the SummarizedExperiment object:

# create the SummarizedExperiment object

affyDataset <- SummarizedExperiment::SummarizedExperiment(assays = affyExprs, colData =
affySampleInfo)

# display the SummarizedExperiment object

print(affyDataset)

# console output

class: SummarizedExperiment

dim: 54675 161

metadata(0):

assays(1): ‘’
Nguyen et al.

10 of 75

Current Protocols

 26911299, 2024, 5, D
ow

nloaded from
 https://currentprotocols.onlinelibrary.w

iley.com
/doi/10.1002/cpz1.1036 by A

uburn U
niversity L

ibraries, W
iley O

nline L
ibrary on [07/05/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



rownames(54675): 1007_s_at 1053_at … AFFX-r2-P1-cre-3_at

AFFX-r2-P1-cre-5_at

rowData names(0):

colnames(161): GSM119615 GSM119616 … GSM238955 GSM238963

colData names(71): X title … sample.amount.ch1 sex.ch1

Here, we use the SummarizedExperiment() function to create a SummarizedExper-
iment object. The function requires two parameters: (1) assays, one or more matrices
containing the assay data; and (2) colData, a data frame containing the sample infor-
mation. These data can be accessed using the two functions assay() and colData()
from the SummarizedExperiment package, as shown in the next step.

8. Access the expression data and sample information stored in SummarizedExper-
iment object:

# access expression data

affyExprs <- SummarizedExperiment::assay(affyDataset)

# display affyExprs

print(head(affyExprs, c(5, 6)))

# console output

GSM119615 GSM119616 GSM119617 GSM119618 GSM119619 GSM119620

1007_s_at 3.043234 3.055157 3.144277 3.150378 3.084336 2.989966

1053_at 1.698974 1.645050 1.618537 1.589216 1.676278 1.581733

117_at 1.795751 1.770719 1.805597 1.995794 1.688068 1.961556

121_at 2.553174 2.668456 2.801450 2.784216 2.588638 2.692849

1255_g_at 1.626691 1.940055 1.663162 1.483875 2.354096 1.671216

# Access to sample information

affySampleInfo <- SummarizedExperiment::colData(affyDataset)

# display affySampleInfo

head(affySampleInfo[, c("title", "characteristics_ch1.4", "characteristics_ch1.8")])

# console output

title characteristics_ch1.4 characteristics_ch1.8

GSM119615 EC control 1 Organ Region: Entorh.. Disease State: normal

GSM119616 EC control 2 Organ Region: Entorh.. Disease State: normal

GSM119617 EC control 3 Organ Region: Entorh.. Disease State: normal

GSM119618 EC control 4 Organ Region: Entorh.. Disease State: normal

GSM119619 EC control 5 Organ Region: Entorh.. Disease State: normal

GSM119620 EC control 6 Organ Region: Entorh.. Disease State: normal

In the above snippet, one can use the functions assay() and colData() to extract
the expression data matrix and sample information contained within the affyDataset
object. We then assign these extracted data sets to variables affyExprs and affySam-
pleInfo, respectively. Afterward, we use the R built-in function head() to display se-
lected rows and columns from these data matrices in the R console. By following this ex-
ample, users can observe the example of the processed data as it appears in the console
output.

BASIC
PROTOCOL 2

PROCESSING AGILENT MICROARRAYS

This Basic Protocol guides users through the process of converting raw Agilent TXT
files into a SummarizedExperiment object. Similar to Basic Protocol 1, there are
three main steps in this protocol: (1) preparing the TXT files and sample information file,
(2) processing the TXT files to obtain the expression data, and (3) creating the Summa-
rizedExperiment object. Nguyen et al.
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Figure 4 An example of the content of a TXT file from Agilent platform.

Necessary Resources

Hardware

An internet-connected computer or laptop with at least 8 GB of RAM and 20 GB
of free hard drive

Software

R runtime environment (version 4.0.0 or later)
RCPA package from the CRAN repository

Files

A list of TXT.gz files

The TXT files here are the raw data files generated by Agilent microarray scanners as
Agilent does not use any file extension for its raw data files. These TXT files can be read
by any text editor. Figure 4 shows an example TXT file for Agilent. In this protocol, the
example TXT files used for analysis will be downloaded from the GEO dataset with the
accession number GSE61196.

A spreadsheet containing sample information in CSV or TSV format

In this spreadsheet, each row represents a sample, and each column represents its at-
tribute, e.g., sample ID, disease status, tissue, etc. In this protocol, we will create the exam-
ple spreadsheet by extracting the sample information from the GEO dataset GSE61196.

Preparing the TXT files and sample information file

Similar to Basic Protocol 1, users need to organize all TXT files in a single folder. In the
following example, we will download the TXT files from the GEO dataset GSE61196 us-
ing the downloadGEO() function implemented in the RCPA package. If users already
have the TXT files, they can skip this step and go directly to the next step.

1. Create a local directory to save the downloaded data:

userPath <- tempdir() # or user-defined directory path

downloadPath <- file.path(userPath, "GSE61196")

if(!dir.exists(downloadPath)) dir.create(downloadPath)

The above code snippet is similar to that of Basic Protocol 1. Again, it is recommended
that users specify their own directory, instead of using the temporary folder created by
tempdir().

2. Browse and search for the dataset on NCBI GEO.

To obtain the parameters necessary for the function downloadGEO(), we need to search
for the dataset on https://www.ncbi.nlm.nih.gov/geo/ , as shown in Figure 5. In addition to

Nguyen et al.
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Figure 5 Querying results of the Agilent dataset GSE61196. (A) Metadata of the dataset
GSE61196. The following information can be found in this window: (A1) Accession ID, (A2) Or-
ganism of study, (A3) Platform, (A4) Technology, (A5) List of samples, and (A6) Preprocessed
data. (B) Query results of the sample GSM1499379 in the dataset. Users can find the following
information in this window: (B1) Sample ID, (B2) Channel information (one or two colors), and (B3)
Sample characteristics.

platform and protocol, users also need to look for the channel information, as it is required
as one of the inputs of downloadGEO() for Agilent datasets. This information can be
found in the query results of a sample in the dataset, which can be obtained by clicking on
one of the sample IDs. The information is highlighted as box 2 in Figure 5b.

3. Download the Agilent data using the downloadGEO() function:

# download the data

downloadedFiles <- RCPA::downloadGEO(GEOID = "GSE61196", platform = "GPL4133", protocol

= "agilent", destDir = downloadPath)

# display the list of downloaded files

head(downloadedFiles)

# console output

[1] "metadata.csv" "GSM1499379.TXT.gz" "GSM1499380.TXT.gz"

[4] "GSM1499381.TXT.gz" "GSM1499382.TXT.gz" "GSM1499383.TXT.gz"

Similar to Basic Protocol 1, users can also apply the same function downloadGEO() to
download Agilent datasets from NCBI GEO to a local directory specified by the destDir
parameter.

Reading sample information and processing Agilent TXT files
4. Read the sample information from the metadata file:

# read the metadata file

agilSampleInfo <- read.csv(file.path(downloadPath, "metadata.csv"))

# Display the metadata

print(agilSampleInfo[9:14, c("geo_accession", "characteristics_ch2.1", "tissue.ch2")])

# console output
geo_accession characteristics_ch2.1 tissue.ch2

GSM1499387 disease state: healthy RPE/chodoid

GSM1499388 disease state: healthy RPE/chodoid

GSM1499389 disease state: healthy RPE/chodoid

GSM1499390 disease state: healthy RPE/chodoid

GSM1499391 disease state: healthy RPE/chodoid

GSM1499392 disease state: healthy RPE/chodoid

We use the read.csv() function to read the metadata.csv file generated in the
previous step in the downloadPath directory. In this code snippet, instead of using the
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head() function to display the data, users have the option to specify specific rows and
columns of interest by employing the […,…] syntax. Specifically, within this code snippet,
we print the expression data for rows 9 to 14 and three columns with predefined names.

5. Process the TXT files and obtain the expression matrix:

# read the TXT files

agilExprs <- RCPA::processAgilent(dir = downloadPath, samples =
agilSampleInfo$geo_accession, greenOnly = FALSE)

# display the expression matrix

print(agilExprs[9:14, 1:6])

# console output

GSM1499379 GSM1499380 GSM1499381 GSM1499382 GSM1499383 GSM1499384

DarkCorner 3.765860 4.191198 4.543230 4.663244 5.094978 3.860652

DarkCorner 3.962802 4.467307 4.200014 4.417445 4.574157 4.362014

DarkCorner 4.258405 4.216067 3.825804 3.993204 4.787838 4.295524

A_24_P66027 7.853252 8.038021 7.858425 7.573315 7.814866 7.882954

A_32_P77178 4.835717 4.678353 5.217154 5.307724 5.299094 4.591740

A_23_P212522 11.136671 11.407050 11.531872 11.202280 11.476940 10.980672

Here, we use the processAgilent() function to process the TXT files and obtain the
expression matrix. This function requires three parameters. (1) dir, a character parame-
ter specifying the path to the directory containing the TXT files. (2) samples, a charac-
ter vector specifying the list of sample IDs to be processed. The sample IDs are also the
names of the TXT files without the “.TXT.gz” extension. For example, the sample ID of
the TXT file GSM1499379.TXT.gz is GSM1499379. (3) greenOnly, a logical pa-
rameter (TRUE/FALSE) which indicates that should the green (Cy3) channel only be read
or are both red and green required. In this code snippet, the sample parameter is set to
the geo_accession column of the agilSampleInfo data frame, which contains the
sample IDs that match the names of the TXT files. Next, we print the expression data for
rows 9 to 14 and columns 1 to 6 to the console.

Creating the SummarizedExperiment object
6. Create the SummarizedExperiment object:

# create the SummarizedExperiment object

agilDataset <- SummarizedExperiment::SummarizedExperiment(assays = agilExprs, colData =
agilSampleInfo)

# display the SummarizedExperiment object

print(agilDataset)

# console output

class: SummarizedExperiment

dim: 45015 21

metadata(0):

assays(1): ”

rownames(45015): GE_BrightCorner DarkCorner … GE_BrightCorner

GE_BrightCorner

rowData names(0):

colnames(21): GSM1499379 GSM1499380 … GSM1499398 GSM1499399

colData names(49): X title … tissue.ch1 tissue.ch2

In the above code snippet, we use the function SummarizedExperiment() function
to create the SummarizedExperiment object.

7. Access the expression data and sample information stored in SummarizedExper-
iment object:

# Access expression data

agilExprs <- SummarizedExperiment::assay(agilDataset)
Nguyen et al.
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# Display agilExprs

print(agilExprs[9:14, 1:6])

# Console output
GSM1499379 GSM1499380 GSM1499381 GSM1499382 GSM1499383 GSM1499384

DarkCorner 3.765860 4.191198 4.543230 4.663244 5.094978 3.860652

DarkCorner 3.962802 4.467307 4.200014 4.417445 4.574157 4.362014

DarkCorner 4.258405 4.216067 3.825804 3.993204 4.787838 4.295524

A_24_P66027 7.853252 8.038021 7.858425 7.573315 7.814866 7.882954

A_32_P77178 4.835717 4.678353 5.217154 5.307724 5.299094 4.591740

A_23_P212522 11.136671 11.407050 11.531872 11.202280 11.476940 10.980672

# Access sample information

agilSampleInfo <- SummarizedExperiment::colData(agilDataset)

# Display agilSampleInfo

print(agilSampleInfo[9:14, c("geo_accession", "characteristics_ch2.1", "tissue.ch2")])

# Console output
geo_accession characteristics_ch2.1 tissue.ch2

GSM1499387GSM1499387 disease state: healthy RPE/chodoid

GSM1499388GSM1499388 disease state: healthy RPE/chodoid

GSM1499389GSM1499389 disease state: healthy RPE/chodoid

GSM1499390GSM1499390 disease state: healthy RPE/chodoid

GSM1499391GSM1499391 disease state: healthy RPE/chodoid

GSM1499392GSM1499392 disease state: healthy RPE/chodoid

In this code snippet, we employ the functions assay() and colData() to access the
expression data matrix and sample information data. Within this code snippet, we print the
expression data for rows 9 to 14 and the three columns named “geo_accession”, “charac-
teristics_ch2.1”, and “tissue.ch2”. These columns store sample accession, disease state,
and tissue, as shown in the console output.

SUPPORT
PROTOCOL

PROCESSING RNA SEQUENCING (RNA-Seq) DATA

This Support Protocol guides users through the process of converting a raw count matrix
file into a SummarizedExperiment object. There are two main steps in this proto-
col: (1) preparing the count matrix file and sample information file, and (2) creating the
SummarizedExperiment object.

Necessary Resources

Hardware

An internet-connected computer or laptop with at least 8 GB of RAM and 20 GB
of free hard drive space

Software

R runtime environment (version 4.0.0 or later)
RCPA package from the CRAN repository

Files

A count matrix file

The count matrix file is a table that contains the raw read counts for each gene in each
sample. The count matrix file can be saved in any format, e.g., TXT, CSV, TSV, etc., de-
pending on what data processing pipeline users use to generate the count matrix file.
We recommend that users follow the best practices for data processing and normalization
specific to each RNA-Seq technology (Conesa et al., 2016; Robertson et al., 2010). Figure
6 shows an example count matrix. In this protocol, we will download the count matrix file
from the GEO dataset with the accession number GSE153873.

Nguyen et al.
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Figure 6 An example of the content of a count matrix file. In this example, the count matrix file
is saved in TSV format. The first column contains the gene IDs in form of gene symbols, and the
first row contains the sample IDs. The remaining cells contain the raw read counts for each gene
in each sample.

A spreadsheet containing sample information, CSV or TSV format

In this spreadsheet, each row represents a sample, and each column represents its at-
tribute, e.g., sample ID, disease status, tissue, etc. In this protocol, we will create the exam-
ple spreadsheet by extracting the sample information from the GEO dataset GSE153873.

Preparing the count matrix file and sample information file

Users can skip this step if they already have the count matrix file and sample information
file. In this protocol, we will create the sample information file by extracting the sample
information from the GEO dataset GSE153873 using the getGEO() function imple-
mented in the GEOquery package. We will also download the count matrix file from the
GEO dataset GSE153873 using the getGEOSuppFiles() function.

1. Browse and search for the RNA-Seq dataset on GEO:

We can search for the dataset on https://www.ncbi.nlm.nih.gov/geo/ by providing the ac-
cession number (GSE153873) in the search box, as shown in Figure 7. When the searching
is done, the webpage displays the details of the dataset, including the published date, title,
organism, experiment type, dataset summary, and supplementary files that contain the raw
read counts. In this protocol, we will guide users on how to download these data using
functions from the GEOquery package in R, as shown in the following steps.

2. Create a local directory to save the downloaded data:

userPath <- tempdir() # or user-defined directory path

downloadPath <- file.path(userPath, "GSE153873")

if(!dir.exists(downloadPath)) dir.create(downloadPath)

3. Get the sample information from the GEO dataset:

# Download the GEO object to get metadata

GEOObject <- GEOquery::getGEO(GEO = "GSE153873", GSEMatrix = T, getGPL = F, destdir =
downloadPath)

# Check the length of GEOObject

message("length: ", length(GEOObject))

# console output

length: 1
Nguyen et al.
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Figure 7 Querying RNA-Seq data from NCBI GEO. The numbered red boxes show the infor-
mation that might be required when downloading data using GEOquery package. The following
information can be found from this query: (1) dataset GEO accession ID, (2) organism of study, (3)
platform, (4) technology, (5) list of samples, (6) preprocessed assays, (7) supplementary files, and
(8) buttons for manually downloading these supplementary files.

# Extract the dataset from the GEOObject

samplesData <- GEOObject[[1]]

# Export sample data

metadata <- Biobase::pData(samplesData)

# save the metadata for later use

write.csv(metadata, file.path(downloadPath, "metadata.csv"))

# preview the metadata

print(head(metadata[, c("title", "status", "characteristics_ch1.1")]))

# console output

title status characteristics_ch1.1

GSM4656348 13-11T-Old Public on Jul 07 2020 disease state: old

GSM4656349 15-13T-Old Public on Jul 07 2020 disease state: old

GSM4656350 20-1T-AD Public on Jul 07 2020 disease state: Alzheimer’s disease

GSM4656351 16-14T-Old Public on Jul 07 2020 disease state: old

GSM4656352 3-17T-Young Public on Jul 07 2020 disease state: young

GSM4656353 5-18T-Young Public on Jul 07 2020 disease state: young

In this code snippet, we use the function getGEO() to download the GEO object of
the dataset GSE153873. We set the parameter GSEMatrix to TRUE to download the
GSE Series Matrix files and the parameter getGPL to FALSE to avoid downloading the
platform information. The destdir parameter specifies the directory to save the down-
loaded data. The function returns a list of ExpressionSet objects, which are assigned
to theGEOObject variable. This list can contain one or moreExpressionSet objects,
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depending on how many series matrix files are available for the dataset. These series ma-
trix files can come from different platforms or different processing methods. In this example,
the list contains only one ExpressionSet object. Next, we extract the Expression-
Set object from the list and obtain the sample information from the pData() function.
Finally, we save the sample information to a CSV file named metadata.csv in the
downloadPath directory.

4. Download the raw count data from the GEO dataset:

# Download the supplementary files

GEOquery::getGEOSuppFiles(GEO = "GSE153873", fetch_files = TRUE, baseDir = userPath)

# Check the downloaded data files

list.files(file.path(userPath, "GSE153873"))

# Console output

[1] "GSE153873_AD.vs.Old_diff.genes.xlsx" "GSE153873_summary_count.ercc.txt.gz"

[3] "GSE153873_summary_count.star.txt.gz"

In this code snippet, we use the function getGEOSuppFiles() to download the sup-
plementary files of the dataset GSE153873. The function has the following parame-
ters: (1) GEO, a character parameter that specifies the GEO accession number; (2)
baseDir, a character parameter that specifies the directory for downloaded data; and
(3) fetch_files, a logical parameter, with TRUE means telling the function to actually
download the files and FALSE telling the function to just return the filenames that would
have been downloaded. The function returns a data frame in which row names represent
the full path to the downloaded files.

Note that the function getGEOSuppFiles() automatically creates a folder named
“GSE153873” (GEO) in the folder defined by the userPath variable and saves all the
downloaded data there. We can check the downloaded file in this folder using the function
list.files(). As we can see in the console output, the raw count data is saved under
the name “GSE153873_summary_count.star.txt.gz” (as in Figure 7).

Creating the SummarizedExperiment object
5. Examine the format of the count matrix file:

# read the first 10 lines of the count matrix file

countsFile <- file.path(userPath, "GSE153873", "GSE153873_summary_count.star.txt.gz")

lines <- readLines(countsFile, n = 10)

# display the first 50 characters of each line

print(substr(lines, start = 1, stop = 50))

# console output

[1] "refGene\t20-1T-AD\t13-11T-Old\t15-13T-Old\t16-14T-Old\t"

[2] "SGIP1\t1405\t1405\t1169\t2408\t859\t1164\t1402\t1441\t1003\t"

[3] "NECAP2\t295\t460\t334\t347\t617\t585\t372\t343\t374\t315\t355"

[4] "AZIN2\t356\t306\t385\t507\t787\t751\t577\t238\t209\t241\t211\t"

[5] "AGBL4\t191\t200\t173\t323\t36\t89\t184\t229\t129\t154\t102\t12"

[6] "CLIC4\t876\t1443\t639\t792\t4806\t5968\t1392\t1117\t1247\t92"

[7] "SLC45A1\t291\t329\t298\t636\t139\t204\t278\t193\t152\t178\t14"

[8] "TGFBR3\t639\t650\t506\t370\t425\t447\t282\t792\t727\t461\t728"

[9] "DBT\t623\t726\t513\t633\t751\t758\t498\t714\t756\t655\t530\t51"

[10] "PRUNE1\t297\t237\t200\t390\t231\t254\t252\t342\t228\t300\t235"

Before we read the count matrix file into R, we need to examine the format of the file to
determine which function to use to read the file. Our count matrix file is a gzip compressed
file with the extension .gz. We can use the readLines() function to read the first 10
lines of the count matrix file without extracting the entire file. This function can read the
file line by line, and the n parameter specifies the number of lines to read. Next, we extract
the first 50 characters of each line using the substr() function and print them to the
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console. As we can see in the console output, this count matrix file is a tab-delimited text
file, in which the first column contains the gene IDs in the form of gene symbols, and the first
row contains the sample IDs. With this format, we can use the read.table() function
to read the count matrix file.

6. Read the sample information and count matrix file:

# read the previously saved metadata

RNASeqSampleInfo <- read.csv(file.path(downloadPath, "metadata.csv"))

# read the count matrix file

countsData <- read.table(countsFile, header = TRUE, sep = "\t", fill = 0, row.names = 1,

check.names = FALSE)

# preview the metadata and count matrix

print(head(RNASeqSampleInfo[, c("title", "status", "characteristics_ch1.1")], 3))

print(head(countsData, c(3,6)))

# console output

# metadata

title status characteristics_ch1.1

GSM4656348 13-11T-Old Public on Jul 07 2020 disease state: old

GSM4656349 15-13T-Old Public on Jul 07 2020 disease state: old

GSM4656350 20-1T-AD Public on Jul 07 2020 disease state:

Alzheimer’s disease

# count matrix

20-1T-AD 13-11T-Old 15-13T-Old 16-14T-Old 3-17T-Young 5-18T-Young

SGIP1 1405 1405 1169 2408 859 1164

NECAP2 295 460 334 347 617 585

AZIN2 356 306 385 507 787 751

Here, we use the function read.csv() to read the file metadata.csv that was gen-
erated in the previous step in the directory specified by the variable downloadPath. We
also use the function read.table() to read the file that was downloaded in the previ-
ous step: GSE153873_summary_count.star.txt. The function read.table()
is able to read the compressed “.txt.gz ” file directly without decompressing the file
first. We set the header parameter to TRUE to keep the sample IDs as the column labels.
We set the sep parameter to "\t " to indicate that the data are separated by tab. We set the
fill parameter to 0 to fill the missing values with 0. We set the row.names parameter
to 1 to use the first column as the row names. We set the check.names parameter to
FALSE to avoid checking the validity of the column names. The output of this function is
a data frame, which is assigned to the countsData variable.

Next, we print the first 3 rows and 6 columns of the sample information and count matrix
to the console. As shown in the console output, the row names of RNASeqSampleInfo
are in the format of GSM*, which are defined by the GEO database. However, the column
names of the count matrix countsData are in the format of XXX-XXX-XXX, which
is an arbitrary format that was generated by the authors of the dataset. This sample ID
can be found in the metadata file that was assigned to RNASeqSampleInfo under the
column title. To keep the sample IDs consistent between the metadata and count matrix,
we need to rename the column names of the count matrix to match the row names of the
metadata.

7. Rename the column names of the count matrix:

# Get the sample titles

sampleTitles <- RNASeqSampleInfo$title

# Rearrange the column of the count matrix

countsData <- countsData[, sampleTitles]

# Rename the column names

colnames(countsData) <- rownames(RNASeqSampleInfo)
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# Preview the count matrix

print(head(countsData, c(5,6)))

# console output

GSM4656348 GSM4656349 GSM4656350 GSM4656351 GSM4656352 GSM4656353

SGIP1 1405 1169 1405 2408 859 1164

NECAP2 460 334 295 347 617 585

AZIN2 306 385 356 507 787 751

AGBL4 200 173 191 323 36 89

CLIC4 1443 639 876 7 92 4806 5968

We first rearrange the columns of the count matrix countsData to match the order of
the sample in the metadata RNASeqSampleInfo. Next, we rename the column names of
the count matrix countsData to match the row names of the metadata RNASeqSam-
pleInfo. As we can see in the console output, the column names of the count matrix
countsData are now in the format of GSM*, which are the same as the row names of
the metadata RNASeqSampleInfo.

8. Create the SummarizedExperiment object:

RNASeqDataset <- SummarizedExperiment::SummarizedExperiment(assays =
as.matrix(countsData), colData = metadata)

# Display the SummarizedExperiment object

print(RNASeqDataset)

# Console output

class: SummarizedExperiment

dim: 27135 30

metadata(0):

assays(1): ”

rownames(27135): SGIP1 NECAP2 … KIR2DS1 KIR2DL5B

rowData names(0):

colnames(30): GSM4656348 GSM4656349 … GSM4656376 GSM4656377

colData names(38): title geo_accession … disease state:ch1 tissue:ch1

In the above code, we create the SummarizedExperiment to store the expression ma-
trix and the sample information in the assays and the colData attributes, respectively.

9. Access the expression data and sample information stored in SummarizedExper-
iment object:

# Access the expression data:

RNASeqExprs <- SummarizedExperiment::assay(RNASeqDataset)

# Display RNASeqExprs

head(RNASeqExprs, c(5, 6))

# Console output:

GSM4656348 GSM4656349 GSM4656350 GSM4656351 GSM4656352 GSM4656353

SGIP1 1405 1169 1405 2408 859 1164

NECAP2 460 334 295 347 617 585

AZIN2 306 385 356 507 787 751

AGBL4 200 173 191 323 36 89

CLIC4 1443 639 876 792 4806 5968

# Access to the sample information data

RNASeqSampleInfo <- SummarizedExperiment::colData(RNASeqDataset)

# Display RNASeqSampleInfo

print(RNASeqSampleInfo[1:5, c("characteristics_ch1", "characteristics_ch1.1", "disease

state:ch1")])

# Console output:
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DataFrame with 5 rows and 3 columns

characteristics_ch1 characteristics_ch1.1 disease state:ch1

GSM4656348 tissue: Lateral temp.. disease state: old old

GSM4656349 tissue: Lateral temp.. disease state: old old

GSM4656350 tissue: Lateral temp.. disease state: Alzhe.. Alzheimer’s disease

GSM4656351 tissue: Lateral temp.. disease state: old old

GSM4656352 tissue: Lateral temp.. disease state: young young

Once the SummarizedExperiment object is created, users can follow the same pro-
cedure as discussed in Basic Protocols 1 and 2 to access the assay and sample data stored
in the created object, as shown in the above snippet.

BASIC
PROTOCOL 3

DIFFERENTIAL ANALYSIS OF MICROARRAY DATA (AFFYMETRIX AND
AGILENT)

Differential expression analysis is a fundamental analysis that aims to identify genes
that are differentially expressed between distinct conditions or phenotypes. The analy-
sis of Affymetrix and Agilent only differs in data processing and normalization. After
the processing step, their downstream analysis procedures are the same. There are many
popular excellent techniques that can be used for differential analysis (Kerr et al., 2000;
Love et al., 2014; Student, 1908). In this article, we choose to describe three basic meth-
ods that have been widely used in the field, namely limma (Ritchie et al., 2015), DESeq2
(Love et al., 2014), and edgeR (Robinson et al., 2010). Note that limma is often applied
for continuous data (microarray expression, or normalized RNA-Seq expression, e.g.,
RPKM, TPM, etc.) whereas DESeq2 and edgeR are often used for read counts (positive
integers).

In this protocol, we introduce the function runDEAnalysis() that applies limma
(Ritchie et al., 2015) for differential expression analysis, specifically designed for mi-
croarray data. The procedure involves several key steps, including the definition and rep-
resentation of experimental design using design and contrast matrices. This is followed
by the conversion of probe IDs into Entrez gene IDs, which will be used for subsequent
analysis. Additionally, we offer two visualization functions, plotMA() and plotVol-
canoDE(), that are designed to enhance the visualization of the differential analysis
results. Visualization is a common practice to examine the results of differential analysis
before users proceed with pathway analysis and data integration.

Here, we provide step-and-step guidelines on differential analysis of the two microarray
datasets (GSE5281 and GSE61196) that have been used thus far. Note that after data
processing, as described in Basic Protocols 1 and 2, we have the SummarizedExper-
iment objects that include expression data and sample metadata.

Necessary Resources

Hardware

An internet-connected computer or laptop with at least 8 GB of RAM and 20 GB
of free hard drive space

Software

R runtime environment (version 4.0.0 or later)
RCPA package from the CRAN repository (see Internet Resources)

Besides the functions in RCPA, we will need to use the functions in the SummarizedEx-
periment to access the data stored in the SummarizedExperiment object. Similarly, some
functions from the ggplot2 package will be used to add the title or modify the figures gen-
erated by the plot functions in RCPA. We can ensure the required packages are installed
by loading them as shown in the following code snippet:
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library(RCPA)

library(SummarizedExperiment)

library(ggplot2)

Files

A SummarizedExperiment object

A SummarizedExperiment object has at least two attributes: (1) assays, storing the ex-
pression data matrix, in which rows are genes/transcripts and columns are samples; and
(2) colData, storing a data frame containing the sample information. Users can refer to
Basic Protocols 1 and 2 for more information about the SummarizedExperiment object.

A gene mapping data frame

A gene mapping data frame has two columns: (2) FROM, containing the genes/transcript
IDs currently used in the assay data; and (2) TO, containing the corresponding Entrez
IDs. Users need to manually prepare this data frame and can save it as .rda, .rds, .txt,
or .csv files, or other formats. Consequently, they will use the appropriate R functions
to load the file. We will guide users on how to prepare this data frame in our practical
example below.

Sample files

Users can use function RCPA::loadData() to load the pre-saved Microarray datasets ob-
tained from Basic Protocols 1 and 2 from our GitHub repository (https://github.com/
tinnlab/RCPA/ tree/main/ .data). The first step in this protocol will guide the user in load-
ing the pre-saved data using the function.

Affymetrix: GSE5281
1. If users skipped Basic Protocol 1, they could use RCPA::loadData() to load the

data:

# Load the Affymetrix data processed in Basic Protocol 1

affyDataset <- RCPA::loadData("affyDataset")

2. Create a design matrix for differential analysis:

To perform differential analysis, users need to provide the experimental design of the
data. The experimental design can be represented in the form of a “design matrix” in
which rows represent samples and columns encompass a range of experimental vari-
ables. Among many variables, we are particularly interested in knowing sample pheno-
type/condition, such as disease and control. Here is the code snippet for generating a
design matrix tailored for the Affymetrix dataset GSE5281.

# Read metadata from the SummarizedExperiment object named affyDataset

affySampleInfo <- SummarizedExperiment::colData(affyDataset)

# Add a column specifying the condition of each sample (normal or Alzheimer’s)

affySampleInfo$condition <- ifelse(grepl("normal",

affySampleInfo$characteristics_ch1.8), "normal", "alzheimer")

# Factorize the new column

affySampleInfo$condition <- factor(affySampleInfo$condition)

# Add a new column to specify the region of the sample tissue,

# use make.names() to remove special characters and

# use tolower() to make all characters lowercase

affySampleInfo$region <- make.names(affySampleInfo$characteristics_ch1.4)

affySampleInfo$region <- tolower(affySampleInfo$region)

# Factorize the newly added column

affySampleInfo$region <- factor(affySampleInfo$region)

# Update the affyDataset object

SummarizedExperiment::colData(affyDataset) <- affySampleInfo

# Create a design matrix
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affyDesign <- model.matrix(∼0 + condition + region + condition:region, data =
affySampleInfo)

# Remove special characters in column names

colnames(affyDesign) <- make.names(colnames(affyDesign))

The samples of the GSE5281 dataset fall into two conditions, “normal” and
“Alzheimer’s,” which are specified in the characteristics_ch1.8 column. Each
sample is also associated with a specific brain region, such as the entorhinal cor-
tex, hippocampus, primary visual cortex, and so on, denoted in the characteris-
tics_ch1.4 column. Consequently, both attributes serve as experimental variables
within the design matrix.

The initial step in the code snippet involves the addition of two new columns that rep-
resent the sample’s condition and the associated brain region to the sample informa-
tion that is stored in the returned SummarizedExperiment object described in
Basic Protocol 1. These new columns are essentially cleaner versions of the original
characteristics_ch1.8 and characteristics_ch1.4 columns. The orig-
inal columns are often manually curated and may contain special characters or dupli-
cated data, which could potentially lead to errors in the analysis. Therefore, it is crucial
to perform data cleaning before proceeding with any further steps. Users can verify the
updated sample information by executing the following command line:

# Check update

affyDataset

# Console output:

class: SummarizedExperiment

dim: 54675 161

metadata(0):

assays(1): ”

rownames(54675): 1007_s_at 1053_at … AFFX-TrpnX-5_at AFFX-TrpnX-M_at

rowData names(0):

colnames(161): GSM119615 GSM119616 … GSM238955 GSM238963

colData names(72): title geo_accession … condition region

The above code shows that the new columns condition and region were added
to the affyDataset object, as indicated in the final row of the console (i.e., un-
der “colData names”). To generate the design matrix, we introduce the function
model.matrix(), sourced from the built-in R package called stats. Utilizing this
function entails providing two essential pieces of information: a formula resembling a
regression model, such as ∼var1 + var2, and the dataset containing the variables
referenced in this formula. Here, in the above snippet, the formula “∼0 + condi-
tion + region + condition:region ” defines the design matrix to include
the main effects of condition and region, as well as the interaction between condition
and region. The term ∼0 indicates that the intercept should not be included in the de-
sign matrix since the intercept is not of interest in the analysis. By following the snippet,
users can observe the example of the design matrix as it appears in the following console
output:

# print the design matrix

print(affyDesign[1:5, 1:3])

# Console output

conditionalzheimer conditionnormal regionorgan.region..hippocampus.

GSM119615 0 1 0

GSM119616 0 1 0

GSM119617 0 1 0

GSM119618 0 1 0

GSM119619 0 1 0
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As evident from the matrix, the design matrix takes the form of a binary matrix. In each
column, a value of 1 denotes that the patient corresponds to the condition represented by
that column.

3. Create a contrast matrix for differential analysis:

In addition to the design matrix, users also need to provide the contrast matrix when per-
forming differential analysis. A “contrast matrix” has rows associated with columns in
the corresponding design matrix and columns associated with contrasts. Contrasts play
a crucial role in determining which conditions are being compared to one another, espe-
cially in situations where there are more than two conditions in the experimental design.
In R programming, we code for contrast matrix using the function makeContrasts()
from the limma package. The usage of this function will be discussed in the example be-
low.

# Create a contrast matrix

affyContrast <- limma::makeContrasts(conditionalzheimer-conditionnormal,

levels = affyDesign)

# print contrast

head(affyContrast)

# Console output

Contrasts

Levels conditionalzheimer - conditionnormal

conditionalzheimer

1

conditionnormal

-1

regionorgan.region..hippocampus.

0

regionorgan.region..medial.temporal.gyrus.

0

regionorgan.region..posterior.cingulate.

0

regionorgan.region..posterior.singulate.

0

The function makeContrasts() requires the following parameters: (1) a mathemat-
ical expression, such as x-y, specifying the contrast between a set of variables; and
(2) levels, which refers to a design matrix with column names corresponding to the
variables mentioned in the first parameter. In our example, we are comparing gene ex-
pression between two patient groups: “normal” and “Alzheimer’s”. In the design matrix
affyDesign, this grouping information is captured by two columns: condition-
normal and conditionalzheimer. Consequently, our first parameter for the func-
tion makeContrasts() is conditionalzheimer-conditionnormal, while
the second parameter is affyDesign.

The contrast matrix is displayed in the console output in the above example. The con-
trast of (−1, 1) signifies subtracting the gene expression of normal samples from that of
Alzheimer’s samples. A value of 0 indicates that we are not considering the other columns
in the design matrix for this contrast. For more information on how to define the design
matrix and contrast matrix for different scenarios and interests, users can refer to the
manual of the limma package (Law et al., 2020).

4. Perform differential analysis using the function runDEAnalysis():

# Run differential expression analysis

affyDEExperiment <- RCPA::runDEAnalysis(affyDataset, method = "limma", design =
affyDesign, contrast = affyContrast, annotation = "GPL570")
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# Display affyDEExperiment

affyDEExperiment

# Console output

class: SummarizedExperiment

dim: 21367 161

metadata(4): DEAnalysis.method DEAnalysis.design DEAnalysis.contrast DEAnalysis.mapping

assays(1): counts

rownames(21367): 55101 92840 … 9695 83887

rowData names(9): PROBEID ID … sampleSize pFDR

colnames(161): GSM119615 GSM119616 … GSM238955 GSM238963

colData names(72): title geo_accession … condition region

The function runDEAnalysis() requires the following parameters: (1) a Summa-
rizedExperiment object storing the assay data and sample metadata; (2) method,
a character parameter specifying the differential analysis method (“limma” in this exam-
ple); (3) design, a design matrix; (4) contrast, a contrast matrix; and (5) anno-
tation, a character parameter used to define the assay platform, or a data frame that
maps probe IDs to Entrez IDs. This data frame should consist of at least two columns:
FROM (representing the probe ID in the original dataset), and TO (representing the cor-
responding Entrez ID). This fifth parameter is crucial for converting probe IDs into En-
trez IDs, which will serve as the consistent gene identifiers for subsequent analyses. In
RCPA, we support gene ID mapping for all platforms that have corresponding annotation
packages on Bioconductor. Users can verify the compatibility of their data platform by
running the function getSupportedPlatforms(). If their platform is listed, users
can conveniently input the platform ID into the annotation parameter. The platform
of the dataset GSE5281 is GPL570, which has an annotation package on Bioconduc-
tor named “hgu133plus2.db”. Therefore, we simply specify the annotation parameter as
“GPL570”.

The function runDEAnalysis() outputs a SummarizedExperiment object, and
this new object extends the input SummarizedExperiment object to include the re-
sults of the differential analysis. In essence, the resulting object not only retains the ex-
pression data matrix and sample information but also incorporates the differential ex-
pression analysis results, which are stored under rowData attribute. As we can see in
the R console, the new attribute rowData is added into the SummarizedExperi-
ment object. Similar to the data stored under other attributes, this data can also be
accessed using the function rowData() from the SummarizedExperiment package, as
shown in the next step.

5. Access to the differential expression analysis result stored in the Summarized-
Experiment object:

# Extract the differential analysis result

affyDEResults <- SummarizedExperiment::rowData(affyDEExperiment)

# Print in R console

head(affyDEResults, c(3,5))

# console output

DataFrame with 3 rows and 5 columns

PROBEID ID p.value statistic logFC

55101 45828_at 55101 1.53869e-23 -11.8894 -0.465108

92840 226597_at 92840 3.56762e-23 -11.7546 -0.661995

727957 227778_at 727957 3.55473e-22 -11.3858 -0.525213

In the above snippet, we use the function rowData() to extract the differential analysis
results in the object named affyDEExperiment. This will yield a data frame present-
ing the differential analysis outcomes, comprising the following columns: (1) PROBEID,
the original probe ID extracted from the input assay; (2) ID, the corresponding Gene En-
trez ID; (3) p.value, the p-value of the statistical test (limma t-statistic in this case);
(4) logFC, the log (base 2) fold change; (5) avgExpr, the average expression; (6)
logFCSE, the standard error of logFC; (7) sampleSize, the number of samples;
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Figure 8 MA plot obtained from the differential analysis of the dataset GSE5281. The x-axis
shows the average expression while and the y-axis shows the log2 fold-change. The colored points
are the differentially expressed (DE) genes with FDR-adjusted p-value (pFDR) <.05 and absolute
log2 fold-change >0.5.

and (8) pFDR, the adjusted p-value for multiple comparisons using Benjamini-Hochberg
(Benjamini & Hochberg, 1995). By following this example, users can observe the results
of the differential expression analysis as it appears in the console output.

6. Visualize the differential analysis results using MA plot:

# Visualize the differential analysis results using MA plot

RCPA::plotMA(affyDEResults, logFCThreshold = 0.5) +
ggplot2::ggtitle("Affymetrix - GSE5281")

Figure 8 shows the MA plot generated from the above code snippet. An MA plot is a
scatter plot that compares the average expression level (x-axis) against the log2 fold-
change (y-axis). A typical MA plot has most of the points centered around the line of zero
logs fold-change. If all points are shifted up or down, it indicates a systematic bias in the
data that needs to be corrected.

The function plotMA() takes as input the following parameters: (1) DEResult, a data
frame with DE analysis results as described in the previous step; (2) pThreshold, a
numerical parameter specifying the p-value threshold so that data points corresponding
to values exceeding this threshold are depicted in distinct colors (0.05 by default); (3)
useFDR, a logical parameter specifying whether the corrected p-value is used instead
of the nominal p-value (TRUE by default); and (4) logFCThreshold, a numerical
parameter specifying the absolute log2 fold-change so that data points corresponding
to values surpassing this threshold are assigned distinct colors (1 by default). In our
example, we specify logFCThreshold as 0.5. The function returns a ggplot object
that can be further customized using the ggplot2 package. We use ggtitle() function
from ggplot2 package to specify the title for the figure.
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Figure 9 Volcano plot obtained from the differential analysis of the dataset GSE5281. The x-axis
shows the log2 fold-change while the y-axis shows the minus log10 of pFDR. The colored points
are the differentially expressed (DE) genes with pFDR <.05 and absolute log2 fold-change >0.5.

7. Visualize the differential analysis results using volcano plot:

# Visualize the differential analysis results using volcano plot

RCPA::plotVolcanoDE(affyDEResults, logFCThreshold = 0.5) +
ggplot2::ggtitle("Affymetrix - GSE5281")

The function plotVolcanoDE() requires as input the following parameters: (1)
DEResult, a data frame containing the differential expression analysis results; (2)
pThreshold, a numerical parameter specifying the p-value threshold to use for the
horizontal line (0.05 by default); (3) useFDR, a logical parameter specifying whether
the corrected p-value is used instead of the nominal p-value (TRUE by default); and (4)
logFCThreshold, a numerical parameter specifying the logFC threshold to use for
the vertical line (1 by default). In our example, we only specify the logFCThreshold
as 0.5 and use ggtitle() to put the title on the graph.

Figure 9 shows the volcano plot generated from the above code snippet. Volcano plot
is a scatter plot that compares log2 fold-change against minus log10 p-value. A typical
volcano plot has points that are relatively symmetrical around the y-axis of zero log fold-
change.

Agilent: GSE61196

The analysis of Agilent datasets is similar to that of Affymetrix datasets. Users can use
the following snippets to perform differential expression analysis for Agilent datasets.

8. If users skipped Basic Protocol 2, they can use RCPA::loadData() to load the
data: Nguyen et al.
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# Load the Agilent data processed in Basic Protocol 2

agilDataset <- RCPA::loadData("agilDataset")

9. Create a design matrix and a contrast matrix:

# Access to the sample information data

agilSampleInfo <- SummarizedExperiment::colData(agilDataset)

# Add a column specifying the condition of the sample,

# which can be either normal or alzheimer

agilSampleConditions <- ifelse(grepl("healthy", agilSampleInfo$source_name_ch1),

"normal", "alzheimer")

# Factorize the newly added column

agilSampleInfo$condition <- factor(agilSampleConditions)

# Update the colData attribute with new column

SummarizedExperiment::colData(agilDataset) <- agilSampleInfo

# Create a design matrix

agilDesign <- model.matrix(∼0 + condition, data = SummarizedExperiment::colData(agilDataset))

# Create a contrast matrix

agilContrast <- limma::makeContrasts("conditionalzheimer-conditionnormal", levels =
agilDesign)

Similar to working with Affymetrix data, we start by processing the sample con-
dition information that will be used for differential analysis. For the GSE61196
dataset, the samples have two conditions (normal and Alzheimer’s) as defined in the
source_name_ch1 column. We define the design matrix to include the conditions,
and similarly, the contrast matrix to compare the Alzheimer’s condition vs the normal
condition. Here, the formula “∼0 + condition ” defines the design matrix to in-
clude the effect of the condition. The term ∼0 indicates that the intercept should not be
included in the design matrix since the intercept is not of interest in the analysis. Next,
we use the function limma::makeContrasts() to define the contrast matrix. The
formula conditionalzheimer-conditionnormal defines the contrast matrix
to compare the two conditions.

10. Retrieve the platform information and its gene annotation from GEO database:

The platform of the dataset GSE61196 is GPL4133, whose annotation is not included
in our package. Therefore, we need to manually create a mapping data frame that will
be used as annotation input of the function runDEAnalysis(). The following are the
steps that users can use to obtain this information:

# Download the information for GPL4133 platform:

GPL4133Pl <- GEOquery::getGEO(GEO = "GPL4133")

# Display GPL4133Pl

str(GPL4133Pl)

# Console output

Formal class ’GPL’ [package "GEOquery"] with 2 slots

..@ dataTable:Formal class ’GEODataTable’ [package "GEOquery"] with 2 slots

.. .. ..@ columns:’data.frame’: 22 obs. of 2 variables:

.. .. .. ..$ Column : chr [1:22] "ID" "COL" "ROW" "NAME" ...

.. .. .. ..$ Description: chr [1:22] "Agilent feature number" "Column" "Row" "NAME" ...

.. .. ..@ table :’data.frame’: 45220 obs. of 22 variables:

.. .. .. ..$ ID : int [1:45220] 1 2 3 4 5 6 7 8 9 10 ...

.. .. .. ..$ COL : int [1:45220] 266 266 266 266 266 266 266 266 266 266 ...

.. .. .. ..$ ROW : int [1:45220] 170 168 166 164 162 160 158 156 154 152 ...

.. .. .. ..$ NAME : chr [1:45220] "GE_BrightCorner" "DarkCorner" "DarkCorner"

"DarkCorner" ...

.. .. .. ..$ SPOT_ID : chr [1:45220] "GE_BrightCorner" "DarkCorner" "DarkCorner"

"DarkCorner"
Nguyen et al.
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.. .. .. .. .. .. .. ..

..@ header :List of 27

.. ..$ catalog_number : chr "G4112F"

.. ..$ contact_city : chr "Palo Alto"

.. ..$ contact_country : chr "USA"

.. ..$ contact_email : chr "cag_sales-na@agilent.com"

.. ..$ contact_institute : chr "Agilent Technologies"

.. ..[output truncated] .. ..

In the above code, we use getGEO() from the GEO query package to obtain the plat-
form from GEO. When using this function, users need to provide the platform ID to the
GEO parameter. In this example, we set GEO as “GPL4133”. The function returns an ob-
ject of “GPL” class, and we assign the result to GPL4133Pl variable. Next, users can
use the built-in function str() to examine the data structure of this object, as shown in
the example code. From the console output, we can see that the GPL4133Pl variable
has 2 slots. The first slot is dataTable that is used to store the gene annotation data,
and the second one is header, which is a list containing platform metadata.

# Access to the dataTable slot in GPL4133Pl:

GPL4133Anno <- GEOquery::dataTable(GPL4133Pl)

# Display GPLL4133Anno:

str(GPL4133Anno)

# Console output

Formal class ’GEODataTable’ [package "GEOquery"] with 2 slots

..@ columns:’data.frame’: 22 obs. of 2 variables:

.. ..$ Column : chr [1:22] "ID" "COL" "ROW" "NAME" ...

.. ..$ Description : chr [1:22] "Agilent feature number" "Column" "Row" "NAME" ...

..@ table :’data.frame’: 45220 obs. of 22 variables:

.. ..$ ID : int [1:45220] 1 2 3 4 5 6 7 8 9 10 ...

.. ..$ COL : int [1:45220] 266 266 266 266 266 266 266 266 266 266 ...

.. ..$ ROW : int [1:45220] 170 168 166 164 162 160 158 156 154 152 ...

.. ..$ NAME : chr [1:45220] "GE_BrightCorner" "DarkCorner" "DarkCorner"

"DarkCorner" ...

.. ..$ SPOT_ID : chr [1:45220] "GE_BrightCorner" "DarkCorner" "DarkCorner"

"DarkCorner" ...

.. ..$ CONTROL_TYPE : chr [1:45220] "pos" "pos" "pos" "pos" ...

.. ..$ REFSEQ : chr [1:45220] "" "" "" "" ...

.. ..$ GB_ACC : chr [1:45220] "" "" "" "" ...

.. ..$ GENE : int [1:45220] NA NA NA NA NA NA NA NA NA NA ...

.. ..$ GENE_SYMBOL : chr [1:45220] "" "" "" "" ...

.. ..$ GENE_NAME : chr [1:45220] "" "" "" "" ...

.. ..$ UNIGENE_ID : chr [1:45220] "" "" "" "" ...

.. ..$ ENSEMBL_ID : chr [1:45220] "" "" "" "" ...

.. ..$ TIGR_ID : chr [1:45220] "" "" "" "" ...

.. ..$ ACCESSION_STRING : chr [1:45220] "" "" "" "" ...

.. ..$ CHROMOSOMAL_LOCATION : chr [1:45220] "" "" "" "" ...

.. ..$ CYTOBAND : chr [1:45220] "" "" "" "" ...

.. ..$ DESCRIPTION : chr [1:45220] "" "" "" "" ...

.. ..$ GO_ID : chr [1:45220] "" "" "" "" ...

.. ..$ SEQUENCE : chr [1:45220] "" "" "" "" ...

.. ..$ SPOT_ID : logi [1:45220] NA NA NA NA NA NA ...

.. ..$ ORDER : int [1:45220] 1 2 3 4 5 6 7 8 9 10 ...

Because the dataTable slot is an object of GEODataTable class from the GEO-
query package. Therefore, users can use the function GEOquery::dataTable() to
access this slot as shown in the above code. We assign the object returned by this function
to GPL4133Anno variable. Users can also use the command str(GPL4133Anno)
to further examine the returned object. As in the console output, the GPL4133Anno
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variable stores two data frames. One of the data frames is stored in the table attribute,
in which the columns are spot IDs and their matched gene annotation. The other data
frame is stored in columns, which contain the full descriptions of columns in the for-
mer data frame.

# Access to annotation data

GPL4133AnnoTbl <- GEOquery::Table(GPL4133Anno)

# display annotation

print(GPL4133AnnoTbl[9:14, c("SPOT_ID", "GENE", "GENE_SYMBOL")])

# Console output

SPOT_ID GENE GENE_SYMBOL

DarkCorner NA

DarkCorner NA

DarkCorner NA

A_24_P66027 9582 APOBEC3B

A_32_P77178 NA

A_23_P212522 23200 ATP11B

In a similar manner, one can use the function GEOquery::Table() applying on the
GPL4133Anno object to access the gene annotation data frame. This data frame is as-
signed to GPL4133AnnoTbl variable as in the code snippet. Users can use the function
print() to print out selected rows and columns.

11. Create a mapping data frame that will be used for differential analysis:

# Create the mapping data frame

GPL4133GeneMapping <- data.frame(FROM = GPL4133AnnoTbl$SPOT_ID, TO =
as.character(GPL4133AnnoTbl$GENE), stringsAsFactors = F)

#Display GPL4133GeneMapping:

print(GPL4133GeneMapping[15:20,])

# Console output:

FROM TO

A_24_P934473 100132006

A_24_P9671 3301

A_32_P29551 <NA>

A_24_P801451 10919

A_32_P30710 9349

A_32_P89523 <NA>

The table GPL4133AnnoTbl contains the gene Entrez ID corresponding to the
probe IDs under the GENE column. Using the two columns SPOT_ID and GENE
from GPL4133AnnoTbl, we can create a mapping data frame, which contains two
columns showing the probe IDs and their matched Entrez IDs, as required for the
function runDEAnalysis(). This data frame is assigned to the variable named
GPL4133GeneMapping.

12. Perform differential analysis using the function runDEAnalysis():

# Run differential expression analysis

agilDEExperiment <- RCPA::runDEAnalysis(agilDataset, method = “limma”, design =
agilDesign, contrast = agilContrast, annotation = GPL4133GeneMapping)

# Extract the outcome of differential expression analysis

agilDEResults <- SummarizedExperiment::rowData(agilDEExperiment)

# Print in R console

head(agilDEResults, c(3,5))

# Console output

DataFrame with 3 rows and 5 columns
Nguyen et al.

30 of 75

Current Protocols

 26911299, 2024, 5, D
ow

nloaded from
 https://currentprotocols.onlinelibrary.w

iley.com
/doi/10.1002/cpz1.1036 by A

uburn U
niversity L

ibraries, W
iley O

nline L
ibrary on [07/05/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Figure 10 MA plot obtained from the differential analysis of the dataset GSE61196. The x-axis
shows the average expression, and the y-axis shows the log2 fold-change. The colored points are
the differentially expressed (DE) genes with pFDR <.05 and absolute log2 fold-change >0.5.

PROBEID ID p.value statistic logFC

150166 A_32_P103815 150166 1.53359e-08 8.42703 0.817593

50717 A_24_P76725 50717 5.69899e-08 -7.81746 -0.858175

79818 A_23_P38830 79818 7.09742e-08 -7.71774 -0.871066

In this example, we still use limma for differential analysis, and pass the mapping data
frame we just created in the parameter named annotation. We also use the function
rowData() to access the analysis results. By following the above snippet, users expect
to see the example of differential analysis result as appears in the console output.

13. Visualize the results using MA and volcano plots:

# MA plot

RCPA::plotMA(agilDEResults, logFCThreshold = 0.5) +
ggplot2::ggtitle("Agilent - GSE61196")

# Volcano plot

RCPA::plotVolcanoDE(agilDEResults, logFCThreshold = 0.5) +
ggplot2::ggtitle("Agilent - GSE61196")

Figures 10 and 11 show the MA plot and volcano plot generated from the above code snip-
pet. We use the same code to generate the MA plot and volcano plot as in the Affymetrix
example.
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Figure 11 Volcano plot obtained from the differential analysis of the dataset GSE61196. The x-
axis shows the log fold-change while the y-axis shows the minus log10 of pFDR. The colored points
are the differentially expressed (DE) genes with pFDR <.05 and absolute log2 fold-change >0.5.

BASIC
PROTOCOL 4

DIFFERENTIAL ANALYSIS OF RNA-Seq DATA

Users can utilize the same function runDEAnalysis() to perform differential anal-
ysis for RNA-Seq data. Users are required to provide the SummarizedExperiment
object containing the expression data and sample information, design matrix, contrast
matrix, gene IDs mapping, and the differential analysis method. For RNA-Seq data, users
can choose from three different methods implemented in RCPA package: “limma”, “DE-
Seq2”, or “EdgeR”. The choice of the differential analysis method depends on how users
pre-process and normalize their data. If users want to work with raw count data, then
“DESeq2” or “EdgeR” can be employed as the analysis method. In contrast, if users
want to work with normalized expression data, such as TPM, FPKM, or RPKM, then
they should choose “limma” as the differential analysis method.

In this protocol, we perform differential analysis for the RNA-Seq dataset GSE153873
processed in Support Protocol. We assume that users have already executed the provided
code to obtain the SummarizedExperiment object, that contains the raw count data
and sample metadata. Here we illustrate the application of runDEAnalysis() for
conducting differential expression analysis using RNA-Seq data.

Necessary Resources

Hardware

An internet-connected computer or laptop with at least 8 GB of RAM and 20 GB
of free hard drive spaceNguyen et al.
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Software

R runtime environment (version 4.0.0 or later)
RCPA package from the CRAN repository (see Internet Resources)

Beside the functions in RCPA, we will need to use the functions in the SummarizedEx-
periment to access the data stored in the SummarizedExperiment object. Similarly, some
functions from the ggplot2 package will be used to add the title or modify the figures gen-
erated by the plot functions in RCPA. We can ensure the required packages are installed
by loading them as shown in the following code snippet:

library(RCPA)

library(SummarizedExperiment)

library(ggplot2)

Files

A SummarizedExperiment object

A SummarizedExperiment object that has at least two attributes: (1) assays, storing the
expression data matrix, in which rows are genes/transcripts and columns are samples;
and (2) colData, storing a data frame containing the sample information. Users can refer
to Support Protocol for more information about the object SummarizedExperiment.

A gene mapping data frame

A gene mapping data frame has two columns: (1) FROM, containing the genes/transcript
IDs currently used in the assay data, and (2) TO, containing the corresponding Entrez ID.
Users need to manually prepare this data frame and can save it as .rda, .rds, .txt, or .csv
files, or other formats. Consequently, they will use the appropriate R functions to load
the file. We will guide users on how to prepare this data frame in our practical example
below.

Sample files

Users can use function RCPA::loadData() to load the pre-saved RNA-Seq dataset in Sup-
port Protocol from our GitHub repository (https://github.com/ tinnlab/RCPA/ tree/main/
.data). The first step in this protocol will guide the user in loading the pre-saved data
using the function.

1. If users skipped Support Protocol, they can use RCPA::loadData() to load the
data:

# Load the RNA-Seq dataset

RNASeqDataset <- RCPA::loadData("RNASeqDataset")

2. Create the design and contrast matrices:

# Access to the sample information data

RNASeqSampleInfo <- SummarizedExperiment::colData(RNASeqDataset)

# Add a column specifying the condition of the sample,

# which can be either normal or alzheimer

RNASeqSampleConditions <- ifelse(grepl("Alzheimer",

RNASeqSampleInfo$characteristics_ch1.1), "alzheimer", "normal")

# Factorize the newly added column

RNASeqSampleInfo$condition <- factor(RNASeqSampleConditions)

# Update the colData attribute with new column

SummarizedExperiment::colData(RNASeqDataset) <- RNASeqSampleInfo

# Create a design matrix

RNASeqDesign <- model.matrix(∼0 + condition, data =
SummarizedExperiment::colData(RNASeqDataset))

# Create a contrast matrix

Nguyen et al.
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RNASeqContrast <- limma::makeContrasts("conditionalzheimer-conditionnormal", levels =
RNASeqDesign)

We start our differential analysis by defining the two experimental matrices: design and
contrast matrices. For GSE153873, the characteristics_ch1.1 column defines
the two conditions of the samples: normal and Alzheimer’s. We also define the design
matrix to include the conditions and the contrast matrix to compare the Alzheimer’s
condition vs the normal condition. Same as in the example of the Agilent dataset,
the formula “∼0 + condition ” defines the design matrix to include the effect
of condition. The term ∼0 indicates that the intercept should not be included in
the design matrix since the intercept is not of interest in the analysis. Next, we use
the limma::makeContrasts function to define the contrast matrix. The formula
conditionalzheimer-conditionnormal defines the contrast matrix to compare
the two conditions.

3. Define the mapping between the ID of the assay in SummarizedExperiment and
Entrez ID:

The assay platform of GSE153873 is GPL18573 (Illumina NextSeq 500), whose anno-
tation is not included in our package. Additionally, RNA-Seq datasets available on the
GEO database are typically presented as raw counts without any prior preprocessing. This
means that annotation information is not provided. Therefore, we cannot employ the get-
GEO() function to download platform annotations. Instead, we introduce the utilization of
the select() function from the AnnotationDbi package to query various genome-wide
annotation databases and to convert gene IDs to the desired IDs.

# Install the genome-wide annotation database for human

if (!require("BiocManager", quietly = TRUE))

install.packages("BiocManager")

BiocManager::install("org.Hs.eg.db")

# Load the annotation database

library(org.Hs.eg.db)

# Get the current gene IDs used in RNA-Seq dataset

RNASeqGeneIDs <- rownames(RNASeqDataset)

# Create a mapping dataframe

GeneSymbolMapping <- AnnotationDbi::select(x = org.Hs.eg.db, keys = RNASeqGeneIDs,

keytype = "SYMBOL",

columns = c("SYMBOL", "ENTREZID"))

colnames(GeneSymbolMapping) <- c("FROM", "TO")

# Print the first 6 rows into R console

head(GeneSymbolMapping)

# Console output

FROM TO

1 SGIP1 84251

2 NECAP2 55707

3 AZIN2 113451

4 AGBL4 84871

5 CLIC4 25932

6 SLC45A1 50651

For human genome-wide annotation, we need to load the package org.Hs.eg.db package.
Users can install this package from Bioconductor following the provided instructions in
our code snippet. After installation, it is necessary to load this database and input it as a
parameter for the select() function, which requires the following parameters: ×, an
AnnotationDb object such as org.Hs.eg.db; keys, a vector containing the current IDs;
keytype, a character parameter indicating the type of current gene IDs (Ensembl ID,
gene symbol, etc.); and columns, a vector specifying which types of data (i.e., ID types)
can be returned as output.
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In our case, the gene IDs are used as row labels in the expression data matrix. This infor-
mation is stored under the rownames attribute within the SummarizedExperiment
object. Users can access this attribute using the R built-in function rownames(). In the
above snippet, we assign the output of this function to the variable RNASeqGeneIDs and
pass it as the keys parameter for the function select().

Furthermore, based on the R console output shown in Support Protocol, gene symbols
are used in this dataset. Therefore, we specify the parameter keytype as "SYMBOL".
As for the requirement of the annotation parameter when using the runDEAnalysis()
function, we only need the output to have two columns: one for the current gene IDs (FROM)
and the other for Entrez gene IDs (TO). Thus, we specify the columns parameter as
c("SYMBOL", "ENTREZID").

The output of the select() function is a data frame that contains two columns as spec-
ified in the columns parameter. In this snippet, we assign the output to the variable
GeneSymbolMapping. Additionally, we modify the column labels of this data frame
to match the FROM and TO labels, as required for input to the runDEAnalysis() func-
tion. By following this code, users expect to see the example of the mapping data frame as
shown in the console output.

4. Perform differential analysis using the function runDEAnalysis():

# Perform differential analysis

RNASeqDEExperiment <- RCPA::runDEAnalysis(RNASeqDataset, method = "DESeq2", design =
RNASeqDesign, contrast = RNASeqContrast, annotation = GeneSymbolMapping)

# Extract the differential analysis results

RNASeqDEResults <- SummarizedExperiment::rowData(RNASeqDEExperiment)

Figure 12 MA plot obtained from the differential analysis of the dataset GSE153873. The x-axis
shows the average expression, and the y-axis shows the log2 fold-change. The colored points are
the differentially expressed (DE) genes with pFDR <.05 and absolute log fold-change >0.5.
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Figure 13 Volcano plot obtained from the differential analysis of the dataset GSE153873. The
x-axis shows the log fold-change while the y-axis shows the negative log10 of pFDR. The colored
points are the differentially expressed (DE) genes with pFDR <.05 and absolute log fold-change
>0.5.

# Print out the obtained DE analysis results

head(RNASeqDEResults, c(3,5))

# Console output

DataFrame with 3 rows and 5 columns

PROBEID ID p.value statistic logFC

29881 NPC1L1 29881 5.34761e-12 6.89603 3.683626

58485 TRAPPC1 58485 3.22943e-11 -6.63571 -0.623056

643749 TRAF3IP2-AS1 643749 4.10562e-11 6.60022 0.603634

Users can simply pass the experimental design and mapping information into the run-
DEAnalysis() function along with the RNASeqDataset object. For this example, we
use DESeq2 for differential analysis, but users can also apply edgeR for this dataset by
setting the method parameter to “edgeR”.

5. Visualize the differential analysis results using MA and volcano plots:

# MA plot

RCPA::plotMA(RNASeqDEResults, logFCThreshold = 0.5) +
ggplot2::ggtitle("RNASeq - GSE153873")

# Volcano plot

RCPA::plotVolcanoDE(RNASeqDEResults, logFCThreshold = 0.5) +
ggplot2::ggtitle("RNASeq - GSE153873")

Users can generate the MA and volcano plots to visualize the differential analysis results
by running the above snippet. Figures 12 and 13 show the two plots generated by the above
code.
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BASIC
PROTOCOL 5

GENE SET ENRICHMENT ANALYSIS

Pathway analysis is a systems-level approach that translates differential expression ev-
idence into meaningful biological insights. Within our RCPA package, we implement
eight methods for pathway analysis, which can be classified into two groups: gene set
enrichment analysis and topology-based (TB) analysis methods. Gene set enrichment
analysis generally does not take pathway topology and gene interactions into account
whereas topology-based (TB) pathway analysis methods consider pathway topology and
gene interactions when performing pathway analysis (Nguyen et al., 2018).

This protocol provides step-by-step instructions for performing gene set enrichment
analysis using the implemented function RCPA::runGeneSetAnalysis(). The
methods implemented for enrichment analysis include the Kolmogorov-Smirnov (KS)
test (Massey Jr, 1951), the Wilcoxon test (Wilcoxon, 1992), over-representation analy-
sis (ORA) (Huang et al., 2009; Khatri et al., 2002), fast gene set enrichment analysis
(FGSEA) (Korotkevich et al., 2021; Sergushichev, 2016), and gene set analysis (GSA)
(Efron & Tibshirani, 2007).

Necessary Resources

Hardware

An internet-connected computer or laptop with at least 8 GB of RAM and 20 GB
of free hard drive space

Software

R runtime environment (version 4.0.0 or later)
RCPA package from the CRAN repository (see Internet Resources)

Besides the functions in RCPA, we will need to use the functions in the SummarizedEx-
periment package to access the data stored in the SummarizedExperiment object. Simi-
larly, some functions from the ggplot2 package will be used to add the title or modify the
figures generated by the plot functions in RCPA. We can ensure the required packages are
installed by loading them as shown in the following code snippet:

library(RCPA)

library(SummarizedExperiment)

library(ggplot2)

Files

SummarizedExperiment object obtained from differential analysis outlined
in Basic Protocols 3 and 4

Sample files

Users can use the function RCPA::loadData() to load the pre-saved differential analy-
sis results of the three datasets from our GitHub repository https://github.com/ tinnlab/
RCPA/ tree/main/ .data. The first step in this protocol will guide the user in loading the
pre-saved data using the function.

1. If users skipped Basic Protocols 3 and 4, they could use the function
RCPA::loadData() to load the results:

# loading differential results for Affymetrix data

affyDEExperiment <- RCPA::loadData("affyDEExperiment")

# loading the results for Agilent data

agilDEExperiment <- RCPA::loadData("agilDEExperiment")

# loading the results for RNA-Seq data

RNASeqDEExperiment <- RCPA::loadData("RNASeqDEExperiment")

Nguyen et al.

37 of 75

Current Protocols

 26911299, 2024, 5, D
ow

nloaded from
 https://currentprotocols.onlinelibrary.w

iley.com
/doi/10.1002/cpz1.1036 by A

uburn U
niversity L

ibraries, W
iley O

nline L
ibrary on [07/05/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://github.com/tinnlab/RCPA/tree/main/.data
https://github.com/tinnlab/RCPA/tree/main/.data


If users have not executed all the steps in the previous protocols, they can use the snippet to
load the differential analysis results, which is required to run the functions in this protocol.
In the following example, we will perform enrichment analysis using the differential analy-
sis results of the RNA-Seq dataset GSE153873, but users can use the same code to perform
enrichment analysis using the differential analysis results of Affymetrix and Agilent data.

2. Download gene sets from KEGG or GO:

# Download gene sets from KEGG for human

KEGGGenesets <- RCPA::getGeneSets(database = "KEGG", org = "hsa")

# Display gene sets in R console

str(KEGGGenesets)

# Console output

List of 3

$ database: chr "KEGG"

$ genesets:List of 355

..$ path:hsa00010: chr [1:67] "10327" "124" "125" "126" ...

..$ path:hsa00020: chr [1:30] "1431" "1737" "1738" "1743" ...

..$ path:hsa00030: chr [1:31] "132158" "2203" "221823" "226" ...

..$ path:hsa00040: chr [1:36] "10327" "10720" "10941" "231" ...

.. [list output truncated] ...

$ names : Named chr [1:340] "Glycolysis / Gluconeogenesis" "Citrate cycle (TCA cycle)"

"Pentose phosphate pathway" "Pentose and glucuronate interconversions" ...

..- attr(*, "names")= chr [1:340] "path:hsa00010" "path:hsa00020" "path:hsa00030"

"path:hsa00040" ...

# Download the gene sets from GO database

GOTerms <- RCPA::getGeneSets(database = "GO", taxid = 9606, namespace =
"biological_process")

# Display GOTerms in R console

str(GOTerms)

# Console output

List of 3

$ database: chr "GO"

$ genesets:List of 12386

..$ GO:0000002: chr [1:11] "291" "1890" "4205" "4358" ...

..$ GO:0000038: chr [1:19] "30" "51" "215" "225" ...

..$ GO:0000079: chr [1:49] "60" "595" "641" "890" ...

..$ GO:0000082: chr [1:66] "91" "586" "595" "596" ...

.. [list output truncated]

$ names : Named chr [1:12386] "mitochondrial genome maintenance" "very long-chain fatty acid

metabolic process" "regulation of cyclin-dependent protein serine/threonine kinase activity"

"G1/S transition of mitotic cell cycle" ...

..- attr(*, "names")= chr [1:12386] "GO:0000002" "GO:0000038" "GO:0000079" "GO:0000082" ...

A gene set refers to a collection of genes associated with a specific pathway or functional
module. This information can be sourced from public databases like GO and KEGG. Within
the RCPA package, we have implemented the function getGeneSets() to retrieve gene
sets for specific organisms from these databases.

To download KEGG gene sets, users need to provide the following parameters to the get-
GeneSets() function: (1) database, a character parameter specifying the name of
pathway database, which is “KEGG”; and (2) org, a character parameter specifying the
organism abbreviation, such as “hsa” for human or “mmu” for mouse. The full list of or-
ganism abbreviations can be found at https://www.genome.jp/kegg/catalog/org_list.html.

To download gene sets from GO (which are called GO terms), users need to provide the fol-
lowing parameters: (1) database, a character parameter specifying the name of path-
way database, which is “GO”; (2) taxid, a character parameter indicating the NCBINguyen et al.
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taxonomy ID of the organism; and (3) namespace, the namespace of the GO terms,
which includes the following options: “biological_process”, “molecular_function”, or
“cellular_component”.

The function getGeneSets() returns a named list with three attributes: (1)
database, a character parameter specifying the database; (2) genesets, a list of gene
sets, in which each gene set is a vector genes (Entrez IDs) belonging to the gene set; and
(3) names, a vector containing the complete names or descriptions of the gene sets. The
output of the function getGeneSets() can be used as part of the input in any of the
methods described in steps 3 to 5 below.

3. Perform enrichment analysis using the Kolmogorov-Smirnov (KS) or Wilcoxon test:

# Set seed to create reproducible results

set.seed(1)

# Enrichment analysis using KS test and KEGG pathways

RNASeqKSResult <- RCPA::runGeneSetAnalysis(summarizedExperiment = RNASeqDEExperiment,

genesets = KEGGGenesets, method = "ks")

# Display the result for KS test

print(RNASeqKSResult[1:5, c("ID", "p.value", "pFDR", "score", "name")])

# Console output

ID p.value pFDR score name

path:hsa00190 0 0 1.58 Oxidative

phosphorylation

path:hsa05010 0 0 1.05 Alzheimer disease

path:hsa05012 0 0 1.28 Parkinson disease

path:hsa05014 0 0 1.14 Amyotrophic lateral

sclerosis

path:hsa05016 0 0 1.24 Huntington disease

# Enrichment analysis using Wilcoxon test and KEGG pathways

RNASeqWilcoxResult <- RCPA::runGeneSetAnalysis(summarizedExperiment =
RNASeqDEExperiment, genesets = KEGGGenesets, method = "wilcox")

# Display the result for Wilcoxon test

print(RNASeqWilcoxResult[1:5, c("ID", "p.value", "pFDR", "score", "name")])

# Console output

ID p.value pFDR score name

path:hsa05016 6.81e-38 1.86e-35 1.242 Huntington disease

path:hsa05014 1.05e-37 1.86e-35 1.138 Amyotrophic lateral sclerosis

path:hsa05012 5.72e-34 6.77e-32 1.281 Parkinson disease

path:hsa05022 1.73e-32 1.53e-30 0.967 Pathways of neurodegeneration - multiple

diseases

path:hsa00190 2.08e-28 1.48e-26 1.584 Oxidative phosphorylation

To perform gene set enrichment analysis, users need to invoke the function runGene-
SetAnalysis() that implements five different methods: the KS test, the Wilcox test,
ORA, FGSEA, and GSA. The parameters for running KS and Wilcox tests in the function
runGeneSetAnalysis() are as follows: (1) summarizedExperiment, a Sum-
marizedExperiment object generated from the results of the differential expression
analysis, as described in both Basic Protocols 3 and 4; (2) genesets, a list of gene
set definitions, which can be obtained through the getGeneSets() function; and (3)
method, a character parameter specifying the chosen pathway analysis method, which
can be either “ks” or “wilcox”. In this example, we perform enrichment analysis using
KEGG pathways. If users wish to perform enrichment analysis on GO terms, they can set
the parameter genesets to GOTerms instead.

After the analysis, the output of the function getGeneSets() is a table containing the
results of the enrichment analysis. The table comprises of the following columns: (1) ID,
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the ID of the gene set; (2) p.value, the p-value of the gene set; (3) pFDR, the adjusted
p-value of the gene set using the Benjamini-Hochberg method; (4) score, the enrich-
ment score of the gene set; (5) normalizedScore, the normalized enrichment score of
the gene set; (6) sampleSize, the total number of samples in the study; (7) name, the
name of the gene set, and (8) pathwaySize, the size of the gene set. Users can exam-
ine the table by printing out the content using the print() function in the R console, as
illustrated above.

The pathway enrichment score is one of the important statistics returned as one of the
columns in the pathway enrichment analysis results. Each method employs a different
statistic to represent this score. Understanding how this score is calculated and interpreted
is important so that users can choose the most appropriate method for a specific analysis
purpose. For Wilcoxon and KS tests, the enrichment score, and the normalized enrich-
ment score (both scores have the same value), represent the log ratio of the number of the
observed DE genes in the pathway to the expected DE genes in the pathway. A positive
enrichment score indicates that the pathway has more DE genes than expected and vice
versa.

4. Perform enrichment analysis using over-representation analysis (ORA):

# Specify the threshold to identify DE genes, which are required for ORA

oraArgsList <- list(pThreshold = 0.05)

# Set seed to create reproducible results

set.seed(1)

# Enrichment analysis using ORA and KEGG pathways

RNASeqORAResult <- RCPA::runGeneSetAnalysis(summarizedExperiment = RNASeqDEExperiment,

genesets = KEGGGenesets, method = "ora", ORAArgs = oraArgsList)

# Display the result for ORA

print(RNASeqORAResult[1:5, c("ID", "p.value", "pFDR", "score", "name")])

# Console output

ID p.value pFDR score name

path:hsa00190 0 0 1.58 Oxidative phosphorylation

path:hsa05010 0 0 1.05 Alzheimer disease

path:hsa05012 0 0 1.28 Parkinson disease

path:hsa05014 0 0 1.14 Amyotrophic lateral

sclerosis

path:hsa05016 0 0 1.24 Huntington disease

To perform gene set enrichment analysis using ORA, the function runGeneSetAnal-
ysis() requires the following parameters: (1) summarizedExperiment, a Sum-
marizedExperiment object generated from the results of the differential expression
analysis; (2) genesets, a list of gene sets; (3) method, a character indicating the en-
richment analysis method, which is “ora”; and (4) ORAArgs, a list of arguments specific
to the ORA method. For the last parameter, the only critical argument to set is the p-value
cutoff, which determines which genes are considered differentially expressed. To configure
this, users can create a list that includes pThreshold = 0.05, as demonstrated in
the snippet above. If necessary, users can modify this threshold according to their specific
analysis requirements. The same summarizedExperiment and genesets parame-
ters set in the previous steps should still be used.

Once the runGeneSetAnalysis() function has completed its execution, users can
anticipate viewing an example of the output in the R console, similar to the previous step.
The pathway enrichment score returned by ORA has the same meaning as the ones returned
by the KS test and Wilcox test.

5. Perform enrichment analysis using fast gene set enrichment analysis (FGSEA):

# Specify a list of arguments tailored for FGSEA:

FGSEAArgsList <- list(minSize = 10)
Nguyen et al.
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# Set seed to create reproducible results

set.seed(1)

# Enrichment analysis using FSGEA and KEGG pathway

RNASeqFGSEAResult <- RCPA::runGeneSetAnalysis(summarizedExperiment = RNASeqDEExperiment,

genesets = KEGGGenesets, method = "fgsea", FgseaArgs = FGSEAArgsList)

# Display the result for FGSEA

print(RNASeqFGSEAResult[c(1:5), c("ID", "p.value", "pFDR", "score", "name")])

# Console output

ID p.value pFDR score name

path:hsa05014 1.69e-35 5.73e-33 -0.584 Amyotrophic lateral

sclerosis

path:hsa05016 9.76e-33 1.65e-30 -0.597 Huntington disease

path:hsa05012 2.84e-29 3.21e-27 -0.607 Parkinson disease

path:hsa05020 9.29e-29 7.87e-27 -0.598 Prion disease

path:hsa00190 8.11e-28 5.50e-26 -0.743 Oxidative phosphorylation

To gene set perform enrichment using FSGEA, the function runGeneSetAnalysis() requires
the following parameters: (1) summarizedExperiment, a SummarizedExperi-
ment object generated from the results of the differential expression analysis; (2) gene-
sets, a list of gene sets; (3) method, a character parameter specifying the pathway
analysis method, which is “fgsea”; and (4) FgseaArgs, a list of arguments customized
for FGSEA.

Users have the flexibility to define various arguments for the last parameter FgseaArgs,
including: (1) nPermSimple, the number of permutations for estimation of p-value
(1000 by default); (2) minSize, the minimum gene set sizes to be tested, with all path-
ways below this threshold excluded (1 by default); (3) maxSize, the maximum gene set
sizes to be tested, with all pathways above the threshold excluded (Infinity by default);
and (4) scoreType, the GSEA score type, which is “std” by default, where the enrich-
ment score is computed as in the original GSEA method (Subramanian et al., 2005) “pos”
for a positive one-tailed enrichment test, or “neg” for a negative one-tailed enrichment
test. The complete list of arguments for this algorithm can be found in the manual of the
FGSEA package. Users can provide the complete list of arguments using list(). Here
we choose to run FGSEA with minSize = 10 to exclude gene sets with fewer than 10
genes. By following this code snippet, users can anticipate viewing the output in the R
console, similar to the one provided above. If no customization is applied, the runGene-
SetAnalysis() function will run the method with its default settings.

For FGSEA, the enrichment score (ES) represents the overall rank of genes in the pathway
in the ranked list of genes based on the statistics from the differential analysis. A positive
enrichment score indicates that the genes in the pathway are ranked higher than expected
and vice versa. Note that this score cannot be used to compare pathways since the size
of the pathways affects the distribution of the enrichment scores. Instead, to compare the
enrichment scores between pathways, FGSEA provides a normalized enrichment score
(NES) by dividing the ES by the absolute means of the distribution of the enrichment scores
that have the same sign as ES from random permutations.

6. Perform enrichment analysis using gene set analysis (GSA):

# Specify the list of arguments customized for GSA

GSAArgsList <- list(method = "maxmean", minsize = 15, maxsize = 500, nperms = 1000)

# Set seed to create reproducible results

set.seed(1)

# Enrichment analysis using GSA and KEGG pathways

RNASeqGSAResult <- RCPA::runGeneSetAnalysis(summarizedExperiment = RNASeqDEExperiment,

genesets = KEGGGenesets, method = "gsa", GSAArgs = GSAArgsList)

# Display the result for GSA

print(RNASeqGSAResult[c(1:5), c("ID", "p.value", "pFDR", "score", "name")])
Nguyen et al.
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# Console output

ID p.value pFDR score name

path:hsa00020 0.000 0.000 1.417 Citrate cycle (TCA cycle)

path:hsa01230 0.000 0.000 0.484 Biosynthesis of amino acids

path:hsa05014 0.000 0.000 0.668 Amyotrophic lateral sclerosis

path:hsa05016 0.000 0.000 0.704 Huntington disease

path:hsa01200 0.002 0.111 0.747 Carbon metabolism

The function runGeneSetAnalysis() takes the following parameters to execute
GSA: (1) summarizedExperiment, a SummarizedExperiment object obtained
from differential analysis; (2) genesets, a list of gene sets; (3) method, a character
parameter specifying the pathway analysis method, which is “gsa” in this case; and (4)
GSAArgs, a list of arguments customized for GSA, for which users can specify the follow-
ing: (1) method, the statistic used to summarize a gene set among “maxmean”, “mean”,
or “absmean” (“maxmean” by default); (2) minSize, the minimum threshold for the
gene set sizes (10 by default); (3) maxSize, the maximum threshold for the gene set sizes
(Infinity by default); and (4) nperms, the number of permutations. We recommend users
consult the manual of the GSA package for a complete list of arguments.

The interpretation of GSA score depends on the values of the method argument in the
GSAArgs parameter passed to runGeneSetAnalysis(). If it is “maxmean”, the
enrichment score indicates the average of the positive or negative t-statistics of the genes
in the pathway, whichever has a larger absolute value. When this argument is “mean” or
“absmean”, the enrichment score indicates the average t-statistic or the absolute average
t-statistic of the genes in the pathway, respectively. In the case of “maxmean” or “mean”,
a positive enrichment score indicates that the genes in the pathway are more likely to be
upregulated and vice versa. In the case of “absmean”, a higher enrichment score indicates
that the genes in the pathway are more likely to be differentially expressed. For GSA, the
normalized enrichment score has the same value as the enrichment score.

7. Visualize enrichment analysis results using volcano plot:

RCPA::plotVolcanoPathway(PAResult = RNASeqFGSEAResult, topToLabel = 10) +
ggplot2::ggtitle("RNASeq - GSE153873 - FGSEA")

Using the function plotVolcanoPathway(), users can visualize the enrichment re-
sults. Figure 14 shows the results using the FGSEA method and KEGG pathways. The vol-
cano plot shows the pathway enrichment scores on the x-axis and minus log10 p-values on
the y-axis. The plotVolcanoPathway() function returns a ggplot object which can
be customized using functions from ggplot2 package. The figure also displays the names
of the 10 most significant pathways. Using the volcano plot, users can have an overview
of the enrichment analysis, as well as the general trend of the pathway regulation. In this
analysis, many of the significant pathways have negative enrichment scores, i.e., down-
regulated.

8. Visualize enrichment analysis results using forest plot:

# Create a list containing top 20 pathways from the result

RNASeqFGSEAToPlot <- list("RNASeq - GSE153873 - FGSEA" = RNASeqFGSEAResult[1:20,])

# Generate forest plot:

RCPA::plotForest(resultsList = RNASeqFGSEAToPlot, yAxis = "name", statLims = c(-3.5, 1))

Figure 15 shows the plot generated by the above code using the functionplotForest().
The forest plot shows the normalized enrichment score and their confidence interval as
individual points along a horizontal line. The plotForest() function requires the fol-
lowing parameters: (1) resultsList, a named list of data frames from pathway anal-
ysis; (2) yAxis, a character parameter specifying which column of the result data frame
from pathway analysis is used to label to y-axis; and (3) statLims, a numeric vector
of length 2 specifying the limits for the score to use in the x-axis. In this code snippet, we
first sort the results according to the p-values and select the top 20 pathways as RNASe-
qFGSEAToPlot. After that, we set resultsList = RNASeqFGSEAToPlot, yAxis
= “name”, and statLims = c(-3.5, 1).
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Figure 14 Volcano plot of enrichment analysis obtained from FGSEA for the dataset GSE153873.
The x-axis shows the normalized enrichment score while the y-axis shows the minus log10 pFDR.
Each point on the figure represents a pathway or gene set. The size of a point is proportional to
the number of genes in the corresponding gene set. The color of each point is determined by the
normalized enrichment score. The top 10 pathways with the smallest pFDR are labeled with the
pathway names.

9. Visualize enrichment analysis results using a network graph of pathways:

# Select the top 20 pathways from the results

RNASeqFGSEAToPlot <- list(“RNASeq -- GSE153873 -- FGSEA” = RNASeqFGSEAResult[1:20,])

# Get IDs for top 20 pathways

selectedPathways <- RNASeqFGSEAResult$ID[1:20]

# Generate network graph of selected pathways

pltHtml <- RCPA::plotPathwayNetwork(

PAResults = RNASeqFGSEAToPlot,

genesets = KEGGGenesets,

selectedPathways = selectedPathways,

statistic = “normalizedScore”,

mode = “continuous”,

edgeThreshold = 0.75,

file = tempfile(fileext = “.html”) # Or use a user-specified file path)

Figure 16 shows the resulting pathway network. Users can flexibly change the layout into
the following styles: breadthfirst, circle, cola, concentric, cose, cose-bilkent, dagre, grid,
and random. The function plotPathwayNetwork() visualizes the pathway network,
in which nodes are pathways. If two pathways have common genes among them, then
there is an edge connecting the pathways. This plot is useful for understanding the rela-
tionships among the pathways and identifying the modules of related pathways that are

Nguyen et al.

43 of 75

Current Protocols

 26911299, 2024, 5, D
ow

nloaded from
 https://currentprotocols.onlinelibrary.w

iley.com
/doi/10.1002/cpz1.1036 by A

uburn U
niversity L

ibraries, W
iley O

nline L
ibrary on [07/05/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Figure 15 Forest plot of enrichment scores of the most significant pathways obtained from
FGSEA on GSE6153873 dataset. The x-axis shows the enrichment scores while the y-axis shows
the pathway names. The red dots are the normalized scores for each pathway in each dataset.
The horizontal segments around the red dots represent the confidence interval for the normalized
scores.

impacted together. The function has the following parameters: (1) PAResults, a named
list of pathway analysis results; (2) genesets, a list of gene sets, which can be obtained
through the getGeneSets() function; (3) selectedPathways, a vector of pathway IDs
to be displayed (NULL by default, in which all pathways would be shown); (4) statis-
tic, a character parameter specifying which statistic of the pathway analysis results to be
displayed; (5) mode, a character parameter of the mode to use to color the nodes, which
can be “discrete” (the color of the nodes is determined by p-value significance) or “con-
tinuous” (the color of the nodes is determined by the magnitude of the statistic); and (6)
edgeThreshold, a numeric value from 0 to 1 indicating the threshold to draw edges
(0.5 by default).

In the above snippet, we generate the pathway network for the pathways in select-
edPathways variables using the results from FGSEA on RNA-Seq dataset. Thus, we
set PAResults as RNASeqFGSEAToPlot. We extract the list of gene sets to plot and
their names from KEGGGenesets and pass them to the genesets and labels pa-
rameters. We also set statistic as the normalizedScore column and mode as
continuous. Once the execution is complete, the function plotPathwayNetwork()
will display the pathway network in a web browser. At the same time, it will write the
HTML code of the graph into a file specified by the file parameter. If the file parame-
ter is not specified, the function will write the HTML code into a temporary file and print
the path to the file in the R console. The function finally returns the HTML code as a
string.

BASIC
PROTOCOL 6

TOPOLOGY-BASED (TB) PATHWAY ANALYSIS

The previous protocol discusses gene set enrichment analysis using five different meth-
ods (Wilcoxon test, KS test, ORA, FGSEA, and GSA). Though powerful, enrichment
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Figure 16 Pathway network obtained from FGSEA results for the dataset GSE153873. In this
graph, each node represents a pathway. Two pathways are connected by an edge if they share at
least 75% of the genes of the smaller pathway. The node color shows the direction and magnitude
of the normalized score from the enrichment analysis result. The width of the edges is proportional
to the number of genes shared by the two pathways. Users can change the layout of the graph
into the following styles: breadthfirst, circle, cola, concentric, cose, cose-bilkent, dagre, grid, and
random.

methods do not take into consideration pathway topology and the interactions among
the genes in the pathways. There exist also topology-based (TB) methods that consider
pathway topology and gene interactions when performing pathway analysis. The RCPA
package includes three TB methods: signaling pathway impact analysis (SPIA) (Draghici
et al., 2007; Tarca et al., 2009), centrality-based pathway enrichment for ORA extension
(CePa ORA), and for GSA extension (CePa GSA) (Gu et al., 2012; Gu & Wang, 2013).
These methods are all accessible through the runPathwayAnalysis() function.

In addition to a SummarizedExperiment object that contains the differential anal-
ysis results, users need to provide pathways with gene interactions. In our context, each
pathway is represented by a graph in which genes are nodes and edges are interactions
among genes. Note that SPIA and CePa packages require completely different formats
for their graph objects. To ease this process, we also include functions in RCPA that can
automatically generate the required network data from KEGG for each method. These in-
cludegetSPIAKEGGNetwork() for SPIA, andgetCePaPathwayCatalogue()
for CePa ORA and CePa GSA. If users want to understand more about the graph objects
for these methods, they can consult the documentation for SPIA and CePa. Subsequently,
users have the option to create their own network object, adhering to the same data struc-
ture used in SPIA and CePa, and supply it to the function runPathwayAnalysis().
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Necessary Resources

Hardware

An internet-connected computer or laptop with at least 8 GB of RAM and 20 GB
of free hard drive space

Software

R runtime environment (version 4.0.0 or later)
RCPA package from the CRAN repository (see Internet Resources)

Besides the functions in RCPA, we will need to use the functions in the SummarizedEx-
periment to access the data stored in the SummarizedExperiment object. Similarly, some
functions from the ggplot2 package will be used to add the title or modify the figures gen-
erated by the plot functions in RCPA. We can ensure the required packages are installed
by loading them as shown in the following code snippet:

library(RCPA)

library(SummarizedExperiment)

library(ggplot2)

Files

SummarizedExperiment object obtained from differential analysis outlined
in Basic Protocols 3 and 4

Sample files

Users can use the function RCPA::loadData() to load the pre-saved differential analy-
sis results of the three datasets from our GitHub repository (https://github.com/ tinnlab/
RCPA/ tree/main/ .data). The first step in this protocol will guide the user in loading the
pre-saved data using the function.

1. If users skipped Basic Protocols 3 and 4, they can use RCPA::loadData() to load
the results:

# loading differential results for Affymetrix data

affyDEExperiment <- RCPA::loadData("affyDEExperiment")

# loading the results for Agilent data

agilDEExperiment <- RCPA::loadData("agilDEExperiment")

# loading the results for RNA-Seq data

RNASeqDEExperiment <- RCPA::loadData("RNASeqDEExperiment")

# loading KEGG gene sets

KEGGGenesets <- RCPA::loadData("KEGGGenesets")

If users have not executed all the steps in the previous protocols, they can use the snippet
to load the differential analysis results, which is required to run the functions in this pro-
tocol. In the following example, we will perform enrichment analysis using the differential
analysis results of the RNA-Seq dataset GSE153873, but users can use the same code to
perform enrichment analysis using the differential analysis results of microarray datasets.

2. Retrieve pathway topology from KEGG for SPIA:

# Retrieve gene networks from KEGG for SPIA

SPIANetwork <- RCPA::getSPIAKEGGNetwork(org = "hsa", updateCache = FALSE)

# Display SPIANetwork

str(SPIANetwork)

# Console output

List of 3

$ network:List of 312

.. $ path:hsa00010:Formal class ’graphNEL’ [package "graph"] with 6 slots

.. ..@ nodes : chr [1:67] "226" "229" "230" "217" …Nguyen et al.
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.. ..@ edgeL :List of 67

.. .. ..$ 226 :List of 1

.. .. .. ..$ edges: int [1:8] 45 46 42 43 44 41 39 40

.. .. ..$ 229 :List of 1

.. .. .. ..$ edges: int [1:8] 45 46 42 43 44 41 39 40

.. .. ..$ 230 :List of 1

.. .. .. ..$ edges: int [1:8] 45 46 42 43 44 41 39 40

.. .. ..$ 217 :List of 1

.. .. .. .. .. [list output truncated]

.. .. .. ..@ defaults:List of 1

.. .. .. .. ..$ subtype: logi NA

.. ..@ nodeData :Formal class ’attrData’ [package "graph"] with 2 slots

.. .. .. ..@ data : Named list()

.. .. .. ..@ defaults: list()

.. ..@ renderInfo:Formal class ’renderInfo’ [package "graph"] with 4 slots

.. .. .. ..@ nodes: list()

.. .. .. ..@ edges: list()

.. .. .. ..@ graph: list()

.. .. .. ..@ pars : list()

.. ..@ graphData :List of 1

.. .. ..$ edgemode: chr "directed"

.. [list output truncated] …

$ names: Named chr [1:312] "Glycolysis / Gluconeogenesis" "Citrate cycle (TCA cycle)"

"Pentose phosphate pathway" "Pentose and glucuronate interconversions" …

..- attr(*, "names")= chr [1:312] "path:hsa00010" "path:hsa00020" "path:hsa00030"

"path:hsa00040" …

$ sizes: Named int [1:312] 67 30 31 36 34 32 30 36 49 47 …

..- attr(*, "names")= chr [1:312] "path:hsa00010" "path:hsa00020" "path:hsa00030"

"path:hsa00040" …

The function getSPIAKEGGNetwork() retrieves pathway information from KEGG
and puts the information in a format that is compatible with SPIA. This function requires
the following parameters: (1) org, a character specifying the organism abbreviation; and
(2) updateCache, a boolean parameter to enable and disable cache update (FALSE
at default). In our specific example, we have curated the KEGG network information for
humans by specifying the org parameter as “hsa”. The function returns a network object,
which is represented as a list with the following attributes: (1) network, a named list of
pathway network definitions; (2) names, a named character list containing the names of
pathways; and (3) sizes, a named integer list indicating the sizes of the pathways.

The network definition (network attribute) encompasses a list of pathways, with each
pathway represented by a “graphNEL” graph object from the graph package (Gentleman
et al., 2023). Users can refer to the document of this package to learn more about the
functions designed for parsing this object. The output of the above code will be used as one
of the input parameters when running SPIA using runPathwayAnalysis() function.

3. Perform topology-based (TB) pathway analysis using SPIA:

# Specify the list of arguments specific for SPIA

SPIAArgsList <- list(nB = 1000, pThreshold = 0.05)

# Set seed to create reproducible results

set.seed(1)

# Run SPIA on RNA-Seq dataset

RNASeqSPIAResult <- RCPA::runPathwayAnalysis(summarizedExperiment = RNASeqDEExperiment,

network = SPIANetwork, method = "spia", SPIAArgs = SPIAArgsList)

# Display the result for dataset

print(RNASeqSPIAResult[1:5, c("ID", "p.value", "pFDR", "score", "name")])

# Console output Nguyen et al.

47 of 75

Current Protocols

 26911299, 2024, 5, D
ow

nloaded from
 https://currentprotocols.onlinelibrary.w

iley.com
/doi/10.1002/cpz1.1036 by A

uburn U
niversity L

ibraries, W
iley O

nline L
ibrary on [07/05/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



ID p.value pFDR score name

path:hsa05016 1.84e-28 5.22e-26 33.5 Huntington disease

path:hsa05014 8.02e-27 1.14e-24 68.4 Amyotrophic lateral sclerosis

path:hsa05020 1.77e-24 1.44e-22 43.6 Prion disease

path:hsa00190 2.02e-24 1.44e-22 46.9 Oxidative phosphorylation

path:hsa05022 3.59e-23 2.04e-21 213.5 Pathways of neurodegeneration -

multiple diseases

For SPIA, runPathwayAnalysis() requires the following parameters: (1) summarized-
Experiment, a SummarizedExpriment object that has differential expression results;
(2) network, an object of pathway networks, which can be obtained from the function
getSPIAKEGGNetwork(); (3) method, a character parameter indicating the path-
way analysis method, which is “SPIA” in this case; and (4)SPIAArgs, a list of arguments
tailored for the SPIA method. Because SPIA is based on over-representation and signal-
ing perturbations accumulation, therefore, users can specify the list of arguments for this
method containing: (1) nB, the number of bootstrap iterations for perturbation (2000 by
default); and (2) pThreshold, the p-value cutoff, which determines DE genes (0.05 by
default). If the list of arguments is not provided, runPathwayAnalysis() function
will use default settings. If users want to change the default arguments of the SPIA method,
we recommend that they consult the manual of the ROntoTools package.

The output of the function runPathwayAnalysis() is a table that has the following
columns: (1) ID, the ID of the pathway; (2) p.value, the p-value of the pathway; (3)
pFDR, the adjusted p-value of the pathway using the Benjamini-Hochberg method; (4)
score, the score of the pathway; (5) normalizedScore, the normalized score of the
pathway; (6) sampleSize, the total number of samples in the study; (7) name, the name
of the pathway; and (8) pathwaySize, the size of the pathway.

The pathway score returned by SPIA represents the sum of the absolute difference between
the perturbation factors of the differentially expressed genes with its observed log fold
change in the pathway. The perturbation factor in SPIA not only considers the statistic of
the gene but also the topology of the pathway. A higher score indicates that the pathway
is more likely to be perturbed. This score is also not suitable for comparing pathways of
different sizes. Instead, SPIA provides a normalized score that is the z-score of the pathway
score with respect to the scores obtained from random permutations of the sample labels.

4. Retrieve pathway topology from KEGG for CePa ORA and CePa GSA:

# Retrieve pathway information from KEGG for CePa ORA and CePa GSA:

CePaNetwork <- RCPA::getCePaPathwayCatalogue(org = "hsa", updateCache = FALSE)

# Display CePaNetwork

str(CePaNetwork)

# Console output

List of 3

$ network:List of 3

..$ pathList :List of 312

.. ..$ path:hsa00010: chr [1:268] "1" "2" "3" "4" …

.. ..$ path:hsa00020: chr [1:101] "269" "270" "271" "272" …

.. ..$ path:hsa00030: chr [1:158] "1" "2" "3" "4" …

.. ..$ path:hsa00040: chr [1:75] "508" "509" "510" "511" …

.. .. [list output truncated]

..$ interactionList:’data.frame’: 62995 obs. of 3 variables:

.. ..$ interaction.id: chr [1:62995] "1" "2" "3" "4" …

.. ..$ input : chr [1:62995] "226" "226" "226" "226" …

.. ..$ output : chr [1:62995] "2203" "8789" "5211" "5213" …

..$ Mapping :’data.frame’: 7758 obs. of 2 variables:

.. ..$ node.id: chr [1:7758] "226" "229" "230" "217" …

.. ..$ symbol : chr [1:7758] "226" "229" "230" "217" …

..- attr(*, "class")= chr "pathway.catalogue"
Nguyen et al.
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$ names: Named chr [1:312] "Glycolysis / Gluconeogenesis" "Citrate cycle (TCA cycle)"

"Pentose phosphate pathway" "Pentose and glucuronate interconversions" …

..- attr(*, "names")= chr [1:312] "path:hsa00010" "path:hsa00020" "path:hsa00030"

"path:hsa00040" …

$ sizes: Named int [1:312] 268 101 158 75 138 74 101 192 154 223 …

..- attr(*, "names")= chr [1:312] "path:hsa00010" "path:hsa00020" "path:hsa00030"

"path:hsa00040" …

The function getCePaPathwayCatalogue() retrieves the network objects required
for CePa ORA and CePa GSA. The function takes as input the following parameters:
(1) org, a character specifying the organism abbreviation; and (2) updateCache, a
boolean parameter to enable and disable cache update (FALSE at default). The function
getCePaPathwayCatalogue() returns a network object, which is represented as a
list with the following attributes: (1) network, a named list of pathway network defi-
nitions; (2) names, a named character list containing the names of pathways; and (3)
sizes, a named integer list indicating the sizes of the pathways.

Users can apply the function str() to inspect the resulting network object, as shown in
the snippet above. The console output reveals that the network definitions returned by the
functions getSPIAKEGGNetwork() and getCePaPathwayCatalogue() exhibit
distinct data structures. The CePaNetwork defines the network such that each pathway
is represented as a vector of unique interaction IDs. To identify the genes associated with
each interaction ID, users can refer to the interactionList, which is presented as
a three-column matrix. The first column represents the interaction ID, the second column
signifies the input node ID, and the third column designates the output node ID. Both input
and output nodes correspond to genes identified by their Entrez IDs.

5. Perform pathway analysis using CePa ORA:

# Specify the list of argument tailored for CePa ORA

CePaORAArgsList <- list(cen = "equal.weight", pThreshold = 0.05)

# Set seed to create reproducible results

set.seed(1)

# Run CePa ORA

RNASeqCePaORAResult <- RCPA::runPathwayAnalysis(summarizedExperiment = RNASeqDEExperiment,

network = CePaNetwork, method = "cepaORA", CePaORAArgs = CePaORAArgsList)

# Display the result

print(RNASeqCePaORAResult[1:5, c("ID", "p.value", "pFDR", "score", "name")])

# Console output

ID p.value pFDR score name

path:hsa00010 0.000999 0.0156 30.3 Glycolysis / Gluconeogenesis

path:hsa00020 0.000999 0.0156 19.2 Citrate cycle (TCA cycle)

path:hsa00640 0.000999 0.0156 16.2 Propanoate metabolism

path:hsa00650 0.000999 0.0156 14.1 Butanoate metabolism

path:hsa00270 0.000999 0.0156 24.2 Cysteine and methionine

metabolism

The function runPathwayAnalysis() for the method CePa ORA requires the fol-
lowing set of parameters: (1) summarizedExperiment, a SummarizedExperi-
ment object obtained from differential analysis; (2) network, the pathways network
object, which can be obtained from the function getCePaPathwayCatalogue();
(3) method, a character parameter specifying the pathway analysis method, which is
“cepaORA” in this case; and (4) CePaORAArgs, a list of arguments customized for
CePa ORA. For the list of CePa ORA arguments, users can specify the following: (1)
cen, the centrality (i.e., gene weights) measurement among “equal.weight”, “in.degree”,
“out.degree”, “betweenness”, “in.reach”, and “out.reach” (“equal.weight”’by default);
and (2) pThreshold, p-value cutoff determining the DE genes (0.05 by default). Users
can consult the manual of the CePa package for a complete list of arguments.
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For each pathway, CePa ORA returns the score calculated by summing up the weights of
the DE genes in the pathway, where the weights represent the importance of the genes in the
pathway based on the centrality of the genes. A higher score indicates that the DE genes
appear in more important positions in the pathway. This score is, however, not suitable
for comparing pathways of different sizes. In RCPA, we calculate the normalized score by
dividing the score by the sum of the weights of all genes in the pathway.

6. Perform pathway analysis using CePa GSA:

# Specify the list of argument tailored for CePa GSA

CePaGSAArgsList <- list(cen = "equal.weight", nlevel = "tvalue_abs", plevel = "mean")

# Set seed to reproducible results

set.seed(1)

# Run CePa GSA on RNA-Seq dataset

RNASeqCePaGSAResult <- RCPA::runPathwayAnalysis(summarizedExperiment = RNASeqDEExperiment,

network = CePaNetwork, method = "cepaGSA", CePaGSAArgs = CePaGSAArgsList)

# Display the result

print(RNASeqCePaGSAResult[1:5, c("ID", "p.value", "pFDR", "score", "name")])

# Console output

ID p.value pFDR score name

path:hsa00740 0.257 0.999 0.964 Riboflavin metabolism

path:hsa04978 0.303 0.999 0.949 Mineral absorption

path:hsa00020 0.331 0.999 0.885 Citrate cycle (TCA cycle)

path:hsa05320 0.351 0.999 0.791 Autoimmune thyroid disease

path:hsa04740 0.359 0.999 0.600 Olfactory transduction

For CePa GSA, the function runPathwayAnalysis() takes the following parame-
ters: (1) summarizedExperiment, a SummarizedExperiment object obtained
from differential analysis; (2) network, the pathways network object, which can be
obtained from the functions getCePaPathwayCatalogue(); (3) method, a char-
acter parameter specifying the pathway analysis method, which is “cepaGSA” in this
case; and (4) CePaGSAArgs, a list of arguments customized for CePa GSA. For the
list of CePa GSA arguments, users can specify the following: (1) cen, the central-
ity (i.e., gene weights) measurement among “equal.weight”, “in.degree”, “out.degree”,
“betweenness”, “in.reach”, and “out.reach” (“equal.weight”’ by default); (2) nlevel,
the node-level statistics, which can be “tvalue” (t-statistics), “tvalue_abs” (absolute t-
statistics, default) and “tvalue_sq” (squared t-statistics); and (3) plevel, the statistic
used to summarize a pathway among “max”, “min”, “median”, “sum”, “mean” and
“rank” (“mean” by default). Users can consult the manual of the CePa package for a
complete list of arguments.

Compared to CePa ORA, the interpretation of the pathway score returned by CePa GSA
depends on the combination of the nlevel and plevel arguments specified in the CePaGSA
parameter. For example, when nlevel = "tvalue" and plevel = "mean", the
score is the average t-statistic (after adjusted using topology centrality) of the genes in the
pathway. In this case, a positive score indicates that the genes in the pathway are more
likely to be upregulated and vice versa. The normalized score of CePa GSA is calculated
by RCPA depending on the plevel argument. When plevel is “max”, “min”, “me-
dian”, “mean”, or “rank”, the normalized score is the same as the score. When plevel
is “sum”, the normalized score is calculated by dividing the score by the sum of the weights
of all genes in the pathway.

7. Visualize pathway analysis results using volcano, forest plot, and network of path-
ways:

# Generate volcano plot for SPIA results

RCPA::plotVolcanoPathway(PAResult = RNASeqSPIAResult, topToLabel = 15) +
ggplot2::ggtitle("RNASeq - GSE153873 - SPIA")
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Figure 17 Volcano plot of pathway analysis obtained from SPIA for dataset GSE153873. The
x-axis shows the normalized pathway score while the y-axis shows the minus log10 pFDR of the
pathways. The size of the points is proportional to the number of genes in the corresponding path-
way. The color of the points is determined by the normalized score. The top 15 pathways with the
smallest pFDR are labeled with the pathway names.

Figure 18 Forest plot of pathway analysis obtained from SPIA for dataset GSE153873. The x-
axis shows the normalized enrichment scores while the y-axis shows the pathway names. The red
dots are the normalized scores for each pathway in each dataset. The horizontal segments around
the red dots represent the confidence interval for the normalized scores. Nguyen et al.
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Figure 19 Pathway network obtained from SPIA results of the dataset GSE153873. In this
graph, each node represents a pathway. Two pathways are connected by an edge if they share at
least 75% of the genes of the smaller pathway. The node color shows the direction and magnitude
of the normalized score from the pathway analysis result. Users can change the layout of the
graph into the following styles: breadthfirst, circle, cola, concentric, cose, cose-bilkent, dagre, grid,
and random.

Figure 17 shows the volcano plot for the results obtained from SPIA. Similar to the visu-
alization for gene set enrichment analysis, users can easily visualize the volcano plot for
TB pathway analysis using the function plotVolcanoPathway().

# Select the top 20 pathways from the results

RNASeqSPIAToPlot <- list("RNASeq - GSE153873 - SPIA" = RNASeqSPIAResult[1:20,])

selectedPathways <- RNASeqSPIAResult$ID[1:20]

# Generate forest plot:

RCPA::plotForest(resultsList = RNASeqSPIAToPlot, yAxis = "name", statLims = c(-4, 8))

Using the code snippet above, users can visualize the forest plot, as shown in Figure 18.
The figure shows the pathway score and their confidence interval for the 20 most significant
pathways obtained from SPIA analysis.

# Generate network graph of selected pathways

pltHtml <- RCPA::plotPathwayNetwork(

PAResults = RNASeqSPIAToPlot,

genesets = KEGGGenesets,

selectedPathways = selectedPathways,

statistic = "normalizedScore",

mode = "continuous",

edgeThreshold = 0.75)

Nguyen et al.
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Figure 19 shows the plot generated from the above code snippet. We use the same code to
generate the pathway network plot as in the example of enrichment analysis to visualize
the result from pathway analysis using SPIA. For CePa ORA and CePa GSA, users can
easily substitute the RNASeqSPIAResult variable with RNASeqCePaORAResult
and RNASeqCePaGSAResult.

BASIC
PROTOCOL 7

DATA INTEGRATION AND VISUALIZATION

This protocol describes the RCPA functions that are of integrating and visualizing anal-
ysis results obtained from multiple datasets and analysis methods. We introduce two
distinct kinds of integrative analysis strategies: meta-analysis and consensus analysis.
Meta-analysis is a set of statistical approaches used to combine multiple independent but
related studies (Normand, 1999). Meta-analysis can potentially increase the statistical
power of analysis methods and improve the accuracy of the findings. In contrast, con-
sensus analysis involves merging the outcomes derived from different analyses, resulting
in a unified and consolidated conclusion, as shown in our previous publication (Nguyen
et al., 2021). This strategy allows users to compare the results of multiple methods. Using
consensus pathway analysis, users can observe the effects of the underlying hypotheses
that form the basis of the analysis methods of interest. Consensus pathway analysis can be
extended to include results obtained from multiple datasets and methods at the same time
to understand the effects of method hypothesis, experiment design, and other factors.

Using the RCPA package, meta-analysis can be performed at both gene- and pathway-
level, while consensus analysis is only performed at the pathway-level. In the following
example, we still use the same three GEO datasets, GSE5281 (Affymetrix), GSE61196
(Agilent), and GSE153873 (RNA-Seq). Note that all three datasets study the same con-
dition: Alzheimer’s disease.

Necessary Resources

Hardware

An internet-connected computer or laptop with at least 8 GB of RAM and 20 GB
of free hard drive space

Software

R runtime environment (version 4.0.0 or later)
RCPA package from the CRAN repository (see Internet Resources)

Besides the functions in RCPA, we will need to use the functions in the SummarizedEx-
periment to access the data stored in the SummarizedExperiment object. Similarly, some
functions from the ggplot2 package will be used to add the title or modify the figures gen-
erated by the plot functions in RCPA. We can ensure the required packages are installed
by loading them as shown in the following code snippet:

library(RCPA)

library(SummarizedExperiment)

library(ggplot2)

Files

SummarizedExperiment objects obtained from differential analysis
outlined in Basic Protocols 3 and 4

Data frame containing gene set enrichment and/or pathway analysis results
described in Basic Protocols 5 and 6, to perform pathway-level meta-analysis
and consensus analysis

Sample files

Users can use the function RCPA::loadData() to load the pre-saved data and analy-
sis results of the three datasets in the previous protocols from our GitHub repository Nguyen et al.
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(https://github.com/ tinnlab/RCPA/ tree/main/ .data). There are detailed steps in this pro-
tocol that guide the users in loading the pre-saved data using the function.

Gene-level meta-analysis

Here we illustrate how users can combine the differential analysis results obtained from
multiple datasets. We assume that users have performed differential analysis and pathway
analysis using our previous protocols, and that these results are stored in Summarized-
Experiment objects, namely affyDEExperiment, agilDEExperiment, and
RNASeqDEExperiment, as described in Basic Protocols 3 and 4.

1. If users skipped Basic Protocols 3 and 4, they can use the function
RCPA::loadData() to load the results:

# DE analysis result from Affymetrix dataset:

affyDEExperiment <- RCPA::loadData("affyDEExperiment")

# DE analysis result from Agilent dataset:

agilDEExperiment <- RCPA::loadData("agilDEExperiment")

# DE analysis result from RNA-Seq dataset:

RNASeqDEExperiment <- RCPA::loadData("RNASeqDEExperiment")

Users can execute the above code snippet to load the results of the differential analysis
on three datasets: GSE5281, GSE61196, and GSE153873. These results are prerequisites
for running the functions in this protocol.

2. Compile differential expression results of multiple datasets into a list:

# Extract the differential analysis result obtained from previous protocols

affyDEResults <- SummarizedExperiment::rowData(affyDEExperiment)

agilDEResults <- SummarizedExperiment::rowData(agilDEExperiment)

RNASeqDEResults <- SummarizedExperiment::rowData(RNASeqDEExperiment)

# Prepare the input list of DE results

DEResults <- list(

"Affymetrix - GSE5281" = affyDEResults,

"Agilent - GSE61196" = agilDEResults,

"RNASeq - GSE153873" = RNASeqDEResults)

Users can apply the function rowData() to retrieve the differential analysis results for
each dataset and then compile all results from all three datasets into a single list. This
list will be used as input for the following steps.

3. Generate a Venn diagram and query common genes:

# Generate a venn diagram plot

RCPA::plotVennDE(DEResults = DEResults, topToList = 10)

# Retrieve a list of common DE genes among multiple datasets

commonDEGenes <- RCPA::getCommonDEGenes(DEResults = DEResults)

# Display the results

print(commonDEGenes[1:5,])

# Console output:

ID Symbol Description

84964 ALKBH6 alkB homolog 6

2539 G6PD glucose-6-phosphate dehydrogenase

8694 DGAT1 diacylglycerol O-acyltransferase 1

23433 RHOQ ras homolog family member Q

10106 CTDSP2 CTD small phosphatase 2

The function plotVennDE() takes as input the following parameters: (1) DERe-
sults, a list containing DE analysis results, which is the list created in the previous

Nguyen et al.
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Figure 20 Venn diagram of differentially expressed (DE) genes among three datasets: GSE5281,
GSE61196, and GSE153873. The numbers in each section represent the number of DE genes.
There are 150 DE genes that are shared among all three datasets. The right side of the figure
shows the Entrez IDs and gene symbols of the top 10 genes that are significant in all datasets.

step; (2) pThreshold, the p-value threshold to determine if a gene is differentially ex-
pressed (0.05 by default); (3) useFDR, a boolean parameter indicating that the adjusted
p-value is used instead of the nominal p-value (TRUE by default); (4) stat, a character
parameter, which indicates the additional statistics column in the differential analysis re-
sult to use for filtering the DE genes (“logFC” by default); and (5) statThreshold,
a numeric parameter specifying the threshold for the stat parameter (0 by default). This
function returns a Venn diagram as a ggplot object, and we can use ggplot2 functions
to further customize the plot. In this code snippet, we can use the plotVennDE() func-
tion with its default settings to generate the Venn diagram of DE genes among datasets.

Figure 20 shows the Venn diagram obtained from the above code. In general, it is impor-
tant to check the intersection of DE genes between different datasets. This helps to identify
potential issues in the analysis design. For example, if the intersection of DE genes be-
tween these datasets is small, it indicates that these datasets might not be compatible for
meta-analysis. Users can plot a Venn diagram to examine the number of common DE
genes between analysis results from different datasets. The right side of the figure shows
the Entrez IDs and gene symbols of the top 10 genes that are differentially expressed in all
datasets. Users can list all common genes using the function getCommonDEGenes(),
which has the same parameters as of the function plotVennDE(). This function re-
turns a data frame containing the following columns: (1) ID, Entrez IDs of common DE
genes; (2) Symbol, gene symbols; and (3) Description, gene descriptions.

4. Perform meta-analysis using one of the six methods:

# Perform meta-analysis using Stouffer’s method

metaDEResult <- RCPA::runDEMetaAnalysis(DEResults = DEResults, method = "stouffer")

# Display the result:

head(metaDEResult)

Nguyen et al.
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# Console output
ID p.value pFDR logFC logFCSE

84964 1.54e-19 2.59e-15 -0.469 0.0472

10106 6.84e-16 4.22e-12 0.327 0.0392

7108 8.99e-16 4.22e-12 -0.368 0.0480

4713 1.01e-15 4.22e-12 -0.531 0.0604

10382 1.77e-15 5.92e-12 -0.665 0.0733

396 2.20e-15 6.16e-12 -0.343 0.0393

The function runDEMetaAnalysis() takes as input the following parameters: (1)
DEResults, a list containing DE analysis results, which is the list created in step 1;
and (2) method, a character parameter indicates the method used for meta-analysis.
The function performs meta-analysis using one of the following methods: Fisher’s method
(Fisher, 1925), Stouffer’s method (Stouffer et al., 1949), addCLT (Nguyen, Tagett, et al.,
2016), minimum p-value (Tippett, 1931), geometric mean (Vovk & Wang, 2020), and
restricted maximum likelihood (REML) (Viechtbauer, 2005). The first five methods are
used for p-value combination, while the last method combines both p-values and log2
fold-change. The last method is implemented using the function metagen() from the
meta package (Balduzzi et al., 2019), with the following settings: standardized mean dif-
ferences approach (SMD) as summary measurement, the restricted maximum likelihood
(REML) as an estimator of between-study variance distribution and applying Knapp-
Hartung adjustment (Knapp & Hartung, 2003).

Each of these methods has its own advantages and limitations, and researchers may
choose to use one or more depending on the specific research question and available
data. In the above code snippet, we choose Stouffer’s method for combining p-value by
specifying method as “stouffer”. To run other methods, users can simply replace “stouf-
fer” by “fisher”, “addCLT”, “minP”, “geoMean”, or “REML”.

The function returns a data frame that has the following columns: (1) ID, the Entrez ID
of gene; (2) p.value, the meta p-value of gene; (3) pFDR, the adjusted meta p-value of
genes using Benjamini-Hochberg method; (4) logFC, the meta log fold change of gene;
and (5) logFCSE, the standard error of logFC of gene. It is also important to note that
metagen() function is executed whenever the runDEMetaAnalysis() is called.
Therefore, we always obtain the meta log2 fold-change even when the “REML” is not
chosen.

5. Visualize meta-analysis results using gene heatmap:

# Select the top 40 most significant genes:

genesToPlot <- metaDEResult$ID[1:40]

# Get the full description of the genesToPlot:

genesAnnotation <- RCPA::getEntrezAnnotation(genesToPlot)

labels <- genesAnnotation[genesToPlot, "Description"]

# Create a list containing the results from individual analysis and meta analysis

affyDEResults <- SummarizedExperiment::rowData(affyDEExperiment)

agilDEResults <- SummarizedExperiment::rowData(agilDEExperiment)

RNASeqDEResults <- SummarizedExperiment::rowData(RNASeqDEExperiment)

resultsToPlot <- list(

"Affymetrix - GSE5281" = affyDEResults,

"Agilent - GSE61196" = agilDEResults,

"RNASeq - GSE153873" = RNASeqDEResults,

"Meta-analysis" = metaDEResult)

# Generate gene heatmap

RCPA::plotDEGeneHeatmap(DEResults = resultsToPlot, genes = genesToPlot, labels = labels,

negLog10pValueLims = c(0, 5), logFCLims = c(-1, 1))

Figure 21 shows the plot generated by the above code. The figure shows the gene heatmap
for the top 40 most significant genes, as chosen based on their nominal p-values in
meta-analysis. The gene heatmap shows log2 fold-changes of the genes along with their

Nguyen et al.
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Figure 21 Gene heatmap obtained from the three datasets (GSE5281, GSE61196, and
GSE153873) and their meta-analysis. The top x-axis shows the statistics (minus log10 pFDR and
log2 fold-change) while the bottom x-axis shows the study names. The y-axis shows the gene de-
scription, but users can specify other labels, such as Entrez ID or gene symbol. Only the top 40
most significant genes in meta-analysis are shown. The color of each cell indicates the magnitude
of log2 fold-change and minus log10 pFDR value of the gene.

p-values across different datasets. The gene heatmap allows users to: (1) observe the pat-
tern of the gene expression changes, (2) identify the co-expressed genes, and (3) identify
the biomarkers (genes that are consistently upregulated or downregulated across multiple
studies).

The function plotDEGeneHeatmap() takes as input the following parameters: (1)
DEResults, a list of data frames of differential analysis results; (2) genes, a vector
of Entrez IDs to plot, which must be in the ID column of the data frame in DEResults;
(3)labels, a vector of labels for the genes, and if not provided, the gene IDs will be used
as labels; (4) useFDR, a boolean value when it is TRUE indicating using FDR adjusted
p- values instead of nominal p-values; (5) logFCLims, a vector of length 2 specifying
the minimum and maximum log fold change to plot; and (6) negLog10pValueLims,
a vector of length 2 specifying the minimum and maximum –log10(p-value) to plot. For
the labels parameter, users can use the function genesAnnotation() to obtain gene
annotation, including gene symbol, chromosome vector, and full description. Users can
provide the vector of Entrez IDs (for genes parameter) and get the description as shown
in the code snippet.

Nguyen et al.
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As can be seen in the heatmap, the regulation direction of the genes is generally consistent
across the three datasets and the meta-analysis. Users can try all meta-analysis methods
implemented in the package and choose the one that is most suitable for their analysis
purposes.

6. Visualize a KEGG pathway with gene statistics:

# Select columns in the results of differential analysis:

selectedColumns <- colnames(metaDEResult)

print(selectedColumns)

# Console output

[1] "ID" "p.value" "pFDR" "logFC" "logFCSE"

# Prepare the list for plotting

DEResultsToPlot <- list(

"Affymetrix - GSE5281" = affyDEResults[, selectedColumns],

"Agilent - GSE61196" = agilDEResults[, selectedColumns],

"RNASeq - GSE153873" = RNASeqDEResults[, selectedColumns],

"Meta-analysis" = metaDEResult)

# Plot for KEGG Alzheimer’s Disease pathway

pltObj <- RCPA::plotKEGGMap(DEResults = DEResultsToPlot, KEGGPathwayID = "hsa05010", stat =
"logFC", pThreshold = 1, statLimit = 1)

# Display the plot

pltObj$plot

Figure 22 shows the plot generated by the above code snippet. The function plotKEG-
GMap() displays the underlying KEGG pathway and shows the expression changes of
the genes. This plot is useful for understanding the biological mechanisms and identifying
the key genes that drive the pathway dysregulation.

The function takes as input the following parameters: (1) DEResults, a list of data
frames containing the results from differential expression analysis; (2) KEGGPath-
wayID, a character specifying the KEGG pathway ID; (3) statistic, a character
specifying the column name of the data frame used to plot the differentially expressed
genes (DE genes); (4) useFDR, a boolean parameter indicating that DE genes are se-
lected based on adjusted p-value, otherwise, nominal p-value; and (5) statLimit, the
limit of the absolute value of the statistic. The function returns a list with the following
elements: (1) plot, a ggplot object of the KEGG map; (2) width, the width of the
KEGG map; and (3) height, the height of the KEGG map.

The above code displays the KEGG pathway map for Alzheimer’s disease (KEGG ID
hsa05010). It is important to note that all data frames included in the DEResults pa-
rameter must contain the same columns. Here the parameter contains the data frames
that have the same columns in the data frame returned by runDEMetaAnalysis()
function. In the figure, a color-coded box under each node in the pathway map is di-
vided into multiple parts corresponding to the number of analysis results from different
datasets. The color of each part in the nodes is determined by the log2 fold-change of
the genes in the pathway. The parameter pThreshold is set to 1 to show the regulation
direction of all genes in the pathway.

Pathway-level meta-analysis

Here we illustrate how users can combine pathway analysis results obtained from mul-
tiple datasets. We assume that users have performance gene set enrichment analysis or
pathway analysis, as described in Basic Protocols 5 and 6. In the following, we will com-
bine the results obtained from FGSEA across the three datasets GSE5281, GSE61196,
and GSE153873.

7. If users skipped Basic Protocols 5 and 6, they could use the function
RCPA::loadData() to load the enrichment results obtained from the method
FGSEA for all three datasets:Nguyen et al.
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Figure 22 Displaying gene-level meta-analysis on the pathway Alzheimer’s disease (KEGG
ID hsa05010). The figure shows the differential analysis results from three datasets (GSE5281,
GSE61196, and GSE153873), and their meta-analysis result. The green nodes within the pathway
represent the genes involved in this specific pathway. Each node is accompanied by a color-coded
box underneath, which is divided into multiple segments corresponding to the number of datasets.
The order of the datasets/segments is shown in the green box on the bottom left. The color of each
segment is determined by the log fold-change of the genes in the corresponding dataset.

# FGSEA analysis result from Affymetrix dataset:

affyFGSEAResult <- RCPA::loadData("affyFGSEAResult")

# FGSEA analysis result from Agilent dataset:

agilFGSEAResult <- RCPA::loadData("agilFGSEAResult")

# FGSEA analysis result from RNA-Seq dataset:

RNASeqFGSEAResult <- RCPA::loadData("RNASeqFGSEAResult")

# Load the KEGG gene sets

KEGGGenesets <- RCPA::loadData("KEGGGenesets")

The code snippet is used to load the results of the enrichment analysis results using
FGSEA on three datasets: GSE5281, GSE61196, and GSE153873, and the KEGG gene
sets obtained from Basic Protocol 5. These results are for running the functions in
pathway-level meta-analysis.

8. Prepare a list of pathway analysis results from multiple datasets:

# Compile a list of pathway analysis results

PAResults <- list(
Nguyen et al.
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Figure 23 Venn diagram of FGSEA results obtained from three datasets GSE5281, GSE61196,
and GSE153873. The number in each section represents the number of significant pathways or
gene sets. In this example, there are 22 pathways that are significant in all datasets. The right side
of the figure shows the pathway IDs and names of the top 10 pathways that are significant in all
three datasets.

"Affymetrix - GSE5281" = affyFGSEAResult,

"Agilent - GSE61196" = agilFGSEAResult,

"RNASeq - GSE153873" = RNASeqFGSEAResult)

Similar to gene-level meta-analysis, we first use the function list() to compile the
pathway analysis results. Here, we consider the enrichment analysis using FGSEA with
the same settings on the three GEO datasets, as described in Basic Protocol 5. Alter-
natively, users can modify this list by including the results of other methods from Basic
Protocols 5 and 6.

9. Generate a Venn diagram and query common pathways:

# Plot venn diagram

RCPA::plotVennPathway(PAResults = PAResults, pThreshold = 0.05)

# Query a list of common pathways

commonPathways <- RCPA::getCommonPathways(PAResults = PAResults)

# Display the results:

print(commonPathways[1:5,])

# Console output:

ID Name

path:hsa05022 Pathways of neurodegeneration - multiple diseases

path:hsa05014 Amyotrophic lateral sclerosis

path:hsa05020 Prion disease

path:hsa05016 Huntington disease

path:hsa05012 Parkinson disease

Figure 23 shows the Venn diagram obtained from the above code snippet. The func-
tion plotVennPathway() requires the following parameters: (1) PAResults, a list
containing pathway analysis results; (2) pThreshold, the p-value threshold to deter-
mine if a pathway is significant (0.05 by default); and (3) useFDR, a boolean parameter
indicating that the adjusted p-value is used instead of the nominal p-value (TRUE by
default). The Venn diagram shows the overlap of significant pathways among the three
analyses. Using the Venn diagram, we can have an overview of the agreement of the list
of significant pathways among different datasets.

Nguyen et al.
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As we can see from the plot, using a pFDR cutoff of 0.05, there are 22 pathways that are
significant in all three datasets. The right side of the figure shows the top 10 pathways
that are significant in all three datasets. Users can list all common pathways using the
function getCommonPathways(), which has the same parameters as of the function
plotVennPathway(). This function returns a data frame containing the following
columns: (1) ID, pathway IDs; and (2) Name, pathway names.

10. Perform pathway-level meta-analysis using one of the six methods:

# Meta-analysis using Stouffer’s method

metaPAResult <- RCPA::runPathwayMetaAnalysis(PAResults = PAResults, method = "stouffer")

# Display the results:

print(metaPAResult[1:5, 1:5])

# Console output

ID name p.value pFDR score

path:hsa05012 Parkinson disease 7.12e-46 2.39e-43 -2.47

path:hsa05016 Huntington disease 3.76e-44 6.32e-42 -2.43

path:hsa05014 Amyotrophic lateral

sclerosis

9.55e-44 1.07e-41 -2.39

path:hsa00190 Oxidative

phosphorylation

6.47e-40 5.44e-38 -2.69

path:hsa05020 Prion disease 1.29e-37 8.68e-36 -2.40

To perform meta-analysis at pathway-level, users can call the function runPath-
wayMetaAnalysis(), which requires the following parameters: (1) PAResults,
a list of at least size two of data frames obtained from pathway analysis in Basic Pro-
tocols 5 and 6; and (2) method, the method to perform meta-analysis, which can be
“fisher”, “stouffer”, “addCLT”, “minP”, “geoMean”, or “REML”.

The output of runPathwayMetaAnalysis() is a data frame containing the follow-
ing columns: (1) ID, the ID of pathway; (2) name, the name of pathway; (3) p.value,
the meta p-value of pathway; (4) pFDR, the adjusted meta p-value of pathways using
Benjamini-Hochberg method; (5) score, the combined score of pathway; (6) nor-
malizedScore, the combined normalized score of pathway; and (7) pathwaySize,
the size of pathway. In the code snippet, we still choose Stouffer’s method for p-value
combination, but users are free to use other methods.

11. Generate a bar chart for pathway-level meta-analysis:

# Select the top 30 significant from meta-analysis

selectedPathways <- metaPAResult$ID[1:30]

# Create a list of pathway analysis results of these 30 pathways

PAResultsToPlot <- list(

"Affymetrix - GSE5281" = affyFGSEAResult,

"Agilent - GSE61196" = agilFGSEAResult,

"RNASeq - GSE153873" = RNASeqFGSEAResult,

"Meta-analysis" = metaPAResult)

# Plot bar chart

RCPA::plotBarChart(results = PAResultsToPlot, selectedPathways = selectedPathways) +
ggplot2::ggtitle("FGSEA Analysis Results")

Figure 24 shows the bar chart generated from the above code snippet. The figure dis-
plays the magnitude and direction of the enrichment scores. Users can compare the im-
pact of the condition (Alzheimer’s disease) on pathways across all three datasets, as well
as meta-analysis results. The function plotBarChart() takes as input the follow-
ing parameters: (1) results, a named list of results obtained from multiple datasets
using one of the eight pathway analysis methods described in Basic Protocols 5 and
6; (2) limit, the maximum number of pathways to plot (Infinity by default); (3) la-
bel, the column to use for the labels; (4) by, the column to use for the bar heights; (5)
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Figure 24 Pathway bar chart obtained from FGSEA results for three datasets (GSE5281,
GSE61196, and GSE153873) and their meta- analysis. The x-axis shows the normalized scores
while the y-axis shows the pathway names. Only the top 30 KEGG pathways from meta-analysis
are shown. The striped bars represent significant pathways. We can see that the top significant
pathways are mostly downregulated in all three datasets and the results from individual datasets
universally agree with each other.

maxNegLog10PValue, the maximum value of minus log10 p-value to plot (5 by de-
fault); (6) pThreshold, the p-value threshold to determine if a pathway is significant
(0.05 by default); (7) useFDR, a boolean parameter indicating that the adjusted p-value
is used instead of the nominal p-value (TRUE by default); and (8) selectedPath-
ways, the IDs of pathways to be shown in the plot (NULL by default).

In the above code, the first two command lines are for limiting the number of pathways
to plot, in which we only plot the top 30 KEGG pathways on the output returned by
runPathwayMetaAnalysis() function. In the plot, the stripes in the bars indicate
if the pathway is significant in the dataset. We can see that the top significant pathways
are mostly downregulated in all three datasets and the results from individual datasets
mostly agree with each other. On the other hand, there are three pathways found to be
significant in Affymetrix and RNA-Seq datasets but not in the Agilent dataset.

12. Generate a pathway heatmap for meta-analysis:

RCPA::plotPathwayHeatmap(resultsList = PAResultsToPlot, yAxis = "name", selectedPathways

= selectedPathways)
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Figure 25 Pathway heatmap obtained from FGSEA results for three datasets (GSE5281,
GSE61196, and GSE153873) and their meta-analysis. The x-axis shows the study names while
the y-axis shows the pathway names. Only the top 30 KEGG pathways from meta-analysis are
shown. In each cell, the background color reflects the magnitude of –log10 pFDR while the size
of the circle represents the magnitude of the absolute normalized score. The color of each circle
shows the direction of pathway regulation, which can be either up or down.

Figure 25 shows the pathway heatmap generated by the function plotPathway-
Heatmap(). This type of plot usually shows three pieces of information for each path-
way within the analysis: (i) the magnitude of the enrichment score, (ii) the regulation
direction, and (iii) the significance of the enrichment score. The function requires the fol-
lowing inputs: (1) resultsList, a named list of data frames from pathway analysis;
(2) yAxis, a character parameter specifying which column of the result data frame from
pathway analysis is used to label to y-axis; and (3) selectedPathways, the IDs of
pathways to be shown in the plot (NULL by default). The plotPathwayHeatmap()
also returns a ggplot object as other plot functions that have been introduced thus far.

In this example, we still use the variable resultsList containing the pathway anal-
ysis results for top 30 KEGG pathways from meta-analysis as described in the previous
step and pass it to the function plotPathwayHeatmap() as resultsList param-
eter and specify the yAxis = "name" as we use the name column from the pathway
analysis result to label the y-axis.

13. Generate a pathway network for meta-analysis:

# Select the top 30 significant from meta-analysis

selectedPathways <- metaPAResult$ID[1:30]
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Figure 26 Pathway network obtained from FGSEA results for three datasets (GSE5281,
GSE61196, and GSE153873) and their meta-analysis. Each node represents a pathway and is fur-
ther divided into four parts corresponding to the four analyses (GSE5281, GSE61196, GSE153873,
and meta-analysis). The color of each part shows the direction and magnitude of the normalized
score from the corresponding analysis result. Two pathways are connected if they share at least
75% genes of the smaller pathway. The figure shows the top 30 most significant pathways from
the meta-analysis. The Alzheimer’s disease pathway is consistently impacted in all three datasets.

# Create a list of pathway analysis results of these 30 pathways

allPAResultsToPlot <- list(

"Affymetrix - GSE5281" = affyFGSEAResult,

"Agilent - GSE61196" = agilFGSEAResult,

"RNASeq - GSE153873" = RNASeqFGSEAResult,

"Meta-analysis" = metaPAResult)

# Plot pathway network

pltHtml <- RCPA::plotPathwayNetwork(

PAResults = allPAResultsToPlot,

genesets = KEGGGenesets,

selectedPathways = selectedPathways,

statistic = "normalizedScore",

mode = "continuous",

edgeThreshold = 0.75)

Figure 26 shows the pathway network generated for the top 30 significant pathways from
the meta-analysis using the function plotPathwayNetwork(). The size of the nodes
is proportional to the number of genes in the pathway. Two pathways are connected if
they share at least 75% genes of the smaller pathway. Each node is divided into multiple
parts corresponding to the number of datasets. The color of each part is determined by the
normalized enrichment score. Users can also choose to use the p-value to determine the
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color of the nodes instead of the normalized enrichment score, by replacing statistic
= "p.value" in the above code.

Pathway-level consensus analysis

The main objective of consensus pathway analysis is to allow users to see the differences,
as well as the consensus results across many methods that rely on distinctively different
hypotheses. As a result, it helps life scientists who are trying to understand the underlying
biological mechanisms of a condition or disease of interest. Consensus analysis can also
be extended to compare multiple experiments and computational methods so that users
can compare different hypotheses, experimental designs, and technologies. Below we
illustrate the application of consensus pathway analysis to combine the pathway analysis
results obtained from three methods and three datasets.

14. If users skipped the previous protocols for pathway analysis, they could use
RCPA::loadData() to load the data:

# Wilcoxon test results for RNA-Seq dataset:

RNASeqWilcoxResult <- RCPA::loadData("RNASeqWilcoxResult")

# FGSEA results for RNA-Seq dataset:

RNASeqFGSEAResult <- RCPA::loadData("RNASeqFGSEAResult")

# SPIA results for RNA-Seq dataset:

RNASeqSPIAResult <- RCPA::loadData("RNASeqSPIAResult")

# Load the KEGG gene sets

KEGGGenesets <- RCPA::loadData("KEGGGenesets")

The code snippet is used for loading the pre-saved results of the pathway analysis results
using the Wilcox test, FGSEA and SPIA on the RNA-Seq dataset GSE153873 obtained
from Basic Protocols 5 and 6, and the KEGG gene sets obtained from Basic Protocol 5.
These results are for running the functions in pathway-level consensus analysis.

15. Prepare the input list of analysis results for consensus analysis:

# Prepare a list of results obtained from the Wilcox test, FGSEA, and SPIA

selectedRNASeqPAResults <- list(

"Wilcox" = RNASeqWilcoxResult,

"FGSEA" = RNASeqFGSEAResult,

"SPIA" = RNASeqSPIAResult)

Similar to meta-analysis, we first need to prepare the list containing the pathway analysis
results from different methods. In this example, we used the results from pathway analysis
for RNA-Seq dataset GSE153873 using Wilcoxon test, FGSEA, and SPIA, as described
in Basic Protocols 5 and 6.

16. Generate a Venn diagram for the three analyses:

# Plot Venn diagram

RCPA::plotVennPathway(PAResults = selectedRNASeqPAResults, pThreshold = 0.05)

# Query a list of common pathways from Wilcox Test, FGSEA, SPIA:

commonPathways <- RCPA::getCommonPathways(PAResults = selectedRNASeqPAResults)

# Display the result

print(commonPathways[1:5,])

# Console output

ID Name

path:hsa05016 Huntington disease

path:hsa05014 Amyotrophic lateral sclerosis

path:hsa05022 Pathways of neurodegeneration - multiple diseases

path:hsa00190 Oxidative phosphorylation

path:hsa05020 Prion disease
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Figure 27 Venn diagram obtained from pathway analysis of the RNA-Seq dataset GSE153873
using three methods: Wilcoxon test, FGSEA, and SPIA. The number in each region represents the
number of significant pathways. The right side of the figure shows the top 10 pathways that are
significant using any of the three analysis methods.

Figure 27 shows the Venn diagram generated from the above code snippet. The figure
shows the common significant pathways obtained from three different methods Wilcoxon
test, FGSEA, and SPIA for the same dataset GSE153873. Users can list all common path-
ways using the function getCommonPathways(), which has the same parameters as
of the function plotVennPathway(). This function returns a data frame containing
the following columns: (1) ID, pathway IDs; and (2) Name, pathway names.

17. Perform consensus analysis using the weightedZMean method:

# Set seed to create reproducible result:

set.seed(1)

# Run consensus analysis

consensusWZRNASeqPAResult <- RCPA::runConsensusAnalysis(PAResults =
selectedRNASeqPAResults, method = "weightedZMean")

# Display the result

print(consensusWZRNASeqPAResult[1:6, c("ID", "p.value", "pFDR", "name")])

# Console output

ID p.value pFDR name

path:hsa05014 7.66e-31 7.66e-31 Amyotrophic lateral sclerosis

path:hsa05016 1.57e-30 1.57e-30 Huntington disease

path:hsa00190 5.28e-25 5.28e-25 Oxidative phosphorylation

path:hsa05022 5.86e-25 5.86e-25 Pathways of neurodegeneration - multiple diseases

path:hsa05020 9.00e-25 9.00e-25 Prion disease

path:hsa05010 9.67e-22 9.67e-22 Alzheimer disease

The above snippet demonstrates the use of runConsensusAnalysis() for consen-
sus analysis using weightedZMean method. This method calculates the weighted average
of z-values for each pathway, allowing users to assign different weights to each method
according to their research needs and assumptions. In this case, the function requires the
following parameters: (1) PAResults, a list of at least size two of data frames obtained
from pathway analysis in Basic Protocols 5 and 6; (2) method, a character specifying
the method to perform consensus analysis, which is “weightedZMean” in this case; (3)
useFDR, a logical parameter indicating if adjusted p-values should be used (TRUE by
default); (4) weightsList, a vector of integer values specifying weights for each in-
dividual pathway analysis results (NULL by default, meaning that all weights are equal);
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and (4) backgroundSpace, a list of lists with the same length as PAResults. Each
list contains underlying space (set of pathways) for each input data frame in PARe-
sults. The last parameter is optional. If it is set to be NULL, it means all input data
frames share a common space, which is the union of pathways of the input data frames.

The function returns a data frame with the following columns: (1) ID, the ID of pathway;
(2) p.value, the consensus p-value of pathway; (3) pFDR, the consensus adjusted p-
value of pathways using Benjamini-Hochberg method; (4) name, the name of pathway;
and (5) pathwaySize, the size of pathway.

18. Perform consensus analysis using robust rank aggregation:

# Set seed to create reproducible result:

set.seed(1)

# Run consensus analysis

consensusRRARNASeqPAResult <- RCPA::runConsensusAnalysis(PAResults =
selectedRNASeqPAResults, method = "RRA", rank.by = "both")

# Display the result

print(consensusRRARNASeqPAResult[1:5, c("ID", "p.value", "pFDR", "name")])

# Console output

ID p.value pFDR name

path:hsa00190 1.45e-05 0.00514 Oxidative phosphorylation

path:hsa00650 2.26e-04 0.04017 Butanoate metabolism

path:hsa00280 1.32e-03 0.15618 Valine, leucine and isoleucine degradation

path:hsa03050 1.77e-03 0.15696 Proteasome

path:hsa00020 4.50e-03 0.31544 Citrate cycle (TCA cycle)

In addition to weightedZMean method, we also include the implementation of robust rank
aggregation (RRA) method. The RRA method relies on rank aggregation principles, for
which we utilize the function provided by the RobustRankAggreg package (Kolde et al.,
2012). To execute the RRA method, runConsensusAnalysis() requires the follow-
ing parameters: (1) PAResults, a list of at least size two of data frames obtained from
pathway analysis in Basic Protocols 5 and 6; (2) method, a character specifying the
method to perform consensus-analysis, which is “RRA”; and (3) rank.by, a character
parameter that specifies how the input results should be ranked, which can be by either
“normalizedScore” (default), “pFDR”, or “both” (in this example). By following the
code, users will obtain a data frame shown in the console output.

19. Generate pathway network for consensus analysis:

# Create a list of results to plot:

selectedCCRNASeqPAResults <- list(

"Wilcox" = RNASeqWilcoxResult,

"FGSEA" = RNASeqFGSEAResult,

"SPIA" = RNASeqSPIAResult,

"Consensus - weightedZMean" = consensusWZRNASeqPAResult

)

# Select to plot top 30 most significant pathways

# from consensus analysis using weightedZMean:

selectedPathways <- consensusWZRNASeqPAResult$ID[1:30]

# Plot pathway network

pltHtml <- RCPA::plotPathwayNetwork(

PAResults = selectedCCRNASeqPAResults,

genesets = KEGGGenesets,

selectedPathways = selectedPathways,

statistic = "p.value",

mode = "discrete",

pThreshold = 0.05,

edgeThreshold = 0.75)
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Figure 28 Pathway network obtained from the analysis of the RNA-Seq dataset GSE153873 us-
ing three methods (Wilcox, FGSEA, and SPIA) and consensus analysis (weightedZMean method).
The figure shows the top 30 most significant pathways obtained from the consensus analysis using
weightedZMean. In the graph, each node represents a pathway. Two pathways are connected if
they share at least 75% genes of the smaller pathway. In this case, the node is divided into four
parts that correspond to the four analyses. A part is only colored when the pathway is significant in
the respective analysis. For example, the pathway Autography - animal is not colored in the third
part because it is not significant in SPIA analysis.

Figure 28 shows the pathway network obtained from the above code. The pathway net-
work is generated from the analysis results using Wilcox, FGSEA, SPIA, and the consen-
sus analysis. In this example, only the top 30 most significant pathways from the consen-
sus analysis of the three results are displayed, utilizing the weightedZMean method (as
outlined in step 3). Note that each analysis method has a different definition of enrichment
score. Therefore, it is not meaningful to display their enrichment score in this example.
Instead, we color the nodes (pathways) based on the significance of the pathway in the
respective analysis.

20. Perform consensus analysis of multiple methods and datasets:

# Load the necessary data if users skipped the previous protocols

# Enrichment results using Wilcoxon test:

affyWilcoxResult <- RCPA::loadData("affyWilcoxResult")

RNASeqWilcoxResult <- RCPA::loadData("RNASeqWilcoxResult")

agilWilcoxResult <- RCPA::loadData("agilWilcoxResult")

# Enrichment results FGSEA:

affyFGSEAResult <- RCPA::loadData("affyFGSEAResult")

agilFGSEAResult <- RCPA::loadData("agilFGSEAResult")

RNASeqFGSEAResult <- RCPA::loadData("RNASeqFGSEAResult")
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# TB analysis using SPIA:

affySPIAResult <- RCPA::loadData("affySPIAResult")

agilSPIAResult <- RCPA::loadData("agilSPIAResult")

RNASeqSPIAResult <- RCPA::loadData("RNASeqSPIAResult")

# Load the KEGG gene sets

KEGGGenesets <- RCPA::loadData("KEGGGenesets")

# Create a list of results from multiple pathway analysis methods and datasets:

selectedPAResults <- list(

"Affymetrix - Wilcox" = affyWilcoxResult,

"Affymetrix - FGSEA" = affyFGSEAResult,

"Affymetrix - SPIA" = affySPIAResult,

"Agilent - Wilcox" = agilWilcoxResult,

"Agilent - FGSEA" = agilFGSEAResult,

"Agilent - SPIA" = agilSPIAResult,

"RNASeq - Wilcox" = RNASeqWilcoxResult,

"RNASeq - FGSEA" = RNASeqFGSEAResult,

"RNASeq - SPIA" = RNASeqSPIAResult)

# Run consensus analysis using weightedZMean on selectedPAResults:

consensusPAResult <- RCPA::runConsensusAnalysis(PAResults = selectedPAResults, method =
"weightedZMean")

# display the results

print(consensusPAResult[1:6, c("ID", "p.value", "pFDR", "name")])

# Console output:

ID p.value pFDR name

path:hsa05016 7.84e-12 7.84e-12 Huntington disease

path:hsa05014 1.99e-11 1.99e-11 Amyotrophic lateral sclerosis

path:hsa05022 2.17e-10 2.17e-10 Pathways of neurodegeneration -

multiple diseases

path:hsa00190 1.30e-09 1.30e-09 Oxidative phosphorylation

path:hsa05020 2.47e-09 2.47e-09 Prion disease

path:hsa05010 3.32e-08 3.32e-08 Alzheimer disease

The above snippet created a list of nine analyses obtained from three pathway analysis
methods and three datasets. Similar to the previous steps, users can apply the function
runConsensusAnalysis() to perform consensus analysis using any of the two in-
tegration methods (weightedZMean and robust rank aggregation). After the integration,
users can visualize the results as shown in the following steps.

# Select the top 20 significant from consensus analysis

selectedPathways <- consensusPAResult$ID[1:20]

# Create a list of results to plot:

selectedPAResultsToPlot <- list(

"Affymetrix - Wilcox" = affyWilcoxResult,

"Affymetrix - FGSEA" = affyFGSEAResult,

"Affymetrix - SPIA" = affySPIAResult,

"Agilent - Wilcox" = agilWilcoxResult,

"Agilent - FGSEA" = agilFGSEAResult,

"Agilent - SPIA" = agilSPIAResult,

"RNASeq - Wilcox" = RNASeqWilcoxResult,

"RNASeq - FGSEA" = RNASeqFGSEAResult,

"RNASeq - SPIA" = RNASeqSPIAResult,

"Consensus Analaysis" = consensusPAResult)

# Plot pathway network

pltHtml <- RCPA::plotPathwayNetwork(

PAResults = selectedPAResultsToPlot,
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Figure 29 Pathway network obtained from nine different analyses, using three pathway methods
(Wilcox test, FGSEA, and SPIA) on three datasets (GSE5281, GSE61196 and GSE153873). In
this plot, only the top 20 most significantly impacted pathways from the consensus analysis on
these 9 results are displayed. Each node represents a pathway and is further divided into 10 parts
corresponding to the 9 analyses and the consensus analysis. The color of each part shows the
direction and magnitude of the normalized score from the corresponding analysis result. The width
of the edges is proportional to the number of genes shared by the two pathways. Users can change
the layout of the graph into the following styles: breadthfirst, circle, cola, concentric, cose, cose-
bilkent, dagre, grid, and random.

genesets = KEGGGenesets,

selectedPathways = selectedPathways,

statistic = "p.value",

mode = "discrete",

edgeThreshold = 0.75)

Figure 29 shows the pathway network graph obtained from the above code. Users can
perform consensus analysis on many different pathway analysis results, which can be
obtained from different methods and/or different datasets, by following the same pro-
cedure as shown in the above code. Here, we performed gene set and pathway analysis
using three methods: Wilcox test, FGSEA and SPIA on three GEO datasets. In return, we
obtained 9 different pathway analysis results in total. We then perform consensus anal-
ysis on these results using weightedZMean. Next, we also use the plotPathwayNet-
work() to generate the pathway network for consensus pathway analysis results. The
figure shows the top 20 most significant pathways from consensus analysis.

RCPA::plotPathwayHeatmap(resultsList = selectedPAResultsToPlot, yAxis = "name",

selectedPathways = selectedPathways)

Figure 30 shows the pathway heatmap obtained from the function plotPathway-
Heatmap() to plot the pathway heatmap for the 9 pathway analysis results and their
consensus analysis. The function requires the following inputs: (1) resultsList, a
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Figure 30 Pathway heatmap obtained from nine different analyses, using three pathway methods
(Wilcox test, FGSEA, and SPIA) on three datasets (GSE5281, GSE61196 and GSE153873) and
their consensus analysis. The x-axis shows the study names while the y-axis shows the pathway
names. Only the top 20 KEGG pathways from consensus analysis are shown. In each cell, the
background color reflects the magnitude of –log10 pFDR while the size of the circle represents
the magnitude of the absolute normalized score. The color of each circle shows the direction of
pathway regulation, which can be either up or down.

named list of data frames from pathway analysis; (2) yAxis, a character parameter
specifying which column of the result data frame from pathway analysis is used to label
to y-axis; and (3) selectedPathways, the IDs of pathways to be shown in the plot
(NULL by default). The plotPathwayHeatmap() also returns a ggplot object as
other plot functions that have been introduced thus far. Note that since each analysis
method has its own distinct definition of an enrichment score, we do not combine the
scores across the methods in consensus analysis.

COMMENTARY

Background Information
In this article, we present a comprehensive

and user-friendly pipeline implemented in the
RCPA package for the complete analysis of
gene expression data using various statistical
and computational methods. The package in-
cludes many functions that allow users to per-
form: (1) data processing for microarray and
RNA-Seq data NCBI GEO; (2) differential
analysis using limma, edgeR, and DESeq2;
(3) gene set enrichment analysis using the KS
test, Wilcox test, ORA, FGSEA, and GSA; (4)
topology-based pathway analysis using SPIA,
CePa ORA, and CePa GSA; (5) meta-analysis
using Fisher’s method, Stouffer’s method, ge-
ometric mean, minP, addCLT, and REML; (6)
consensus analysis using weightedZMean and

RRA methods; and (7) visualization of analy-
sis results.

We illustrate the applications of those func-
tions on several public datasets, showing
its ability to identify differentially expressed
genes, significant gene sets, impacted path-
ways, and consensus results obtained from
meta-analysis and consensus analysis. The im-
plemented functions also offer the flexibil-
ity to adjust the analysis parameters, mak-
ing them useful for researchers with diverse
experimental designs and objectives. While
our package provides a comprehensive solu-
tion for gene expression analysis, we acknowl-
edge that there is always room for improve-
ment and extension. Future directions for our
work could include incorporating additional
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Table 2 Troubleshooting Guide for RCPA

Problem Possible cause Solution

Error when installing
RCPA

Missing dependencies RCPA includes some other R packages as
dependencies; it is likely that system libraries are
missing causing some R packages to fail to install;
users need to carefully check the error shown in their
console and try to install the missing libraries

downloadGEO()
function returns empty
data frame

No supplementary files
are available

Some GEO datasets do not have supplementary files
uploaded; in this case, users need to check the dataset
on NCBI GEO to see if the supplementary files are
available; if not, users can manually download the
preprocessed data and create the
SummarizedExperiment object.

makeContrasts()
function returns name
error

Special characters in
column names

The makeContrasts() function in the limma
package requires the column names to be valid R
variable names; in this case, users can remove special
characters from the column names and try again

Large fold-change
and statistic in the output
of limma

The input data is not
log-transformed

The limma package requires log-transformed data as
input

GSA returns large scores The input data is not
log-transformed

GSA requires log-transformed data as input

CePa cannot find samples
for analysis

The contrast matrix has
>2 conditions

CePa only supports comparative analysis between
two conditions; the contrast matrix should only
contain two columns, e.g., “normal” and “disease”

The text in the plots is too
small

The default font size is
too small for the plot
size

Plots are generated using the ggplot2 package; the
plot object can be freely modified using functions
from the ggplot2 package

The saved plots are
different from the plots
shown in the R

The graphics device is
not set properly

Users can apply the function
ggplot2::ggsave() to save the plots instead of
using the save button from their IDE

methods and pathway databases for pathway
analysis to enhance the pipeline’s accuracy
and efficiency.

In conclusion, we believe that our package
will be a valuable resource for life scientists
and practitioners. We hope that the package
will facilitate the discovery of new insights
into the molecular mechanisms underlying bi-
ological processes and diseases. We plan to
continue improving and updating our package
in response to emerging challenges and oppor-
tunities in molecular data analysis.

Critical Parameters
Users need to ensure that the experimen-

tal design is appropriate and accounts for any
confounding variables, such as age, gender,
or treatment duration, etc. The design ma-
trix used in the analysis should accurately
reflect the study design and avoid any lin-
ear dependencies. Furthermore, they should

choose appropriate statistical thresholds to
identify differentially expressed genes and/or
enriched/impacted pathways/gene sets, such
as adjusted p-values or false discovery rate
(FDR) cutoffs. These thresholds should bal-
ance the tradeoff between sensitivity and
specificity.

Troubleshooting
Table 2 provides a list of common prob-

lems that users may encounter when using our
pipeline, along with possible solutions. For
other potential problems, users can contact the
maintainer of the package at https://cran.r-
project.org/package=RCPA (see Internet Re-
sources).
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