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Abstract—Advances in single-cell RNA sequencing (scRNA-
seq) technologies have allowed us to study the heterogeneity of
cell populations. The cell compositions of tissues from different
hosts may vary greatly, indicating the condition of the hosts, from
which the samples are collected. However, the high sequencing
cost and the lack of fresh tissues make single-cell approaches
less appealing. In many cases, it is practically impossible to
generate single-cell data in a large number of subjects, making
it challenging to monitor changes in cell type compositions in
various diseases. Here we introduce a novel approach, named
Deconvolution using Weighted Elastic Net (DWEN), that allows
researchers to accurately estimate the cell type compositions from
bulk data samples without the need of generating single-cell data.
It also allows for the re-analysis of bulk data collected from rare
conditions to extract more in-depth cell-type level insights. The
approach consists of two modules. The first module constructs
the cell type signature matrix from single-cell data while the
second module estimates the cell type compositions of input bulk
samples. In an extensive analysis using 20 datasets generated
from scRNA-seq data of different human tissues, we demonstrate
that DWEN outperforms current state-of-the-arts in estimating
cell type compositions of bulk samples.

Index Terms—scRNA-seq, bulk data deconvolution

I. INTRODUCTION

Complex biological tissues consist of multiple cell types
with varying proportions. Cell type proportions may play
central roles in controlling host responses to physiological and
pathological conditions [1]. Studying the cell compositions
of these tissues under various conditions provides valuable
insights into mechanisms of underlying diseases. For example,
the composition of immune cells in tumor micro-environments
is one of the main contributors to cancer’s heterogeneity [2].
It has been demonstrated that immune cells infiltrate tumors
to regulate their growth and its composition within the solid
tumor is an important indicator of patients’ survival [3].

The cell type compositions of tissues can be investigated
via laboratory methods like flow cytometry [4], laser capture
micro-dissection [5], and immunohistochemistry [6]. Alterna-
tively, single cell RNA sequencing (scRNA-seq) technologies

have provided a powerful approach to systematically capture
the cellular heterogeneity and identify new cell types [7].
However, scRNA-seq data still have critical limitations, in-
cluding: (i) high sequencing cost, (ii) technical noise, and
(iii) inappropriate reflection of the cell type proportions of
the tissue [8]. To overcome these limitations, deconvolution
methods have been developed to obtain the constitution of cells
directly from bulk expression data. This enables the ability to
infer cell type proportions in bulk tissues, thus allows us to
study cell heterogeneity within tissues without the need to
dissolve the bulk samples into individual cells.

Current deconvolution methods methods can be classified
into two main categories, reference-free and reference-based
methods. Methods in the first category include BayCount [9],
BayesCCE [10], CellDistinguisher [11], deconf [12], and
TOAST [13]. These methods usually rely on matrix factoriza-
tion or statistical methods to decompose the input data into the
signature matrix and the corresponding cell type proportions.
The disadvantage of reference-free methods includes: (i) the
exact cell types correspond to the inferred proportions are
unknown, and (ii) heavy computation. Methods in the sec-
ond category include AdRoit [14], DAISM [15], EPIC [16],
quanTIseq [17], and SCDC [18]. These methods usually come
with a pipeline following two sequential steps: (i) constructing
a signature for each cell type and (ii) deconvolve the bulk
data using the obtained signature matrix. One drawback of
the reference-based methods is their estimations often have
biases against the cell types with lower proportions, or cell
types characterized by markers with low expressions.

Here we propose a novel approach, Deconvolution using
Weighted Elastic Net (DWEN), that can accurately infer cell
type compositions of bulk samples. The novel weighted elastic
net approach has many advantages over current methods: (i)
robustness to noise as the weights prevent the model from
only focusing on reducing the residual errors in the highly
expressed genes and ignoring the rest; (ii) automatic and reli-
able feature selection from the signature matrix; and (iii) better
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prediction performance as tolerance to multi-collinearity. We
demonstrate that DWEN outperforms state-of-the-art methods
and accurately estimates the true cell type proportions in 20
datasets obtained from the human cell atlas [19].

II. METHOD

Figure 1 depicts the overall workflow of DWEN. The
method requires the following input: (i) a reference single-
cell expression dataset of known cell types, and (ii) a bulk
gene expression dataset that needs to be deconvolved. The
first input includes a matrix of genes by cells and a vector
indicating the cell type label of each cell. The second input,
the bulk expression dataset, is a matrix of genes by samples.

Given the bulk expression and the reference single-cell data,
the method follows a pipeline of two sequential modules: (i)
constructing cell type signature matrix from the single-cell
data, and (ii) estimating the proportion of each cell type in the
bulk samples using a linear regression model named weighted
elastic net. The details are described in the following sections.

A. Module I: Signature matrix construction

The goal of this module is to construct a signature matrix
of known cell types and their biomarkers. First, we perform
a gene filtering step to reduce noise in the reference single-
cell data. For each cell type, we select a set of genes that
are expressed in at least 30% of the cells of the cell type.
Next, we remove genes that are not presented in any of those
gene sets obtained from the previous step. This allows us to
keep genes that have sparse expression profiles in the whole
scRNA-seq expression matrix, but not in a particular cell type.
At the same time, we also remove genes that might cause false
positive results in the differential analysis. In other words, we
remove genes that only express in a cell type but does not
express in the majority of cells in the underlying cell type.

Next, we apply the Trimmed Mean of M-values (TMM)
normalization to the filtered data [20]. After the filtering
and normalization steps, we perform differential analysis to
identify the markers for each known cell type. For a specific
cell type, we use the empirical Bayes statistics implemented
in limma [21] to identify the differentially expressed genes
(DE genes) by comparing the expression of cells in one cell
type against all of the remaining cells in other cell types. The
threshold for DE gene is having an adjusted p-value smaller
than 0.05 (using Benjamini-Hochberg’s). These DE genes are
then used as the markers for that cell type. We repeat this
process to obtain a list of markers for all cell types.

After obtaining the list of markers for each cell type, we
compute the signature matrix. For a specific cell type and a
marker, the expression of the cell type is calculated as the
average expression of the cells belonging to the cell type.
Repeating this procedure for all cell types and all markers,
we obtain a signature matrix of markers by cell types. This
matrix serves as the input of the next module to estimate the
cell type proportion in each bulk sample.

B. Module II: Cell type proportions estimation

After obtaining the cell type signature matrix, we esti-
mate the proportions of cell type in each sample in bulk
expression data by utilizing a novel application of elastic net
regression. First, we normalize the bulk expression data using
DESeq2 [22]. In particularly, we use DESeq2 to estimate the
size factors of each sample using the median ratio method, and
then normalize the bulk data [23]. We also perform an integrity
check such that the bulk data and the obtained signature matrix
contain the same set of genes. Next, for each bulk sample,
we model the gene expression as a linear combination of its
cell type-specific expressions, in which the coefficients are the
proportions of the cell types presenting in the sample.

To estimate these coefficients, we build a linear regression
model to predict the bulk gene expression from the cell type
signature profiles. Here we propose weighted elastic net, which
is an extension of elastic net model [24]. Elastic net is
a well-known regularized regression technique that automat-
ically selects the features (or cell types) for building the
linear regression model, by imposing L1-norm and L2-norm
penalties on the regression coefficients. Here we extend this
framework by specifying weight for each gene in calculating
loss function in the objective function of elastic net. In our
model, we set the weight of gene i as wi = 1∑N

j=1 Sij+1
,

where S is the signature matrix, N is the number of cell types.
These weights help prevent the model from only focusing on
reducing the residual errors in the highly expressed genes and
ignoring the rest, thereby improve model’s robustness.

Taken together, the weighted elastic net proposed in DWEN
has addressed many advantages over current cellular deconvo-
lution methods: (i) robustness to noise as the weights prevent
the model from only focusing on reducing the residual errors in
the highly expressed genes and ignoring the rest; (ii) automatic
feature selection from the signature matrix using L1-norm
function; and (iii) better prediction performance as tolerance
to multi-collinearity via utilization of the L2-norm penalty
function. Additionally, because the proportions are positive,
we also apply a non-negative constraint when estimating the
model’s coefficients. Finally, the coefficients in the model are
used as the proportions of the corresponding cell types in
the bulk sample. For this purpose, we apply the coordinate
descent algorithm [25] to optimally solve our objective func-
tion. Specifically, the algorithm starts with initializing random
values for the model’s coefficients. It then alternatively updates
one coefficient via setting the gradient of objective function
with respect to this coefficient to 0, while keeping the others
fixed. The algorithm iteratively updates and calculates these
coefficients until it reaches convergence.

III. RESULT

To evaluate the accuracy of the deconvolution methods,
we perform a comprehensive simulation study using single-
cell RNA sequencing data from the human cell atlas, Tabula
Sapiens [19]. The processed data are downloaded from the
atlas website (https://tabula-sapiens-portal.ds.czbiohub.org/).
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Fig. 1. The overall workflow of Deconvolution using Weighted Elastic Net (DWEN). The input of the method includes: (i) a reference single-cell dataset of
known cell types, and (ii) a bulk expression dataset to be deconvolved. The method consists of two main modules: (i) signature matrix construction, and (ii)
cell type proportions estimation. The first module first performs gene filtering and normalization to reduce noise and then performs differential analysis to
identify the important markers for each cell type. It then aggregates the expression of cells belonging to each cell type to obtain the signature matrix (rows
are markers and columns are known cell types). The second module aims to estimate the proportion of each cell type in the bulk sample using weighted
elastic net. It uses DESeq2 to estimate the size factors of each samples and then normalizes the bulk data. For each bulk sample, the model trains a weighted
elastic net with cell type signature profiles as the predictors, and the bulk expression profiles as the outcome. The weights of the predictors are considered as
the proportions of the corresponding cell types in the bulk sample.

This dataset consists of approximately 500,000 cells from 45
tissues of 15 normal human subjects. We select 20 tissues that
have the data from at least two donors for our benchmark. The
details of the data are provided in Table I.

For a specific tissue, we choose the scRNA-seq data from
one donor as the reference single-cell dataset and use the
scRNA-seq data from the remaining donors to simulate bulk
data. To simulate a bulk sample, we first generate random cell
type proportions, which sum up to one. We set the number of
cells in each bulk sample to be 5,000 cells. We then randomly
select the cells from scRNA-seq data to match the defined
proportions. For example, if a cell type has a proportion of
0.1, we select 500 cells of that cell type. The expression of
the bulk sample is the sum of the expression of all 5,000 cells.
We repeat the same process to generate 100 bulk samples for
the tissue. Repeating the whole procedure for each of the 20
tissues, we obtain 20 datasets – one per tissue. In these bulk
datasets, the true cell type proportions are known and thus can
be used to assess the performance of deconvolution methods.

For each tissue/dataset, we use the six deconvolution meth-
ods to infer the cell type proportions: DWEN, EPIC [16],
SCDC [18], DAISM [15], TOAST [13], and BayesCCE [10].
We use the reference single-cell expression matrix to construct
the cell type signature matrix as described in the Method
section. We also use the signature matrix generated by DWEN
for the input of EPIC and SCDC because these two methods
do not support the signature matrix construction. Note that
BayesCCE and TOAST are reference-free methods while
DWEN, EPIC, SCDC, and DAISM are reference-based ap-

proaches. To quantify the accuracy of each method, we calcu-
late the Spearman correlation between the estimated cell type
proportions and the true proportions. A good deconvolution
method is expected to have a high correlation in each dataset.

Figure 2 shows the analysis results of the Eye dataset.
The most top left panel shows the results of DWEN. Each
data point represents a cell type in a sample. For example,
a red point represents the “conjunctival epithelial cell” type
in a sample while points of other colors represent other cell
types. The horizontal axis shows the true proportion (from
ground truth) of the cell type while the vertical axis shows the
estimated proportion. The panel shows that DWEN accurately
estimates the proportion of most cell types in most samples.
The correlation between the estimated proportion and true pro-
portion is 0.81. The other five methods, EPIC, SCDC, DAISM,
TOAST, and BayesCCE, are substantially less accurate than
DWEN. Their correlations are 0.62, 0.47, 0.55, 0.03, and 0.55,
respectively. Notable EPIC performs the best among the five
existing methods but it lacks consistency. It performs well in
the majority of samples but fails to estimate the proportions
in the remaining samples. Nevertheless, DWEN outperforms
all current methods in this dataset.

Table II shows the Spearman correlation of all six methods
in 20 datasets. Cells highlighted in bold text have the highest
correlation in the corresponding row. Overall, DWEN out-
performs other methods by achieving the highest correlation
in 16/20 datasets (all except Fat, Thymus, Small Intestine,
and Bone Marrow). It also has a substantially higher average
correlation than other competing methods.
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TABLE I
DESCRIPTION OF THE 20 TISSUES INCLUDED IN THE BENCHMARK.

Tissue #Donor #Cell Type #Genes #UMI Cell Types

Bladder 3 9 2,739 13,219 T cell, macrophage, myofibroblast cell, bladder urothelial cell, smooth muscle cell, fibroblast, pericyte cell,
mast cell, mature NK T cell

Blood 6 6 1,866 9,100 erythrocyte, classical monocyte, neutrophil, memory B cell, plasma cell, platelet
Bone Marrow 3 8 2,600 11,848 plasma cell, hematopoietic stem cell, erythroid progenitor cell, mature NK T cell, granulocyte, naive B cell,

CD8 positive alpha beta T cell, CD4 positive alpha beta T cell
Eye 3 7 3,286 17,357 conjunctival epithelial cell, eye photoreceptor cell, Muller cell, retinal blood vessel endothelial cell, keratocyte,

corneal epithelial cell, melanocyte
Fat 2 4 3,247 13,353 fibroblast, endothelial cell, macrophage, myofibroblast cell
Large Intestine 2 5 3,764 16,385 CD8 positive alpha beta T cell, fibroblast, paneth cell of colon, B cell, gut endothelial cell
Liver 2 2 2,729 10,123 endothelial cell of hepatic sinusoid, hepatocyte
Lung 3 3 1,849 9,102 type II pneumocyte, mature NK T cell, adventitial cell
Lymph Node 3 9 2,302 8,458 B cell, effector CD4 positive alpha beta T cell, regulatory T cell, plasma cell, neutrophil, macrophage, CD1c

positive myeloid dendritic cell, intermediate monocyte, mast cell
Muscle 3 11 3,282 15,256 mesenchymal stem cell, skeletal muscle satellite stem cell, capillary endothelial cell, pericyte cell, fast muscle

cell, macrophage, endothelial cell of vascular tree, slow muscle cell, endothelial cell of artery, tendon cell,
endothelial cell of lymphatic vessel

Pancreas 2 7 2,024 7,477 pancreatic acinar cell, T cell, endothelial cell, myeloid cell, pancreatic stellate cell, B cell, pancreatic ductal
cell

Prostate 2 6 2,532 10,319 basal cell of prostate epithelium, epithelial cell, club cell, erythroid progenitor cell, luminal cell of prostate
epithelium, endothelial cell

Salivary Gland 2 10 2,564 9,155 acinar cell of salivary gland, pericyte cell, mature NK T cell, fibroblast, endothelial cell of lymphatic vessel,
adventitial cell, endothelial cell, monocyte, duct epithelial cell, basal cell

Skin 2 8 3,031 19,725 macrophage, stromal cell, mast cell, muscle cell, CD1c positive myeloid dendritic cell, endothelial cell, naive
thymus derived CD8 positive alpha beta T cell, regulatory T cell

Small Intestine 2 4 2,480 10,034 CD8 positive alpha beta T cell, B cell, paneth cell of epithelium of small intestine, fibroblast
Spleen 3 13 2,475 13,680 macrophage, intermediate monocyte, endothelial cell, memory B cell, classical monocyte, neutrophil, naive B

cell, plasma cell, type I NK T cell, mature NK T cell, innate lymphoid cell, regulatory T cell, hematopoietic
stem cell

Thymus 2 9 2,160 8,746 medullary thymic epithelial cell, fibroblast, macrophage, vascular associated smooth muscle cell, plasma cell,
vein endothelial cell, capillary endothelial cell, endothelial cell of artery, monocyte

Tongue 2 5 1,971 8,706 leukocyte, fibroblast, vein endothelial cell, pericyte cell, capillary endothelial cell
Trachea 2 3 2,395 9,850 endothelial cell, ciliated cell, basal cell
Vasculature 2 6 2,414 8,794 fibroblast, smooth muscle cell, macrophage, pericyte cell, mast cell, mature NK T cell

Fig. 2. Evaluation of deconvolution methods using the Eye dataset. The horizontal axis shows the true cell type proportions while the vertical axis shows the
cell type proportions estimated by DWEN, EPIC, SCDC, DAISM, TOAST, and BayesECE. A point on a panel represents a cell type in a sample (there are
a total of 100 samples in this dataset). The performance of a method is quantified by the correlation between the estimated cell type proportions and the true
proportions. DWEN outperforms all state-of-the-at methods by having the highest correlation.
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TABLE II
ACCURACY OF CELL TYPE PROPORTIONS INFERRED BY BAYESCCE,

TOAST, DAISM, EPIC, SCDC, AND DWEN MEASURED BY SPEARMAN
CORRELATION. THE HIGHEST VALUES ARE HIGHLIGHTED IN BOLD.

Tissue DWEN EPIC SCDC DAISM TOAST BayesCCE
Liver 1.00 1.00 1.00 1.00 1.00 -1.00
Trachea 0.90 0.76 -0.02 0.78 0.24 0.05
Lung 0.90 0.60 0.86 0.86 0.80 0.63
Blood 0.89 0.49 0.89 0.60 0.74 0.35
Vasculature 0.84 0.82 0.50 0.12 0.42 -0.11
Lymph Node 0.83 0.49 0.37 0.24 0.23 0.20
Bladder 0.82 0.52 0.49 0.08 -0.06 0.15
Eye 0.81 0.62 0.47 0.55 0.03 0.55
Spleen 0.80 0.69 0.70 0.47 0.02 0.31
Muscle 0.79 0.63 0.57 0.29 0.31 0.42
Skin 0.77 0.38 -0.07 0.50 0.42 0.09
Tongue 0.77 0.59 0.71 0.63 0.70 -0.13
Pancreas 0.76 0.58 0.62 0.24 -0.07 0.18
Large Intestine 0.73 0.62 0.58 0.12 0.02 0.17
Fat 0.61 0.48 0.03 0.79 0.41 0.47
Salivary Gland 0.60 0.60 0.44 0.49 0.41 0.19
Thymus 0.54 0.20 0.35 0.07 0.61 0.26
Small Intestine 0.53 -0.41 0.04 0.66 0.24 0.21
Prostate 0.52 0.42 0.48 -0.39 0.23 -0.09
Bone Marrow 0.41 0.14 0.26 0.17 0.44 0.03
Mean 0.74 0.51 0.46 0.41 0.36 0.15

For the Liver dataset, most methods except BayesCCE can
accurately estimate the cell type proportions with a perfect
correlation of 1. For the Trachea dataset, the three methods
DWEN, EPIC, and DAISM perform well with correlations of
0.75 and above. The other three methods, SCDC, TOAST, and
BayesCCE, have correlations that are close to zero. In other
words, these methods are not ideal for this specific tissue. For
the Lung dataset, most methods perform well with DWEN
being the best method.

The same trend can be observed in the remaining datasets:
DWEN consistently outperforms other methods in most anal-
yses. DWEN substantially outperforms all other methods by
having the highest average correlation. The average correla-
tion of DWEN across all 20 datasets is 0.74 while that of
BayesCCE, TOAST, DAISM, EPIC, and SCDC are 0.15, 0.36,
0.41, 0.51, and 0.46, respectively. DWEN also has the highest
correlations in most datasets. This demonstrates that DWEN
can accurately and reliably estimate the proportions of the cell
types in all samples and all tissues.

IV. CONCLUSION

In this article, we introduced a new method, DWEN, to infer
the cell type proportions of bulk expression data using single-
cell expression data as reference. We compared DWEN with
five state-of-the-art deconvolution methods using 20 datasets
obtained from the human cell atlas. We demonstrated that
DWEN outperforms other methods in inferring the cell type
proportions of the bulk samples. A potential improvement
of this research is to develop an ensemble deconvolution
approach when multiple signature matrices are available. We
also plan to combine DWEN with our current analysis tech-
niques in these applications, including cancer subtyping [26–
33], meta-analysis [34–37], single-cell analysis [38–41], and
systems-level interpretation [42–48], and the analysis of omics
data other than transcriptome [49–51].
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